In the title compound, [Cu(H2O)6](NO3)2, the geometry around the CuII ion is approximately octahedral, formed by six O atoms from the coordinated water molecules. The Cu-O distances are rather similar [2.014 (2)-2.084 (2) Å] and not related by symmetry. The Jahn-Teller effect is, at best, only weakly observed in this structure, in contrast to many other structures where the hexaaquacopper(II) ion has been characterized. An extensive mesh of hydrogen-bond interactions between the coordinated water molecules and nitrate ions is a feature of the structure and may limit the degree to which the Jahn-Teller effect can be observed.
Supporting information
Key indicators
- Single-crystal X-ray study
- T = 93 K
- Mean (O-N) = 0.004 Å
- R factor = 0.034
- wR factor = 0.096
- Data-to-parameter ratio = 9.0
checkCIF/PLATON results
No syntax errors found
Alert level B
PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.95
Alert level C
PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ?
PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ?
PLAT088_ALERT_3_C Poor Data / Parameter Ratio .................... 9.05
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.74
PLAT731_ALERT_1_C Bond Calc 0.98(4), Rep 0.978(18) ...... 2.22 su-Rat
O6 -H6B 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.98(4), Rep 0.978(18) ...... 2.22 su-Rat
O6 -H6B 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.98(4), Rep 0.978(18) ...... 2.22 su-Rat
O6 -H6B 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.98(4), Rep 0.978(18) ...... 2.22 su-Rat
O6 -H6B 1.555 1.555
0 ALERT level A = In general: serious problem
1 ALERT level B = Potentially serious problem
8 ALERT level C = Check and explain
0 ALERT level G = General alerts; check
6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
A solution of Cu(NO3)2·3H2O (50 mg) in ethanol (5 ml) was added to a cooled filtered solution of ligand L, or (I) (0.15 g) in ethanol (5 ml). The reaction mixture was heated at reflux for 1 h, and upon cooling to room temperature afforded a blue–green insoluble precipitate (0.11 g). The precipitate was suspended in ethanol–water (1:1, 5 ml), then the mixture was filtered after it was heated to reflux for 1 h. The solution was allowed to cool to room temperature overnight. The solution was kept in the refrigerator for about two months during which time blue crystals of (II) suitable for X-ray analysis were produced. No crystals of (I) were produced in this way.
The H atoms were located in a difference Fourier map. The O—H distances were constrained to 1.0 Å, with Uiso(H) = 1.2Ueq(O). The highest peak in the final difference map is located 0.99 Å from Cu and the deepest hole 0.89 Å from the same atom.
Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Version 1.4; Bruno et al., 2002); software used to prepare material for publication: SHELXTL.
Hexaaquacopper(II) dinitrate
top
Crystal data top
[Cu(H2O)6](NO3)2 | Z = 2 |
Mr = 295.67 | F(000) = 302 |
Triclinic, P1 | Dx = 2.126 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7404 (8) Å | Cell parameters from 2722 reflections |
b = 7.6452 (10) Å | θ = 2.9–26.4° |
c = 11.4655 (15) Å | µ = 2.43 mm−1 |
α = 106.428 (2)° | T = 93 K |
β = 98.399 (2)° | Block, blue |
γ = 101.504 (2)° | 0.55 × 0.34 × 0.12 mm |
V = 461.84 (11) Å3 | |
Data collection top
Bruker SMART CCD diffractometer | 1556 independent reflections |
Radiation source: fine-focus sealed tube | 1494 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 8.192 pixels mm-1 | θmax = 25.1°, θmin = 3.7° |
ϕ and ω scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | k = −8→8 |
Tmin = 0.341, Tmax = 0.744 | l = −13→13 |
2917 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 0.91 | w = 1/[σ2(Fo2) + (0.0546P)2 + 2.7318P] where P = (Fo2 + 2Fc2)/3 |
1556 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.60 e Å−3 |
18 restraints | Δρmin = −1.14 e Å−3 |
Crystal data top
[Cu(H2O)6](NO3)2 | γ = 101.504 (2)° |
Mr = 295.67 | V = 461.84 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.7404 (8) Å | Mo Kα radiation |
b = 7.6452 (10) Å | µ = 2.43 mm−1 |
c = 11.4655 (15) Å | T = 93 K |
α = 106.428 (2)° | 0.55 × 0.34 × 0.12 mm |
β = 98.399 (2)° | |
Data collection top
Bruker SMART CCD diffractometer | 1556 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 1494 reflections with I > 2σ(I) |
Tmin = 0.341, Tmax = 0.744 | Rint = 0.020 |
2917 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.034 | 18 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 0.91 | Δρmax = 0.60 e Å−3 |
1556 reflections | Δρmin = −1.14 e Å−3 |
172 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu | 0.17237 (7) | 0.14519 (6) | 0.23243 (4) | 0.00973 (18) | |
O1 | 0.2520 (4) | −0.0653 (4) | 0.1031 (2) | 0.0095 (5) | |
H1A | 0.230 (7) | −0.058 (5) | 0.018 (2) | 0.011* | |
H1B | 0.180 (7) | −0.189 (4) | 0.106 (3) | 0.011* | |
O2 | 0.5425 (4) | 0.2400 (4) | 0.3146 (2) | 0.0094 (5) | |
H2A | 0.607 (7) | 0.372 (3) | 0.323 (3) | 0.011* | |
H2B | 0.581 (7) | 0.216 (5) | 0.394 (2) | 0.011* | |
O3 | 0.0978 (4) | 0.3582 (4) | 0.3683 (2) | 0.0102 (5) | |
H3A | 0.185 (7) | 0.479 (4) | 0.365 (3) | 0.012* | |
H3B | 0.138 (7) | 0.343 (5) | 0.449 (2) | 0.012* | |
O4 | −0.1905 (4) | 0.0364 (3) | 0.1453 (2) | 0.0088 (5) | |
H4A | −0.291 (6) | 0.107 (4) | 0.190 (3) | 0.011* | |
H4B | −0.234 (7) | −0.097 (3) | 0.137 (4) | 0.011* | |
O5 | 0.2220 (4) | 0.3095 (4) | 0.1238 (2) | 0.0105 (5) | |
H5A | 0.388 (4) | 0.340 (5) | 0.111 (4) | 0.013* | |
H5B | 0.144 (6) | 0.412 (4) | 0.134 (4) | 0.013* | |
O6 | 0.1346 (4) | −0.0050 (4) | 0.3531 (2) | 0.0096 (5) | |
H6A | −0.037 (4) | −0.048 (5) | 0.352 (4) | 0.012* | |
H6B | 0.221 (6) | −0.102 (5) | 0.356 (4) | 0.012* | |
N1 | 0.7929 (5) | 0.5522 (4) | 0.1275 (3) | 0.0093 (6) | |
O11 | 0.6585 (4) | 0.6598 (4) | 0.1232 (2) | 0.0119 (5) | |
O12 | 0.7080 (4) | 0.3869 (4) | 0.1234 (2) | 0.0124 (5) | |
O13 | 1.0202 (4) | 0.6086 (4) | 0.1371 (2) | 0.0132 (6) | |
N2 | 0.5813 (5) | 0.7634 (4) | 0.3903 (3) | 0.0102 (6) | |
O21 | 0.6533 (5) | 0.9126 (4) | 0.3697 (2) | 0.0124 (5) | |
O22 | 0.3683 (4) | 0.7234 (4) | 0.4107 (2) | 0.0145 (6) | |
O23 | 0.7148 (4) | 0.6530 (4) | 0.3925 (2) | 0.0125 (5) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu | 0.0058 (3) | 0.0106 (3) | 0.0126 (3) | 0.00079 (17) | 0.00374 (17) | 0.00344 (18) |
O1 | 0.0078 (12) | 0.0084 (13) | 0.0119 (12) | 0.0012 (9) | 0.0045 (10) | 0.0020 (10) |
O2 | 0.0050 (11) | 0.0102 (13) | 0.0130 (12) | 0.0003 (9) | 0.0024 (9) | 0.0047 (10) |
O3 | 0.0091 (12) | 0.0099 (13) | 0.0123 (12) | 0.0027 (10) | 0.0053 (10) | 0.0032 (10) |
O4 | 0.0052 (11) | 0.0079 (13) | 0.0134 (12) | 0.0013 (9) | 0.0035 (9) | 0.0031 (10) |
O5 | 0.0067 (12) | 0.0120 (13) | 0.0160 (13) | 0.0021 (10) | 0.0064 (10) | 0.0076 (10) |
O6 | 0.0058 (12) | 0.0114 (13) | 0.0137 (12) | 0.0014 (9) | 0.0046 (10) | 0.0063 (10) |
N1 | 0.0081 (14) | 0.0111 (17) | 0.0077 (14) | 0.0011 (12) | 0.0033 (11) | 0.0015 (11) |
O11 | 0.0095 (12) | 0.0124 (14) | 0.0152 (13) | 0.0043 (10) | 0.0052 (10) | 0.0043 (10) |
O12 | 0.0095 (12) | 0.0079 (14) | 0.0216 (14) | 0.0007 (10) | 0.0067 (10) | 0.0068 (10) |
O13 | 0.0051 (12) | 0.0120 (14) | 0.0223 (14) | −0.0007 (10) | 0.0054 (10) | 0.0058 (11) |
N2 | 0.0080 (14) | 0.0121 (16) | 0.0088 (14) | 0.0016 (12) | 0.0032 (11) | 0.0009 (12) |
O21 | 0.0119 (12) | 0.0108 (14) | 0.0180 (13) | 0.0023 (10) | 0.0081 (10) | 0.0078 (10) |
O22 | 0.0065 (12) | 0.0137 (15) | 0.0227 (14) | −0.0003 (10) | 0.0065 (10) | 0.0049 (11) |
O23 | 0.0106 (12) | 0.0135 (14) | 0.0143 (13) | 0.0054 (10) | 0.0043 (10) | 0.0037 (10) |
Geometric parameters (Å, º) top
Cu—O5 | 2.014 (2) | O4—H4A | 0.970 (18) |
Cu—O1 | 2.034 (2) | O4—H4B | 0.974 (18) |
Cu—O6 | 2.041 (2) | O5—H5A | 0.974 (18) |
Cu—O4 | 2.064 (2) | O5—H5B | 0.963 (18) |
Cu—O3 | 2.074 (2) | O6—H6A | 0.973 (18) |
Cu—O2 | 2.084 (2) | O6—H6B | 0.978 (18) |
O1—H1A | 0.981 (18) | N1—O11 | 1.241 (4) |
O1—H1B | 0.966 (18) | N1—O12 | 1.245 (4) |
O2—H2A | 0.976 (18) | N1—O13 | 1.268 (4) |
O2—H2B | 0.981 (18) | N2—O21 | 1.233 (4) |
O3—H3A | 0.977 (18) | N2—O23 | 1.252 (4) |
O3—H3B | 0.966 (18) | N2—O22 | 1.272 (4) |
| | | |
O5—Cu—O1 | 89.49 (10) | H2A—O2—H2B | 112 (2) |
O5—Cu—O6 | 175.94 (10) | Cu—O3—H3A | 108 (2) |
O1—Cu—O6 | 93.58 (10) | Cu—O3—H3B | 110 (2) |
O5—Cu—O4 | 91.38 (10) | H3A—O3—H3B | 113 (2) |
O1—Cu—O4 | 88.81 (10) | Cu—O4—H4A | 111 (2) |
O6—Cu—O4 | 91.34 (10) | Cu—O4—H4B | 108 (2) |
O5—Cu—O3 | 91.72 (10) | H4A—O4—H4B | 113 (2) |
O1—Cu—O3 | 178.31 (10) | Cu—O5—H5A | 114 (2) |
O6—Cu—O3 | 85.17 (10) | Cu—O5—H5B | 118 (2) |
O4—Cu—O3 | 92.35 (10) | H5A—O5—H5B | 114 (3) |
O5—Cu—O2 | 89.50 (10) | Cu—O6—H6A | 110 (2) |
O1—Cu—O2 | 87.93 (10) | Cu—O6—H6B | 122 (2) |
O6—Cu—O2 | 87.96 (10) | H6A—O6—H6B | 112 (2) |
O4—Cu—O2 | 176.61 (9) | O11—N1—O12 | 120.8 (3) |
O3—Cu—O2 | 90.89 (10) | O11—N1—O13 | 120.7 (3) |
Cu—O1—H1A | 116 (2) | O12—N1—O13 | 118.5 (3) |
Cu—O1—H1B | 113 (2) | O21—N2—O23 | 121.1 (3) |
H1A—O1—H1B | 113 (2) | O21—N2—O22 | 118.9 (3) |
Cu—O2—H2A | 112 (2) | O23—N2—O22 | 120.0 (3) |
Cu—O2—H2B | 113 (2) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O4i | 0.98 (2) | 1.91 (2) | 2.894 (3) | 179 (3) |
O1—H1B···O13ii | 0.97 (2) | 1.79 (2) | 2.741 (4) | 168 (4) |
O2—H2B···O22iii | 0.98 (2) | 2.12 (2) | 3.038 (4) | 156 (3) |
O2—H2A···O23 | 0.98 (2) | 2.00 (2) | 2.940 (4) | 162 (3) |
O2—H2B···O21iv | 0.98 (2) | 2.38 (3) | 2.912 (4) | 113 (3) |
O3—H3A···O22 | 0.98 (2) | 1.83 (2) | 2.779 (4) | 162 (3) |
O3—H3B···O23iii | 0.97 (2) | 1.88 (2) | 2.827 (4) | 167 (3) |
O4—H4A···O2v | 0.97 (2) | 1.99 (2) | 2.942 (4) | 167 (4) |
O4—H4A···O1v | 0.97 (2) | 2.60 (4) | 3.070 (3) | 110 (3) |
O4—H4B···O11ii | 0.97 (2) | 1.79 (2) | 2.763 (4) | 175 (3) |
O5—H5A···O12 | 0.97 (2) | 1.78 (2) | 2.735 (3) | 166 (4) |
O5—H5A···N1 | 0.97 (2) | 2.50 (3) | 3.417 (4) | 156 (3) |
O5—H5A···O11 | 0.97 (2) | 2.58 (3) | 3.285 (3) | 130 (3) |
O5—H5B···O13v | 0.96 (2) | 1.78 (2) | 2.740 (4) | 172 (4) |
O5—H5B···N1v | 0.96 (2) | 2.47 (2) | 3.365 (4) | 155 (3) |
O5—H5B···O12v | 0.96 (2) | 2.45 (3) | 3.123 (3) | 126 (3) |
O6—H6B···O21iv | 0.98 (2) | 2.44 (3) | 3.154 (3) | 130 (3) |
O6—H6B···O22iv | 0.98 (2) | 1.91 (2) | 2.860 (4) | 162 (4) |
O6—H6B···N2iv | 0.98 (2) | 2.51 (2) | 3.436 (4) | 157 (3) |
Symmetry codes: (i) −x, −y, −z; (ii) x−1, y−1, z; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) x−1, y, z. |
Experimental details
Crystal data |
Chemical formula | [Cu(H2O)6](NO3)2 |
Mr | 295.67 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 93 |
a, b, c (Å) | 5.7404 (8), 7.6452 (10), 11.4655 (15) |
α, β, γ (°) | 106.428 (2), 98.399 (2), 101.504 (2) |
V (Å3) | 461.84 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.43 |
Crystal size (mm) | 0.55 × 0.34 × 0.12 |
|
Data collection |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.341, 0.744 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2917, 1556, 1494 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.596 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.096, 0.91 |
No. of reflections | 1556 |
No. of parameters | 172 |
No. of restraints | 18 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.60, −1.14 |
Selected geometric parameters (Å, º) topCu—O5 | 2.014 (2) | N1—O11 | 1.241 (4) |
Cu—O1 | 2.034 (2) | N1—O12 | 1.245 (4) |
Cu—O6 | 2.041 (2) | N1—O13 | 1.268 (4) |
Cu—O4 | 2.064 (2) | N2—O21 | 1.233 (4) |
Cu—O3 | 2.074 (2) | N2—O23 | 1.252 (4) |
Cu—O2 | 2.084 (2) | N2—O22 | 1.272 (4) |
| | | |
O5—Cu—O1 | 89.49 (10) | O6—Cu—O3 | 85.17 (10) |
O5—Cu—O6 | 175.94 (10) | O4—Cu—O3 | 92.35 (10) |
O1—Cu—O6 | 93.58 (10) | O5—Cu—O2 | 89.50 (10) |
O5—Cu—O4 | 91.38 (10) | O1—Cu—O2 | 87.93 (10) |
O1—Cu—O4 | 88.81 (10) | O6—Cu—O2 | 87.96 (10) |
O6—Cu—O4 | 91.34 (10) | O4—Cu—O2 | 176.61 (9) |
O5—Cu—O3 | 91.72 (10) | O3—Cu—O2 | 90.89 (10) |
O1—Cu—O3 | 178.31 (10) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O4i | 0.981 (18) | 1.914 (18) | 2.894 (3) | 179 (3) |
O1—H1B···O13ii | 0.966 (18) | 1.788 (19) | 2.741 (4) | 168 (4) |
O2—H2B···O22iii | 0.981 (18) | 2.12 (2) | 3.038 (4) | 156 (3) |
O2—H2A···O23 | 0.976 (18) | 2.00 (2) | 2.940 (4) | 162 (3) |
O2—H2B···O21iv | 0.981 (18) | 2.38 (3) | 2.912 (4) | 113 (3) |
O3—H3A···O22 | 0.977 (18) | 1.83 (2) | 2.779 (4) | 162 (3) |
O3—H3B···O23iii | 0.966 (18) | 1.88 (2) | 2.827 (4) | 167 (3) |
O4—H4A···O2v | 0.970 (18) | 1.99 (2) | 2.942 (4) | 167 (4) |
O4—H4A···O1v | 0.970 (18) | 2.60 (4) | 3.070 (3) | 110 (3) |
O4—H4B···O11ii | 0.974 (18) | 1.79 (2) | 2.763 (4) | 175 (3) |
O5—H5A···O12 | 0.974 (18) | 1.78 (2) | 2.735 (3) | 166 (4) |
O5—H5A···N1 | 0.974 (18) | 2.50 (3) | 3.417 (4) | 156 (3) |
O5—H5A···O11 | 0.974 (18) | 2.58 (3) | 3.285 (3) | 130 (3) |
O5—H5B···O13v | 0.963 (18) | 1.78 (2) | 2.740 (4) | 172 (4) |
O5—H5B···N1v | 0.963 (18) | 2.47 (2) | 3.365 (4) | 155 (3) |
O5—H5B···O12v | 0.963 (18) | 2.45 (3) | 3.123 (3) | 126 (3) |
O6—H6B···O21iv | 0.978 (18) | 2.44 (3) | 3.154 (3) | 130 (3) |
O6—H6B···O22iv | 0.978 (18) | 1.91 (2) | 2.860 (4) | 162 (4) |
O6—H6B···N2iv | 0.978 (18) | 2.51 (2) | 3.436 (4) | 157 (3) |
Symmetry codes: (i) −x, −y, −z; (ii) x−1, y−1, z; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) x−1, y, z. |
Selected anisotropic displacement parameters (Å2). top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu | 0.0058 (3) | 0.0106 (3) | 0.0126 (3) | 0.00344 (18) | 0.00374 (17) | 0.00079 (17) |
O1 | 0.0078 (12) | 0.0084 (13) | 0.0119 (12) | 0.0020 (10) | 0.0045 (10) | 0.0012 (9) |
O2 | 0.0050 (11) | 0.0102 (13) | 0.0130 (12) | 0.0047 (10) | 0.0024 (9) | 0.0003 (9) |
O3 | 0.0091 (12) | 0.0099 (13) | 0.0123 (12) | 0.0032 (10) | 0.0053 (10) | 0.0027 (10) |
O4 | 0.0052 (11) | 0.0079 (13) | 0.0134 (12) | 0.0031 (10) | 0.0035 (9) | 0.0013 (9) |
O5 | 0.0067 (12) | 0.0120 (13) | 0.0160 (13) | 0.0076 (10) | 0.0064 (10) | 0.0021 (10) |
O6 | 0.0058 (12) | 0.0114 (13) | 0.0137 (12) | 0.0063 (10) | 0.0046 (10) | 0.0014 (9) |
During attempts to grow crystals of the copper complex of the ditopic ligand, 1-[4'-p-tolyl-(2,2':6',2''-terpyridyl)]-1,4,8,11-tetraazacyclotetradecane, (I) (Padilla-Tosta et al., 2000), blue block-shaped crystals of [Cu(H2O)6](NO3)2, (II), formed instead from the reaction mixture. Attempts to grow similar crystals in the absence of the ditopic ligand proved unsuccessful, which leads us to speculate that the ditopic ligand may be influencing the crystallization process. Unfortunately, the vagaries of nucleation and crystal growth make it difficult to test this hypothesis. We report here the structure of hexaaquacopper complex as its dinitrate salt.
The asymmetric unit of (II) consists of a [Cu(H2O)6]2+ cation and two nitrate anions. The geometry around the Cu2+ can be best described as an octahedron, with bonds to six water molecules (Fig. 1 and Table 1). The Cu—O bond lengths are rather similar, falling in the range 2.014 (2)–2.084 (2) Å, and there is an extended hydrogen-bonding network that links the coordinated water molecules and the nitrate anions throughout the crystal lattice (Fig. 2 and Table 2). Bond lengths and angles in the nitrate anions [1.233 (4)–1.272 (4) Å and 118.5 (3)–121.1 (3)°, respectively] are unremarkable, there being only small deviations from the ideal geometry.
The similarity of the Cu—O bond lengths is relatively unusual in that Jahn–Teller distortion often leads to two of the copper-ligand bonds that lie along one axis being much longer than the remaining four copper–ligand bonds. A number of Jahn–Teller-distorted hexaaquacopper complexes have been characterized by X-ray crystallography, viz. X–3(C2H10N22+)–2(O12P44−) (Averbuch-Pouchot & Durif, 1989), X–2(ClO4−)–2(C6H10N2O2) (Benedetti et al., 1979, 1986), X–2(C6H4ClO3S−) (Bernardinelli et al., 1991), X–2(C7H7O3S−) (Couldwell et al., 1978), X–2(C9H9O9S33−–1.3(H2O) (Dalrymple et al., 2002), X–2(C2H10N22+)–O18P66− (Durif & Averbuch-Pouchot, 1989), X–C6H8CuO102− (Filippova, 2000), X–2(C12H10O4P−)–2(C2H5NO2) (Glowiak & Podgorska, 1986), X–C16H16CuO102− (Honghui et al., 1988), X–C16H16CuO102− (Kennard & Smith, 1989), X–2(Cl4−),2(H2O) (Li et al., 2004), X–2 C l−–2(C10H8N2O2)–2(H2O) (Ma et al., 2001), X–2(C7H5O6S−)–2(H2O) (Ma et al., 2003), X–2(NH4+)–2(SO42−) (Maslen et al., 1988), X–2(C24H44H16O4Pt44+)–10(ClO4−)–9(H2O) (Navarro et al., 2000), X–(C6H8CuO102+) (Rodriguez-Martin or Rodriquez-Martin et al., 2002), X–2(C8H11N4O+)–2(SO42−)–2(H2O) (Shamuratov et al., 1993), X–(C16H16CuO102−) (Wang et al., 1988) and (X)n–2n(C5H8O4−)–4n(H2O) (Zviedre et al., 1985), where X is [Cu(H2O)6]2+. In these cases, the axial Cu—O bond lengths fall in the range 2.202–2.423 Å, in comparison with the equatorial bond lengths (1.945–2.084 Å). The mean axial bond length is between 8.7 and 24% longer than the mean equatorial bond length in these structures (the mean value of these percentage differences is 18.6% over 20 structures). In our structure, the mean bond length along the longest axis (O2—Cu—O4) is only 1.6% longer than that along the remaining axes.
We are aware of only six crystallographic studies of copper(II) complexes where static Jahn–Teller distortions are not observed in complexes where all six donors are otherwise identical, viz. in X–(BrO3)2 (Blackburn et al., 1991), Cu(en)32+–SO42− (Cullen & Lingafelter, 1970), 2 K+–Pb2+–Cu(NO2)64− (Cullen & Lingafelter, 1971), Cu{[(CH3)2N]2P(O)OP(O)[N(CH3)2]2}3(Cl4)2 (Joesten et al., 1970), X–(SiF6)2−–6(H2O) (Ray et al., 1973) and 2 T l+–Pb2+–Cu(NO2)62− (Takagi et al., 1976), where X is [Cu(H2O)6]2+. The structure we report further stands out from these other six because, in this case, the Cu atom lies on a general position, with all Cu—O bonds lengths being independently refined. In the remaining six cases, the Cu atoms are located on the special positions in higher symmetry space groups (Pa3, P31c, Fm3, P3c1, R3 and Fm3, respectively).
Jahn–Teller distortion may not be observed in a crystallographic study if either there is disorder in the structure (so that a defined long axis is randomly distributed over the three orientations relation to the unit-cell axes), or there is sufficient thermal motion to allow the long and short bonds in a structure to exchange over time (sometimes referred to as the dynamic Jahn–Teller effect). In these cases, the averaging inherent in the X-ray experiment (over spatial location in the crystal in the first case or time in the second) might be expected to manifest itself in the crystallographic modelling process as larger than expected anisotropic displacement parameters for the donor atoms along the direction of the copper–ligand bond. This effect has been discussed (Cullen et al., 1970) and may be significant in a number of the literature cases (Blackburn et al., 1991; Cullen et al., 1971; Takagi et al., 1976). Table 3 presents the anisotropic displacement parameters of Cu and the water O atoms in the structure of (II). The largest principal axes of the ellipsoids are not directed along the Cu—O bonds (Fig. 1). Taken together, these data strongly suggest the lack of Jahn–Teller distortion (static or dynamic) in the structure of (II). Here, three marginally longer Cu—O bonds (Cu—O2, Cu—O3 and Cu—O4) are meridionally distributed around the Cu atom, as are the Cu—O shorter bonds. The variation in the Cu—O bond lengths of the structure, and the absence of any significant Jahn–Teller effect may be explained by the influence of the hydrogen-bonding network in the lattice of the complex (Fig. 3 and Table 2). All of the coordinated water molecules are involved in several hydrogen bonds, which means that, while the copper centre may not be in its lowest energy Jahn–Teller distorted state, this could be made up for by the large number of weak interactions that may each be marginally stronger in the less distorted structure.