Download citation
Download citation
link to html
The X-ray crystal structure of the title compound, lithium 1,2,3,6-tetra­hydro-2,6-dioxo-4-pyrimidine­carboxyl­ate monohydrate, Li+·C5H3N2O4-·H2O, was redetermined at a temperature of 110 (2) K. It was now possible to locate all H atoms in the difference Fourier map. The hydrogen-bonding pattern can now be completely described, as well as the coordination mode of the water mol­ecule to the lithium center.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801002392/wn6002sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801002392/wn6002Isup2.hkl
Contains datablock I

CCDC reference: 159828

Key indicators

  • Single-crystal X-ray study
  • T = 110 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.030
  • wR factor = 0.079
  • Data-to-parameter ratio = 8.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 30.00 From the CIF: _reflns_number_total 994 Count of symmetry unique reflns 997 Completeness (_total/calc) 99.70% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

The room-temperature structure of lithium orotate monohydrate was first reported by Bach et al. (1990). One H atom of the water molecule was missing in that publication, because it could not be located in the difference Fourier synthesis, neither could it be introduced in a calculated position.

With the present data, measured at a low temperature of 110 (2) K, all H-atom positions could be determined unambiguously from the difference Fourier map (Fig. 1). With this information, the crystal structure can be completely described. The lithium center links the orotate and the water molecules to form a two-dimensional layer which is defined by the base vectors [101] and [011]. Thereby the lithium is in a tetrahedral environment of four O atoms (Fig. 2). Two of these are carbonyl O atoms [Li—O 1.892 (3) and 1.950 (3) Å], one is from the carboxylate group [Li—O 1.881 (3) Å], and the fourth is the water molecule [Li—O 1.973 (4) Å].

The two-dimensional layers formed by the lithium coordination are linked by O—H···O and N—H···O hydrogen bonds (see Table 2) to build up a three-dimensional network. According to the geometrical definition of Jeffrey (1997), H2 and H4 are involved in bifurcated hydrogen bonds with angle sums at these H atoms of 351 and 359°, respectively.

As can be seen from the Li—O bond lengths, the donor ability of the two carbonyl groups is quite different. This effect is a consequence of the hydrogen bonding. While O4 accepts a strong hydrogen bond from a water molecule, O3 is not involved in hydrogen bonding. The donor strength of O3 is therefore larger, leading to a shorter Li—O bond. Much smaller but still significant, is this effect reflected in the CO double-bond lengths of 1.225 (2) Å for O3 and 1.2425 (19) Å for O4.

The carboxylate O atoms have different environments; while the first one coordinates to the lithium, the second one acts as an acceptor for two nearly linear hydrogen bonds. Surprisingly, this difference is not reflected in the bond distances of C1—O1 1.250 (2) Å and C1—O2 1.252 (2) Å.

The water molecule coordinates to the lithium via the tetrahedral `lone pair' direction. The β-angle between the H2O plane and the oxygen–metal direction (Ptasiewicz-Bak et al., 1999), amounts to 58.7°. The second `lone pair' is an acceptor for a hydrogen bond.

Experimental top

Lithium orotate monohydrate as obtained from Fluka Chemie AG (Buchs, Switzerland) was dissolved in water. The solution was then evaporated at a temperature of 330 K until crystal formation resulted.

Refinement top

The absolute structure could not be determined reliably. Friedel pairs were therefore merged in the refinement.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: coordinates taken from literature (Bach et al., 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: manual editing of SHELXL97 output.

Figures top
[Figure 1] Fig. 1. Difference Fourier map in the H2O plane. Friedel pairs were merged. H4 and H5 were omitted from structure-factor calculations. Contour level: 0.1 e Å-3.
[Figure 2] Fig. 2. Coordination environment of the Li atom. Displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) x, y - 1, z - 1; (ii) x + 1, y - 1, z.]
lithium 1,2,3,6-tetrahydro-2,6-dioxo-4-pyrimidinecarboxylate monohydrate top
Crystal data top
Li+·C5H3N2O4·H2OZ = 1
Mr = 180.05F(000) = 92
Triclinic, P1Dx = 1.745 Mg m3
a = 4.9745 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.3035 (2) ÅCell parameters from 2473 reflections
c = 6.7548 (2) Åθ = 3.1–30.0°
α = 89.733 (2)°µ = 0.15 mm1
β = 102.717 (2)°T = 110 K
γ = 99.6012 (13)°Plate, colourless
V = 171.31 (1) Å30.15 × 0.15 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
948 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.050
Graphite monochromatorθmax = 30.0°, θmin = 3.1°
ϕ and ω scans with 2° scan width and a crystal–detector distance of 40 mmh = 66
4219 measured reflectionsk = 77
994 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: difference Fourier map
wR(F2) = 0.079H-atom parameters not refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.0193P]
where P = (Fo2 + 2Fc2)/3
994 reflections(Δ/σ)max = 0.031
118 parametersΔρmax = 0.43 e Å3
3 restraintsΔρmin = 0.27 e Å3
Crystal data top
Li+·C5H3N2O4·H2Oγ = 99.6012 (13)°
Mr = 180.05V = 171.31 (1) Å3
Triclinic, P1Z = 1
a = 4.9745 (2) ÅMo Kα radiation
b = 5.3035 (2) ŵ = 0.15 mm1
c = 6.7548 (2) ÅT = 110 K
α = 89.733 (2)°0.15 × 0.15 × 0.03 mm
β = 102.717 (2)°
Data collection top
Nonius KappaCCD
diffractometer
948 reflections with I > 2σ(I)
4219 measured reflectionsRint = 0.050
994 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0303 restraints
wR(F2) = 0.079H-atom parameters not refined
S = 1.09Δρmax = 0.43 e Å3
994 reflectionsΔρmin = 0.27 e Å3
118 parameters
Special details top

Experimental. The non-standard setting of the triclinic unit cell was chosen to allow a better comparison with the publication of Bach et al. (1990).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4976 (3)0.8088 (2)0.7934 (2)0.0144 (3)
O20.7888 (3)0.8660 (2)1.10006 (19)0.0134 (3)
O30.1398 (3)1.3798 (3)0.7411 (2)0.0144 (3)
O40.3434 (3)1.5475 (3)1.3940 (2)0.0146 (3)
O50.9590 (3)0.8413 (3)0.50562 (19)0.0145 (3)
N10.1107 (3)1.4682 (3)1.0664 (2)0.0104 (3)
N20.2182 (3)1.1671 (3)0.8621 (2)0.0101 (3)
C10.5855 (3)0.9115 (3)0.9669 (3)0.0102 (3)
C20.4264 (3)1.1143 (3)1.0188 (3)0.0097 (3)
C30.4784 (4)1.2366 (3)1.2017 (3)0.0116 (3)
C40.0518 (3)1.3416 (3)0.8802 (3)0.0102 (3)
C50.3124 (3)1.4253 (3)1.2317 (2)0.0104 (3)
Li10.6638 (7)0.6384 (6)0.6212 (5)0.0147 (6)
H10.01081.56391.09320.050*
H20.19211.08590.75880.050*
H30.61121.19381.30840.050*
H41.07590.75890.49320.050*
H50.88920.86390.38910.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0168 (6)0.0157 (6)0.0121 (6)0.0078 (5)0.0019 (5)0.0039 (5)
O20.0146 (6)0.0167 (6)0.0100 (6)0.0088 (5)0.0006 (5)0.0015 (5)
O30.0148 (6)0.0157 (6)0.0119 (6)0.0070 (5)0.0019 (5)0.0021 (5)
O40.0152 (6)0.0192 (6)0.0101 (6)0.0080 (5)0.0002 (5)0.0057 (5)
O50.0156 (6)0.0189 (6)0.0102 (6)0.0085 (5)0.0014 (5)0.0011 (5)
N10.0100 (6)0.0112 (6)0.0106 (7)0.0054 (5)0.0010 (5)0.0013 (5)
N20.0113 (6)0.0111 (7)0.0081 (7)0.0041 (5)0.0010 (5)0.0027 (5)
C10.0102 (7)0.0098 (7)0.0119 (8)0.0034 (5)0.0037 (6)0.0004 (6)
C20.0096 (7)0.0102 (7)0.0106 (8)0.0042 (6)0.0032 (6)0.0004 (6)
C30.0112 (7)0.0138 (8)0.0100 (8)0.0056 (6)0.0003 (6)0.0012 (6)
C40.0110 (7)0.0112 (7)0.0088 (8)0.0030 (6)0.0023 (6)0.0001 (6)
C50.0095 (7)0.0128 (8)0.0087 (8)0.0021 (6)0.0016 (6)0.0009 (6)
Li10.0151 (14)0.0171 (14)0.0124 (14)0.0072 (11)0.0008 (12)0.0009 (11)
Geometric parameters (Å, º) top
O1—C11.250 (2)O5—H50.8045
O1—Li11.881 (3)N1—C51.373 (2)
O2—C11.252 (2)N1—C41.378 (2)
O2—H5i1.9062N1—H10.8134
O2—H1ii2.0982N2—C41.363 (2)
O3—C41.225 (2)N2—C21.372 (2)
O3—Li1iii1.892 (3)N2—H20.7958
O4—C51.2425 (19)C1—C21.521 (2)
O4—Li1iv1.950 (3)C2—C31.351 (2)
O4—H4v2.0916C3—C51.441 (2)
O5—Li11.973 (4)C3—H30.9199
O5—H2vi2.1444Li1—O3ii1.892 (3)
O5—H40.8016Li1—O4vii1.950 (3)
C1—O1—Li1133.32 (15)O1—C1—C2115.57 (15)
C1—O2—H5i137.1O2—C1—C2117.35 (15)
C1—O2—H1ii126.5C3—C2—N2120.97 (15)
H5i—O2—H1ii88.1C3—C2—C1124.60 (15)
C4—O3—Li1iii142.65 (15)N2—C2—C1114.43 (15)
C5—O4—Li1iv132.15 (14)C2—C3—C5119.27 (15)
C5—O4—H4v130.2C2—C3—H3120.6
Li1iv—O4—H4v97.3C5—C3—H3120.0
Li1—O5—H2vi102.1O3—C4—N2122.11 (15)
Li1—O5—H4111.5O3—C4—N1122.45 (15)
H2vi—O5—H499.3N2—C4—N1115.44 (15)
Li1—O5—H5106.7O4—C5—N1119.89 (14)
H2vi—O5—H5134.7O4—C5—C3124.16 (15)
H4—O5—H5101.6N1—C5—C3115.95 (15)
C5—N1—C4125.42 (14)O1—Li1—O3ii115.80 (17)
C5—N1—H1112.7O1—Li1—O4vii99.57 (15)
C4—N1—H1121.3O3ii—Li1—O4vii119.26 (17)
C4—N2—C2122.93 (14)O1—Li1—O5117.94 (17)
C4—N2—H2120.0O3ii—Li1—O599.21 (15)
C2—N2—H2117.0O4vii—Li1—O5105.70 (16)
O1—C1—O2127.08 (16)
Li1—O1—C1—O222.7 (3)C2—N2—C4—N11.6 (2)
Li1—O1—C1—C2156.93 (18)C5—N1—C4—O3176.49 (16)
H5i—O2—C1—O1147.5C5—N1—C4—N22.4 (3)
H1ii—O2—C1—O110.1Li1iv—O4—C5—N1154.83 (19)
H5i—O2—C1—C232.8H4v—O4—C5—N116.9
H1ii—O2—C1—C2170.2Li1iv—O4—C5—C324.7 (3)
C4—N2—C2—C30.4 (2)H4v—O4—C5—C3163.6
C4—N2—C2—C1179.45 (16)C4—N1—C5—O4178.48 (16)
O1—C1—C2—C3176.07 (18)C4—N1—C5—C31.9 (3)
O2—C1—C2—C34.2 (2)C2—C3—C5—O4179.83 (17)
O1—C1—C2—N23.8 (2)C2—C3—C5—N10.6 (2)
O2—C1—C2—N2175.87 (16)C1—O1—Li1—O3ii49.2 (3)
N2—C2—C3—C50.1 (2)C1—O1—Li1—O4vii178.44 (18)
C1—C2—C3—C5179.97 (17)C1—O1—Li1—O568.0 (3)
Li1iii—O3—C4—N2146.6 (2)H2vi—O5—Li1—O140.9
Li1iii—O3—C4—N134.6 (3)H2vi—O5—Li1—O3ii84.9
C2—N2—C4—O3177.30 (15)H2vi—O5—Li1—O4vii151.1
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1, z; (iii) x1, y+1, z; (iv) x, y+1, z+1; (v) x1, y+1, z+1; (vi) x+1, y, z; (vii) x, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2iii0.812.102.8910 (19)164.8
N2—H2···O10.802.262.6326 (18)109.3
N2—H2···O5viii0.802.142.8941 (19)157.1
O5—H4···O1vi0.802.562.9738 (17)114.1
O5—H4···O4ix0.802.092.8797 (17)167.6
O5—H5···O2x0.801.912.6928 (18)165.6
Symmetry codes: (iii) x1, y+1, z; (vi) x+1, y, z; (viii) x1, y, z; (ix) x+1, y1, z1; (x) x, y, z1.

Experimental details

Crystal data
Chemical formulaLi+·C5H3N2O4·H2O
Mr180.05
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)4.9745 (2), 5.3035 (2), 6.7548 (2)
α, β, γ (°)89.733 (2), 102.717 (2), 99.6012 (13)
V3)171.31 (1)
Z1
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.15 × 0.15 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4219, 994, 948
Rint0.050
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.09
No. of reflections994
No. of parameters118
No. of restraints3
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.43, 0.27

Computer programs: COLLECT (Nonius, 1998), HKL-2000 (Otwinowski & Minor, 1997), coordinates taken from literature (Bach et al., 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2001), manual editing of SHELXL97 output.

Selected geometric parameters (Å, º) top
O1—C11.250 (2)O3—Li1i1.892 (3)
O1—Li11.881 (3)O4—C51.2425 (19)
O2—C11.252 (2)O4—Li1ii1.950 (3)
O3—C41.225 (2)O5—Li11.973 (4)
O2—C1—C2—C34.2 (2)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.812.102.8910 (19)164.8
N2—H2···O10.802.262.6326 (18)109.3
N2—H2···O5iii0.802.142.8941 (19)157.1
O5—H4···O1iv0.802.562.9738 (17)114.1
O5—H4···O4v0.802.092.8797 (17)167.6
O5—H5···O2vi0.801.912.6928 (18)165.6
Symmetry codes: (i) x1, y+1, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x+1, y1, z1; (vi) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds