Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806029941/wm2024sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536806029941/wm2024Isup2.hkl |
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.
YbIn0.81Rh0.19Cu4 | Dx = 9.820 Mg m−3 |
Mr = 539.73 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, F43m | Cell parameters from 1381 reflections |
Hall symbol: F -4 2 3 | θ = 5–33° |
a = 7.1469 (2) Å | µ = 53.84 mm−1 |
V = 365.05 (2) Å3 | T = 100 K |
Z = 4 | Irregular fragment, grey |
F(000) = 937 | 0.06 × 0.05 × 0.04 mm |
Bruker SMART APEX diffractometer | 96 independent reflections |
Radiation source: fine-focus sealed tube | 96 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 8.3 pixels mm-1 | θmax = 33.0°, θmin = 4.9° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −10→10 |
Tmin = 0.040, Tmax = 0.115 | l = −10→10 |
1381 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0202P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.014 | (Δ/σ)max < 0.001 |
wR(F2) = 0.036 | Δρmax = 1.09 e Å−3 |
S = 1.21 | Δρmin = −0.93 e Å−3 |
96 reflections | Extinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
9 parameters | Extinction coefficient: 0.0118 (7) |
0 restraints | Absolute structure: Flack (1983), 40 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.04 (3) |
Experimental. Data collection is performed with four batch runs at φ = 0.00 ° (450 frames), at φ = 90.00 ° (450 frames), at φ = 180.00 ° (450 frames), and at φ = 270.00 (450 frames). Frame width = 0.40 \& in ω. Data are merged, corrected for decay, and treated with multi-scan absorption corrections. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Yb | 0.0000 | 0.0000 | 0.0000 | 0.0052 (2) | |
In | 0.2500 | 0.2500 | 0.2500 | 0.0043 (3) | 0.81 (3) |
Rh | 0.2500 | 0.2500 | 0.2500 | 0.0043 (3) | 0.19 (3) |
Cu | 0.62465 (5) | 0.62465 (5) | 0.62465 (5) | 0.0038 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Yb | 0.0052 (2) | 0.0052 (2) | 0.0052 (2) | 0.000 | 0.000 | 0.000 |
In | 0.0043 (3) | 0.0043 (3) | 0.0043 (3) | 0.000 | 0.000 | 0.000 |
Rh | 0.0043 (3) | 0.0043 (3) | 0.0043 (3) | 0.000 | 0.000 | 0.000 |
Cu | 0.0038 (2) | 0.0038 (2) | 0.0038 (2) | −0.00031 (14) | −0.00031 (14) | −0.00031 (14) |
Yb—Cui | 2.9637 (1) | In/Rh—Cuvii | 2.9622 (1) |
Yb—Cuii | 2.9637 (1) | In/Rh—Cuviii | 2.9622 (1) |
Yb—Cuiii | 2.9637 (1) | In/Rh—Cuix | 2.9622 (1) |
Yb—Cuiv | 2.9637 (1) | In/Rh—Cuxvi | 2.9622 (1) |
Yb—Cuv | 2.9637 (1) | In/Rh—Cuxvii | 2.9622 (1) |
Yb—Cuvi | 2.9637 (1) | In/Rh—Cuxviii | 2.9622 (1) |
Yb—Cuvii | 2.9637 (1) | Cu—Cuxiii | 2.5197 (10) |
Yb—Cuviii | 2.9637 (1) | Cu—Cuxiv | 2.5197 (10) |
Yb—Cuix | 2.9637 (1) | Cu—Cuxv | 2.5197 (10) |
Yb—Cux | 2.9637 (1) | Cu—Cuxix | 2.5339 (10) |
Yb—Cuxi | 2.9637 (1) | Cu—Cuxx | 2.5339 (10) |
Yb—Cuxii | 2.9637 (1) | Cu—Cuxxi | 2.5339 (10) |
In/Rh—Cuxiii | 2.9622 (1) | Cu—In/Rhxxii | 2.9622 (1) |
In/Rh—Cuxiv | 2.9622 (1) | Cu—Rhxxii | 2.9622 (1) |
In/Rh—Cuxv | 2.9622 (1) | Cu—Rhxxiii | 2.9622 (1) |
In/Rh—Cuiv | 2.9622 (1) | Cu—Rhxxiv | 2.9622 (1) |
In/Rh—Cuv | 2.9622 (1) | Cu—In/Rhxxiii | 2.9622 (1) |
In/Rh—Cuvi | 2.9622 (1) | Cu—In/Rhxxiv | 2.9622 (1) |
Cui—Yb—Cuii | 50.617 (19) | Cuxv—In/Rh—Cuviii | 117.083 (7) |
Cui—Yb—Cuiii | 50.617 (19) | Cuiv—In/Rh—Cuviii | 95.248 (4) |
Cuii—Yb—Cuiii | 50.617 (19) | Cuv—In/Rh—Cuviii | 50.341 (19) |
Cui—Yb—Cuiv | 116.988 (7) | Cuvi—In/Rh—Cuviii | 50.64 (2) |
Cuii—Yb—Cuiv | 95.184 (4) | Cuvii—In/Rh—Cuviii | 95.248 (4) |
Cuiii—Yb—Cuiv | 145.014 (15) | Cuxiii—In/Rh—Cuix | 95.248 (4) |
Cui—Yb—Cuv | 116.988 (7) | Cuxiv—In/Rh—Cuix | 144.792 (15) |
Cuii—Yb—Cuv | 145.014 (15) | Cuxv—In/Rh—Cuix | 117.083 (7) |
Cuiii—Yb—Cuv | 95.184 (4) | Cuiv—In/Rh—Cuix | 50.64 (2) |
Cuiv—Yb—Cuv | 116.988 (7) | Cuv—In/Rh—Cuix | 95.248 (4) |
Cui—Yb—Cuvi | 95.184 (4) | Cuvi—In/Rh—Cuix | 95.248 (4) |
Cuii—Yb—Cuvi | 116.988 (7) | Cuvii—In/Rh—Cuix | 50.341 (19) |
Cuiii—Yb—Cuvi | 145.014 (15) | Cuviii—In/Rh—Cuix | 117.083 (7) |
Cuiv—Yb—Cuvi | 50.31 (2) | Cuxiii—In/Rh—Cuxvi | 50.64 (2) |
Cuv—Yb—Cuvi | 95.184 (4) | Cuxiv—In/Rh—Cuxvi | 95.248 (4) |
Cui—Yb—Cuvii | 145.014 (15) | Cuxv—In/Rh—Cuxvi | 95.248 (4) |
Cuii—Yb—Cuvii | 116.988 (7) | Cuiv—In/Rh—Cuxvi | 95.248 (4) |
Cuiii—Yb—Cuvii | 95.184 (4) | Cuv—In/Rh—Cuxvi | 95.248 (4) |
Cuiv—Yb—Cuvii | 95.184 (4) | Cuvi—In/Rh—Cuxvi | 144.792 (15) |
Cuv—Yb—Cuvii | 50.617 (19) | Cuvii—In/Rh—Cuxvi | 50.341 (19) |
Cuvi—Yb—Cuvii | 116.988 (7) | Cuviii—In/Rh—Cuxvi | 144.792 (15) |
Cui—Yb—Cuviii | 95.184 (4) | Cuix—In/Rh—Cuxvi | 50.341 (19) |
Cuii—Yb—Cuviii | 145.014 (15) | Cuxiii—In/Rh—Cuxvii | 95.248 (4) |
Cuiii—Yb—Cuviii | 116.988 (7) | Cuxiv—In/Rh—Cuxvii | 50.64 (2) |
Cuiv—Yb—Cuviii | 95.184 (4) | Cuxv—In/Rh—Cuxvii | 95.248 (4) |
Cuv—Yb—Cuviii | 50.31 (2) | Cuiv—In/Rh—Cuxvii | 144.792 (15) |
Cuvi—Yb—Cuviii | 50.617 (19) | Cuv—In/Rh—Cuxvii | 50.341 (19) |
Cuvii—Yb—Cuviii | 95.184 (4) | Cuvi—In/Rh—Cuxvii | 95.248 (4) |
Cui—Yb—Cuix | 145.014 (15) | Cuvii—In/Rh—Cuxvii | 95.248 (4) |
Cuii—Yb—Cuix | 95.184 (4) | Cuviii—In/Rh—Cuxvii | 50.341 (19) |
Cuiii—Yb—Cuix | 116.988 (7) | Cuix—In/Rh—Cuxvii | 144.792 (15) |
Cuiv—Yb—Cuix | 50.617 (19) | Cuxvi—In/Rh—Cuxvii | 117.083 (7) |
Cuv—Yb—Cuix | 95.184 (4) | Cuxiii—In/Rh—Cuxviii | 95.248 (4) |
Cuvi—Yb—Cuix | 95.184 (4) | Cuxiv—In/Rh—Cuxviii | 95.248 (4) |
Cuvii—Yb—Cuix | 50.31 (2) | Cuxv—In/Rh—Cuxviii | 50.64 (2) |
Cuviii—Yb—Cuix | 116.988 (7) | Cuiv—In/Rh—Cuxviii | 50.341 (19) |
Cui—Yb—Cux | 50.31 (2) | Cuv—In/Rh—Cuxviii | 144.792 (15) |
Cuii—Yb—Cux | 95.184 (4) | Cuvi—In/Rh—Cuxviii | 50.341 (19) |
Cuiii—Yb—Cux | 95.184 (4) | Cuvii—In/Rh—Cuxviii | 144.792 (15) |
Cuiv—Yb—Cux | 95.184 (4) | Cuviii—In/Rh—Cuxviii | 95.248 (4) |
Cuv—Yb—Cux | 95.184 (4) | Cuix—In/Rh—Cuxviii | 95.248 (4) |
Cuvi—Yb—Cux | 50.617 (19) | Cuxvi—In/Rh—Cuxviii | 117.083 (7) |
Cuvii—Yb—Cux | 145.014 (15) | Cuxvii—In/Rh—Cuxviii | 117.083 (7) |
Cuviii—Yb—Cux | 50.617 (19) | Cuxiii—Cu—Cuxiv | 60.001 (1) |
Cuix—Yb—Cux | 145.014 (15) | Cuxiii—Cu—Cuxv | 60.001 (1) |
Cui—Yb—Cuxi | 95.184 (4) | Cuxiv—Cu—Cuxv | 60.001 (1) |
Cuii—Yb—Cuxi | 50.31 (2) | Cuxiii—Cu—Cuxix | 179.999 (11) |
Cuiii—Yb—Cuxi | 95.184 (4) | Cuxiv—Cu—Cuxix | 120.0 |
Cuiv—Yb—Cuxi | 50.617 (19) | Cuxv—Cu—Cuxix | 120.0 |
Cuv—Yb—Cuxi | 145.014 (15) | Cuxiii—Cu—Cuxx | 120.0 |
Cuvi—Yb—Cuxi | 95.184 (4) | Cuxiv—Cu—Cuxx | 180.00 (2) |
Cuvii—Yb—Cuxi | 95.184 (4) | Cuxv—Cu—Cuxx | 120.0 |
Cuviii—Yb—Cuxi | 145.014 (15) | Cuxix—Cu—Cuxx | 60.0 |
Cuix—Yb—Cuxi | 50.617 (19) | Cuxiii—Cu—Cuxxi | 120.0 |
Cux—Yb—Cuxi | 116.988 (7) | Cuxiv—Cu—Cuxxi | 120.0 |
Cui—Yb—Cuxii | 95.184 (4) | Cuxv—Cu—Cuxxi | 179.999 (11) |
Cuii—Yb—Cuxii | 95.184 (4) | Cuxix—Cu—Cuxxi | 60.0 |
Cuiii—Yb—Cuxii | 50.31 (2) | Cuxx—Cu—Cuxxi | 60.0 |
Cuiv—Yb—Cuxii | 145.014 (15) | Cuxiii—Cu—In/Rhxxii | 115.324 (11) |
Cuv—Yb—Cuxii | 50.617 (19) | Cuxiv—Cu—In/Rhxxii | 64.830 (9) |
Cuvi—Yb—Cuxii | 145.014 (15) | Cuxv—Cu—In/Rhxxii | 64.830 (9) |
Cuvii—Yb—Cuxii | 50.617 (19) | Cuxix—Cu—In/Rhxxii | 64.678 (11) |
Cuviii—Yb—Cuxii | 95.184 (4) | Cuxx—Cu—In/Rhxxii | 115.169 (10) |
Cuix—Yb—Cuxii | 95.184 (4) | Cuxxi—Cu—In/Rhxxii | 115.169 (10) |
Cux—Yb—Cuxii | 116.988 (7) | In/Rhxxii—Cu—Rhxxii | 0.0 |
Cuxi—Yb—Cuxii | 116.988 (7) | In/Rhxxii—Cu—Rhxxiii | 117.084 (7) |
Cuxiii—In/Rh—Cuxiv | 50.341 (19) | In/Rhxxii—Cu—Rhxxiv | 117.084 (7) |
Cuxiii—In/Rh—Cuxv | 50.341 (19) | Cuxiii—Cu—In/Rhxxiii | 64.830 (9) |
Cuxiv—In/Rh—Cuxv | 50.341 (19) | Cuxiv—Cu—In/Rhxxiii | 115.324 (11) |
Cuxiii—In/Rh—Cuiv | 117.083 (7) | Cuxv—Cu—In/Rhxxiii | 64.830 (9) |
Cuxiv—In/Rh—Cuiv | 144.792 (15) | Cuxix—Cu—In/Rhxxiii | 115.169 (10) |
Cuxv—In/Rh—Cuiv | 95.248 (5) | Cuxx—Cu—In/Rhxxiii | 64.678 (11) |
Cuxiii—In/Rh—Cuv | 117.083 (7) | Cuxxi—Cu—In/Rhxxiii | 115.169 (9) |
Cuxiv—In/Rh—Cuv | 95.248 (4) | In/Rhxxii—Cu—In/Rhxxiii | 117.084 (7) |
Cuxv—In/Rh—Cuv | 144.792 (15) | Rhxxii—Cu—In/Rhxxiii | 117.084 (7) |
Cuiv—In/Rh—Cuv | 117.083 (7) | Rhxxiii—Cu—In/Rhxxiii | 0.0 |
Cuxiii—In/Rh—Cuvi | 144.792 (15) | Rhxxiv—Cu—In/Rhxxiii | 117.084 (7) |
Cuxiv—In/Rh—Cuvi | 117.083 (7) | Cuxiii—Cu—In/Rhxxiv | 64.830 (9) |
Cuxv—In/Rh—Cuvi | 95.248 (5) | Cuxiv—Cu—In/Rhxxiv | 64.830 (9) |
Cuiv—In/Rh—Cuvi | 50.341 (19) | Cuxv—Cu—In/Rhxxiv | 115.324 (11) |
Cuv—In/Rh—Cuvi | 95.248 (4) | Cuxix—Cu—In/Rhxxiv | 115.169 (9) |
Cuxiii—In/Rh—Cuvii | 95.248 (4) | Cuxx—Cu—In/Rhxxiv | 115.169 (9) |
Cuxiv—In/Rh—Cuvii | 117.083 (7) | Cuxxi—Cu—In/Rhxxiv | 64.678 (11) |
Cuxv—In/Rh—Cuvii | 144.792 (15) | In/Rhxxii—Cu—In/Rhxxiv | 117.084 (7) |
Cuiv—In/Rh—Cuvii | 95.248 (4) | Rhxxii—Cu—In/Rhxxiv | 117.084 (7) |
Cuv—In/Rh—Cuvii | 50.64 (2) | Rhxxiii—Cu—In/Rhxxiv | 117.084 (7) |
Cuvi—In/Rh—Cuvii | 117.083 (7) | Rhxxiv—Cu—In/Rhxxiv | 0.0 |
Cuxiii—In/Rh—Cuviii | 144.792 (15) | In/Rhxxiii—Cu—In/Rhxxiv | 117.084 (7) |
Cuxiv—In/Rh—Cuviii | 95.248 (5) |
Symmetry codes: (i) x−1, −y+1/2, −z+1/2; (ii) −x+1/2, y−1, −z+1/2; (iii) −x+1/2, −y+1/2, z−1; (iv) x−1/2, −y+1/2, −z+1; (v) x−1/2, −y+1, −z+1/2; (vi) −x+1/2, y−1/2, −z+1; (vii) −x+1, y−1/2, −z+1/2; (viii) −x+1/2, −y+1, z−1/2; (ix) −x+1, −y+1/2, z−1/2; (x) x−1, y−1/2, z−1/2; (xi) x−1/2, y−1, z−1/2; (xii) x−1/2, y−1/2, z−1; (xiii) x, −y+1, −z+1; (xiv) −x+1, y, −z+1; (xv) −x+1, −y+1, z; (xvi) x, y−1/2, z−1/2; (xvii) x−1/2, y, z−1/2; (xviii) x−1/2, y−1/2, z; (xix) x, −y+3/2, −z+3/2; (xx) −x+3/2, y, −z+3/2; (xxi) −x+3/2, −y+3/2, z; (xxii) x, y+1/2, z+1/2; (xxiii) x+1/2, y, z+1/2; (xxiv) x+1/2, y+1/2, z. |