Download citation
Download citation
link to html
The title compound, C11H16OS2, consists of a five-membered di­thiol­ane ring with a methoxy­bi­cyclo­octene spiro-fused at the 2-position. A few interatomic close contacts seem to influence the geometry of the di­thiol­ane ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803012005/wn6163sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803012005/wn6163Isup2.hkl
Contains datablock I

CCDC reference: 217442

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.054
  • wR factor = 0.127
  • Data-to-parameter ratio = 13.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
PLAT_360 Alert B Short C(sp3)-C(sp3) Bond C10 - C11 = 1.32 Ang.
Yellow Alert Alert Level C:
PLAT_320 Alert C Check Hybridisation of C3 in Main Residue . ? PLAT_320 Alert C Check Hybridisation of C4 in Main Residue . ? PLAT_320 Alert C Check Hybridisation of C5 in Main Residue . ?
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

Ketene equivalents have found widespread use as partners in Diels-Alder reactions for the construction of cyclic, fused and bridged unsaturated ketones (Ranganathan et al., 1977; Aggarwal et al., 1999). The C2-symmetric ketene equivalent has been prepared in racemic and enantiomerically pure forms in four steps, and found to be highly reactive and highly diastereoselective (>97:3) in Diels-Alder reactions (Aggarwal et al., 1995). The advantage of this chiral ketene equivalent is that it requires only two steps to remove the chiral auxilary from the cycloadduct (Aggarwal et al., 1995).

Ketene equivalents have also been used in the synthesis of terpenes (Subba Rao & Kalliappan, 1996; Mirrington & Gregson, 1973; Monti & Yang, 1979). 1-Methoxycyclohexa-1,3-diene has been used as a diene in the Diels-Alder reaction (Evans et al., 1972) and it is also a useful diene in the synthesis of terpenoids (Subba Rao & Kalliappan, 1996; Monti & Yang, 1979).

The C2 symmetric ketene equivalent (Aggarwal et al., 1995) has been investigated with 1-methoxycyclohexa-1,3-diene, under a range of conditions (Aggarwal et al., 1998), giving >97:3 diastereoselectivity in 95% yield.

The title compound, (I), was obtained by reduction of the cycloadduct, according to a literature method (Oea & Drabowicz, 1977). It is a useful starting material for the synthesis of terpenes. The structure determination of (I) was undertaken to understand the effects of the methoxybicyclooctene system and to compare the results with those found in 1,2,3,4-tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane, (II) (Hökelek et al., 1994), spiro[carbazole-1(2H),2'-[1,3]dithiolan]-4(3H)-one, (III) (Hökelek et al., 1998) and 9-acetonyl-3-ethylidene- 1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3]dithiolan]-4-one, (IV) (Hökelek et al., 1999).

The title compound, (I), (Fig. 1) consists of a five-membered dithiolane ring with a methoxybicyclooctene spiro-fused at the 2-position; the dithiolane ring adopts a twist conformation. The S atoms of the dithiolane ring have electron-releasing properties, but the O atom of the methoxy group is electron-withdrawing, thereby influencing the bond lengths and angles of the dithiolane ring (Table 1). Some significant changes in the geometry of the dithiolane ring are evident when a few bond angles are compared with the values found in compounds (II)-(IV) (Table 2).

The structure reveals a number of close contacts: S1···H31(C3) 2.562 (38), O1···H31(C3) 2.403 (31), S2···H61(C6) 2.621 (28), S1···H62(C6) 2.602 (48), O1···H7A(C7) 2.639 (3), S2···H10B(C10) 2.556 (2), O1i···H11A(C11) 2.813 (3) and Oii···H9A(C9) 2.869 (3) Å [symmetry codes: (i) x − 1, y, z; (ii) −x + 1, −y + 2, −z + 1]. These interactions may have an influence on the bond lengths and angles and also the shape of the molecule.

Experimental top

The title compound, (I), was prepared according to a literature method (Oea & Drabowicz, 1977), from (1S,1'R,3'R)-1-methoxyspiro[(bicyclo[2.2.2]oct-2-ene)-6,2'- (1,3-dithiolane)]-1',3'-dioxide (compound 29a in Aggarwal et al., 1998) (0.127 g, 0.49 mmol) in acetone (3 cm3), sodium iodide (0.366 g, 2.44 mmol) and TFAA (trifluoroacetic anhydride; 0.4 cm3, 2.94 mmol) at 195 K for 7 h. The crude sulfide was subjected to flash chromatography, eluting with acetone/petrol (50:50) and yielded the title compound, (I), as a white solid. It was crystallized from petrol ether (yield 0.035 g, 32%), m.p. 331 K.

Refinement top

Atoms H31, H41, H51, H61 and H62 were located in a difference synthesis and refined isotropically [C—H = 0.87 (4)–1.09 (7) Å]. The remaining H atoms were positioned geometrically at distances of 0.97 Å (CH2) and 0.96 Å (CH3) from the parent C atoms; a riding model was used during the refinement process.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(I) top
Crystal data top
C11H16OS2Z = 2
Mr = 228.36F(000) = 244
Triclinic, P1Dx = 1.342 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.748 (4) ÅCell parameters from 25 reflections
b = 7.870 (4) Åθ = 12–20°
c = 11.474 (7) ŵ = 0.44 mm1
α = 99.23 (4)°T = 293 K
β = 103.00 (5)°Block, colourless
γ = 102.69 (3)°0.55 × 0.34 × 0.28 mm
V = 564.9 (6) Å3
Data collection top
Siemens P4
diffractometer
Rint = 0.037
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.7°
Graphite monochromatorh = 18
non–profiled ω scansk = 99
2493 measured reflectionsl = 1313
1983 independent reflections3 standard reflections every 100 reflections
1040 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0676P)2]
where P = (Fo2 + 2Fc2)/3
1983 reflections(Δ/σ)max = 0.002
147 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C11H16OS2γ = 102.69 (3)°
Mr = 228.36V = 564.9 (6) Å3
Triclinic, P1Z = 2
a = 6.748 (4) ÅMo Kα radiation
b = 7.870 (4) ŵ = 0.44 mm1
c = 11.474 (7) ÅT = 293 K
α = 99.23 (4)°0.55 × 0.34 × 0.28 mm
β = 103.00 (5)°
Data collection top
Siemens P4
diffractometer
Rint = 0.037
2493 measured reflections3 standard reflections every 100 reflections
1983 independent reflections intensity decay: 1%
1040 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.30 e Å3
1983 reflectionsΔρmin = 0.17 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H410.307 (9)0.320 (8)0.268 (5)0.14 (2)*
H310.103 (6)0.526 (4)0.241 (3)0.063 (10)*
H610.334 (5)0.734 (4)0.101 (3)0.054 (9)*
H620.253 (8)0.582 (7)0.036 (5)0.120 (16)*
H510.516 (9)0.458 (7)0.197 (5)0.128 (18)*
S10.14523 (13)0.75242 (11)0.10461 (7)0.0537 (3)
S20.02942 (15)1.01505 (11)0.22952 (10)0.0674 (4)
O10.2272 (3)0.8104 (3)0.38379 (19)0.0608 (6)
C20.0373 (4)0.7751 (3)0.1983 (2)0.0386 (6)
C10.0184 (4)0.7118 (3)0.3202 (2)0.0408 (6)
C40.2288 (6)0.4076 (5)0.2180 (4)0.0676 (10)
C110.3429 (5)0.6548 (5)0.3202 (3)0.0655 (9)
H11A0.42610.73950.30680.079*
H11B0.40310.58000.36970.079*
C30.0032 (5)0.5118 (4)0.2862 (3)0.0552 (8)
C50.3623 (5)0.5404 (5)0.1995 (3)0.0597 (9)
C60.2620 (5)0.6598 (5)0.1219 (3)0.0588 (9)
C70.3251 (6)0.9731 (5)0.1657 (4)0.0767 (11)
H7A0.42370.97460.24200.092*
H7B0.40481.00420.10810.092*
C90.2998 (6)0.7914 (5)0.5060 (3)0.0674 (10)
H9A0.44290.86250.54070.101*
H9B0.29350.66830.50570.101*
H9C0.21220.83060.55410.101*
C80.2045 (6)1.1028 (5)0.1873 (5)0.0822 (12)
H8A0.16631.14670.11330.099*
H8B0.29391.20350.25180.099*
C100.1484 (4)0.7441 (4)0.3825 (3)0.0508 (7)
H10A0.11790.71200.46150.061*
H10B0.13990.87070.39740.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0521 (5)0.0628 (5)0.0466 (4)0.0145 (4)0.0171 (3)0.0089 (3)
S20.0737 (6)0.0474 (5)0.0923 (7)0.0230 (4)0.0369 (5)0.0175 (4)
O10.0430 (13)0.0799 (15)0.0403 (10)0.0090 (10)0.0036 (9)0.0158 (10)
C20.0326 (14)0.0447 (13)0.0353 (12)0.0104 (11)0.0044 (11)0.0065 (11)
C10.0274 (13)0.0508 (14)0.0359 (13)0.0056 (11)0.0008 (11)0.0060 (11)
C40.071 (2)0.0519 (17)0.064 (2)0.0037 (16)0.0072 (18)0.0001 (16)
C110.0481 (19)0.088 (2)0.070 (2)0.0251 (17)0.0239 (16)0.0225 (19)
C30.0444 (18)0.0631 (19)0.0613 (18)0.0217 (14)0.0108 (15)0.0179 (15)
C50.0381 (17)0.069 (2)0.0549 (17)0.0026 (14)0.0025 (14)0.0035 (15)
C60.0398 (18)0.0579 (18)0.0588 (19)0.0077 (14)0.0142 (15)0.0036 (15)
C70.060 (2)0.067 (2)0.096 (3)0.0007 (17)0.030 (2)0.0106 (19)
C90.061 (2)0.090 (2)0.0336 (14)0.0000 (18)0.0036 (14)0.0126 (16)
C80.068 (3)0.064 (2)0.094 (3)0.0073 (18)0.004 (2)0.011 (2)
C100.0422 (17)0.0527 (16)0.0507 (16)0.0089 (13)0.0088 (13)0.0028 (14)
Geometric parameters (Å, º) top
S1—C71.811 (4)C11—H11B0.9700
S1—C21.826 (3)C3—H310.97 (4)
S2—C81.782 (5)C5—C61.547 (6)
S2—C21.852 (3)C5—H511.09 (6)
O1—C11.412 (3)C6—H610.87 (4)
O1—C91.421 (4)C6—H621.09 (5)
C2—C11.554 (4)C7—C81.462 (6)
C2—C61.560 (4)C7—H7A0.9700
C1—C101.507 (4)C7—H7B0.9700
C1—C31.526 (4)C9—H9A0.9600
C4—C31.521 (5)C9—H9B0.9600
C4—C51.532 (5)C9—H9C0.9600
C4—H411.09 (7)C8—H8A0.9700
C11—C101.319 (4)C8—H8B0.9700
C11—C51.488 (5)C10—H10A0.9700
C11—H11A0.9700C10—H10B0.9700
C7—S1—C297.42 (16)C6—C5—H51139 (3)
C8—S2—C299.37 (16)C5—C6—C2109.8 (3)
C1—O1—C9116.0 (2)C5—C6—H61112 (2)
C1—C2—C6108.0 (2)C2—C6—H61106 (2)
C1—C2—S1113.79 (18)C5—C6—H62112 (3)
C6—C2—S1108.1 (2)C2—C6—H62110 (3)
C1—C2—S2110.58 (17)H61—C6—H62106 (4)
C6—C2—S2110.6 (2)C8—C7—S1109.3 (3)
S1—C2—S2105.72 (15)C8—C7—H7A109.8
O1—C1—C10115.5 (2)S1—C7—H7A109.8
O1—C1—C3112.3 (2)C8—C7—H7B109.8
C10—C1—C3109.7 (2)S1—C7—H7B109.8
O1—C1—C2106.8 (2)H7A—C7—H7B108.3
C10—C1—C2104.8 (2)O1—C9—H9A109.5
C3—C1—C2107.1 (2)O1—C9—H9B109.5
C3—C4—C5108.5 (3)H9A—C9—H9B109.5
C3—C4—H41114 (3)O1—C9—H9C109.5
C5—C4—H41104 (3)H9A—C9—H9C109.5
C10—C11—C5114.9 (3)H9B—C9—H9C109.5
C10—C11—H11A108.6C7—C8—S2113.9 (3)
C5—C11—H11A108.6C7—C8—H8A108.8
C10—C11—H11B108.6S2—C8—H8A108.8
C5—C11—H11B108.6C7—C8—H8B108.8
H11A—C11—H11B107.5S2—C8—H8B108.8
C4—C3—C1111.7 (3)H8A—C8—H8B107.7
C4—C3—H31119 (2)C11—C10—C1114.6 (3)
C1—C3—H3193.6 (19)C11—C10—H10A108.6
C11—C5—C4109.6 (3)C1—C10—H10A108.6
C11—C5—C6108.3 (3)C11—C10—H10B108.6
C4—C5—C6105.3 (3)C1—C10—H10B108.6
C11—C5—H5192 (3)H10A—C10—H10B107.6
C4—C5—H51100 (3)
C7—S1—C2—C191.5 (2)O1—C1—C3—C4179.9 (3)
C7—S1—C2—C6148.5 (2)C10—C1—C3—C450.1 (3)
C7—S1—C2—S230.1 (2)C2—C1—C3—C463.1 (3)
C8—S2—C2—C1108.3 (2)C10—C11—C5—C457.2 (5)
C8—S2—C2—C6132.0 (2)C10—C11—C5—C657.1 (4)
C8—S2—C2—S115.3 (2)C3—C4—C5—C1155.5 (4)
C9—O1—C1—C1055.4 (4)C3—C4—C5—C660.8 (3)
C9—O1—C1—C371.4 (3)C11—C5—C6—C250.3 (4)
C9—O1—C1—C2171.5 (3)C4—C5—C6—C266.8 (3)
C6—C2—C1—O1176.4 (2)C1—C2—C6—C57.1 (3)
S1—C2—C1—O156.4 (2)S1—C2—C6—C5130.6 (3)
S2—C2—C1—O162.4 (2)S2—C2—C6—C5114.1 (3)
C6—C2—C1—C1060.7 (3)C2—S1—C7—C838.6 (4)
S1—C2—C1—C10179.34 (17)S1—C7—C8—S232.1 (4)
S2—C2—C1—C1060.5 (2)C2—S2—C8—C710.1 (4)
C6—C2—C1—C355.8 (3)C5—C11—C10—C10.6 (5)
S1—C2—C1—C364.2 (2)O1—C1—C10—C11178.2 (3)
S2—C2—C1—C3177.04 (19)C3—C1—C10—C1153.7 (4)
C5—C4—C3—C12.8 (4)C2—C1—C10—C1161.0 (4)

Experimental details

Crystal data
Chemical formulaC11H16OS2
Mr228.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.748 (4), 7.870 (4), 11.474 (7)
α, β, γ (°)99.23 (4), 103.00 (5), 102.69 (3)
V3)564.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.55 × 0.34 × 0.28
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2493, 1983, 1040
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.127, 1.00
No. of reflections1983
No. of parameters147
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.17

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Selected geometric parameters (Å, º) top
S1—C71.811 (4)C1—C101.507 (4)
S1—C21.826 (3)C1—C31.526 (4)
S2—C81.782 (5)C4—C31.521 (5)
S2—C21.852 (3)C4—C51.532 (5)
O1—C11.412 (3)C11—C101.319 (4)
O1—C91.421 (4)C11—C51.488 (5)
C2—C11.554 (4)C5—C61.547 (6)
C2—C61.560 (4)C7—C81.462 (6)
C7—S1—C297.42 (16)O1—C1—C3112.3 (2)
C8—S2—C299.37 (16)O1—C1—C2106.8 (2)
C1—O1—C9116.0 (2)C3—C1—C2107.1 (2)
C1—C2—S1113.79 (18)C10—C11—C5114.9 (3)
C6—C2—S1108.1 (2)C4—C3—C1111.7 (3)
C1—C2—S2110.58 (17)C4—C5—C6105.3 (3)
C6—C2—S2110.6 (2)C8—C7—S1109.3 (3)
S1—C2—S2105.72 (15)C7—C8—S2113.9 (3)
O1—C1—C10115.5 (2)C11—C10—C1114.6 (3)
C7—S1—C2—S230.1 (2)S2—C2—C1—O162.4 (2)
C8—S2—C2—S115.3 (2)C2—S1—C7—C838.6 (4)
C9—O1—C1—C371.4 (3)S1—C7—C8—S232.1 (4)
S1—C2—C1—O156.4 (2)C2—S2—C8—C710.1 (4)
Table 2. Comparison of the bond angles (°) in the dithiolane ring of (I) with the corresponding values in the related compounds (II), (III), (IV). top
Angles(I)(II)(III)(IV)
S1—C2—S2105.72 (15)105.8 (2)106.93 (8)107.37 (9)
C2—S1—C797.42 (16)94.7 (2)94.6 (1)95.04 (9)
C2—S2—C899.37 (16)99.0 (2)98.4 (1)97.89 (9)
S2—C8—C7113.9 (3)108.3 (4)109.7 (2)109.0 (2)
S1—C7—C8109.3 (3)106.9 (3)107.5 (2)107.2 (1)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds