Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803016684/wn6177sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536803016684/wn6177Isup2.hkl |
CCDC reference: 222845
The title compound, (I), was prepared according to a literature method (Aggarwal et al., 1998) from 2-methoxymethyl-1,3-dithiepane (3.3 g, 18.5 mmol) in dry ether (40 ml) and purified m-CPBA (m-chloroperoxybenzoic acid; 7.03 g, 40.7 mmol) in diethyl ether (70 ml). The reaction was stirred for 4 h at 273 K, after which the white solid was collected by filtration and purified by column chromatography. Eluting with EtOAc gave racemic (1RS,3RS)-2-methoxymethyl-1,3-dithiepane 1,3-dioxide (yield 0.5 g, 45%) and 2-methoxymethyl-1,3-dithiepane 1,1,3,3-tetraoxide (yield 0.5 g, 13%); the latter was crystallized from EtOAc (m.p. 361 K).
Atoms H7A, H7B and H7C were positioned geometrically at a distance of 0.96 Å from C7, and a riding model was used during the refinement process. The Uiso value was set equal to 1.5Ueq(C7). The remaining H atoms were located in a difference synthesis and refined isotropically [C—H = 0.89 (2)–1.01 (3) Å].
Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of the title molecule with the atom-numbering scheme. Ddisplacement ellipsoids are drawn at the 50% probability level. |
C7H14O5S2 | F(000) = 512 |
Mr = 242.30 | Dx = 1.546 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 7.8972 (9) Å | θ = 10–22° |
b = 14.627 (2) Å | µ = 0.51 mm−1 |
c = 9.5192 (10) Å | T = 293 K |
β = 108.739 (8)° | Prism, yellow |
V = 1041.3 (2) Å3 | 0.35 × 0.20 × 0.15 mm |
Z = 4 |
Siemens P4 diffractometer | Rint = 0.052 |
Radiation source: fine-focus sealed tube | θmax = 26.0°, θmin = 2.7° |
Graphite monochromator | h = 0→9 |
non–profiled ω scans | k = 0→18 |
1933 measured reflections | l = −11→11 |
1800 independent reflections | 2 standard reflections every 50 reflections |
1255 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0236P)2] where P = (Fo2 + 2Fc2)/3 |
1800 reflections | (Δ/σ)max < 0.001 |
171 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
C7H14O5S2 | V = 1041.3 (2) Å3 |
Mr = 242.30 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.8972 (9) Å | µ = 0.51 mm−1 |
b = 14.627 (2) Å | T = 293 K |
c = 9.5192 (10) Å | 0.35 × 0.20 × 0.15 mm |
β = 108.739 (8)° |
Siemens P4 diffractometer | Rint = 0.052 |
1933 measured reflections | 2 standard reflections every 50 reflections |
1800 independent reflections | intensity decay: 1% |
1255 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 0.17 e Å−3 |
1800 reflections | Δρmin = −0.16 e Å−3 |
171 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
H11 | −0.078 (3) | 0.4823 (16) | 0.373 (2) | 0.029 (6)* | |
H31 | −0.232 (4) | 0.215 (2) | 0.421 (3) | 0.054 (8)* | |
H22 | 0.029 (3) | 0.2253 (17) | 0.381 (3) | 0.034 (7)* | |
H21 | −0.099 (4) | 0.250 (2) | 0.226 (3) | 0.055 (9)* | |
H32 | −0.184 (3) | 0.310 (2) | 0.465 (3) | 0.049 (8)* | |
H41 | −0.401 (3) | 0.2644 (18) | 0.189 (3) | 0.038 (7)* | |
H51 | −0.510 (4) | 0.4109 (18) | 0.174 (3) | 0.044 (8)* | |
H52 | −0.378 (4) | 0.4423 (19) | 0.322 (3) | 0.053 (8)* | |
H42 | −0.483 (4) | 0.2896 (19) | 0.320 (3) | 0.056 (8)* | |
H62 | 0.112 (3) | 0.5018 (18) | 0.170 (3) | 0.035 (7)* | |
H61 | 0.006 (4) | 0.581 (2) | 0.224 (3) | 0.052 (9)* | |
S1 | 0.08885 (8) | 0.35681 (4) | 0.36062 (7) | 0.03741 (18) | |
S2 | −0.25018 (9) | 0.44686 (5) | 0.14862 (7) | 0.03981 (19) | |
O5 | 0.2248 (2) | 0.54619 (13) | 0.37807 (19) | 0.0509 (5) | |
O1 | 0.1642 (2) | 0.36821 (13) | 0.5187 (2) | 0.0537 (5) | |
O2 | 0.2038 (3) | 0.34533 (15) | 0.2730 (3) | 0.0641 (6) | |
O4 | −0.3062 (3) | 0.53754 (13) | 0.0993 (2) | 0.0651 (6) | |
C5 | −0.3996 (4) | 0.4030 (2) | 0.2351 (3) | 0.0438 (7) | |
C3 | −0.2137 (4) | 0.2704 (2) | 0.3862 (3) | 0.0389 (6) | |
C4 | −0.3873 (3) | 0.30212 (19) | 0.2727 (3) | 0.0418 (7) | |
O3 | −0.2256 (3) | 0.38244 (13) | 0.04372 (19) | 0.0513 (5) | |
C2 | −0.0578 (3) | 0.26136 (18) | 0.3265 (3) | 0.0380 (6) | |
C1 | −0.0406 (3) | 0.46021 (17) | 0.2973 (3) | 0.0340 (6) | |
C7 | 0.3535 (4) | 0.6025 (2) | 0.3442 (3) | 0.0556 (8) | |
H7A | 0.4535 | 0.6120 | 0.4324 | 0.083* | |
H7B | 0.3003 | 0.6603 | 0.3071 | 0.083* | |
H7C | 0.3935 | 0.5730 | 0.2704 | 0.083* | |
C6 | 0.0760 (4) | 0.5300 (2) | 0.2531 (3) | 0.0482 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0260 (3) | 0.0363 (4) | 0.0469 (4) | 0.0022 (3) | 0.0074 (3) | 0.0038 (3) |
S2 | 0.0414 (4) | 0.0351 (4) | 0.0313 (3) | −0.0030 (3) | −0.0047 (3) | 0.0030 (3) |
O5 | 0.0475 (11) | 0.0582 (12) | 0.0414 (10) | −0.0216 (10) | 0.0064 (8) | −0.0015 (9) |
O1 | 0.0461 (11) | 0.0521 (13) | 0.0445 (11) | −0.0061 (9) | −0.0110 (8) | 0.0123 (9) |
O2 | 0.0506 (12) | 0.0562 (13) | 0.0985 (17) | 0.0013 (10) | 0.0422 (12) | −0.0051 (12) |
O4 | 0.0615 (13) | 0.0418 (12) | 0.0634 (13) | −0.0003 (10) | −0.0195 (10) | 0.0169 (10) |
C5 | 0.0312 (14) | 0.0485 (16) | 0.0432 (15) | 0.0110 (13) | 0.0005 (12) | 0.0013 (13) |
C3 | 0.0386 (15) | 0.0317 (15) | 0.0478 (16) | −0.0025 (12) | 0.0160 (12) | 0.0030 (13) |
C4 | 0.0299 (14) | 0.0398 (16) | 0.0531 (17) | −0.0017 (12) | 0.0097 (13) | −0.0058 (13) |
O3 | 0.0589 (12) | 0.0580 (13) | 0.0333 (10) | −0.0130 (10) | 0.0095 (9) | −0.0087 (9) |
C2 | 0.0333 (14) | 0.0304 (14) | 0.0443 (16) | 0.0037 (11) | 0.0041 (12) | 0.0012 (12) |
C1 | 0.0382 (13) | 0.0328 (14) | 0.0263 (12) | −0.0005 (11) | 0.0039 (10) | −0.0003 (11) |
C7 | 0.0543 (18) | 0.0588 (19) | 0.0564 (17) | −0.0188 (15) | 0.0214 (14) | −0.0093 (16) |
C6 | 0.0505 (17) | 0.0413 (17) | 0.0440 (17) | −0.0119 (14) | 0.0028 (13) | 0.0051 (13) |
S1—O2 | 1.4259 (19) | C3—C4 | 1.520 (4) |
S1—O1 | 1.439 (2) | C3—H31 | 0.91 (3) |
S1—C2 | 1.776 (3) | C3—H32 | 0.91 (3) |
S1—C1 | 1.816 (3) | C4—H41 | 0.95 (3) |
S2—O4 | 1.429 (2) | C4—H42 | 1.01 (3) |
S2—O3 | 1.4308 (19) | C2—H22 | 0.89 (2) |
S2—C5 | 1.762 (3) | C2—H21 | 0.92 (3) |
S2—C1 | 1.810 (2) | C1—C6 | 1.521 (4) |
O5—C6 | 1.398 (3) | C1—H11 | 0.92 (2) |
O5—C7 | 1.423 (3) | C7—H7A | 0.9600 |
C5—C4 | 1.515 (4) | C7—H7B | 0.9600 |
C5—H51 | 0.89 (3) | C7—H7C | 0.9600 |
C5—H52 | 0.97 (3) | C6—H62 | 1.01 (2) |
C3—C2 | 1.518 (4) | C6—H61 | 0.92 (3) |
O2—S1—O1 | 119.86 (13) | C5—C4—H42 | 106.3 (16) |
O2—S1—C2 | 107.49 (13) | C3—C4—H42 | 105.1 (15) |
O1—S1—C2 | 107.99 (13) | H41—C4—H42 | 112 (2) |
O2—S1—C1 | 107.47 (13) | C3—C2—S1 | 115.0 (2) |
O1—S1—C1 | 104.47 (12) | C3—C2—H22 | 113.7 (15) |
C2—S1—C1 | 109.24 (12) | S1—C2—H22 | 91.4 (16) |
O4—S2—O3 | 118.63 (12) | C3—C2—H21 | 110.2 (17) |
O4—S2—C5 | 107.94 (14) | S1—C2—H21 | 108.8 (18) |
O3—S2—C5 | 110.34 (13) | H22—C2—H21 | 117 (2) |
O4—S2—C1 | 105.41 (11) | C6—C1—S2 | 109.78 (17) |
O3—S2—C1 | 108.78 (12) | C6—C1—S1 | 108.92 (19) |
C5—S2—C1 | 104.78 (13) | S2—C1—S1 | 116.44 (14) |
C6—O5—C7 | 111.8 (2) | C6—C1—H11 | 110.9 (15) |
C4—C5—S2 | 117.6 (2) | S2—C1—H11 | 101.7 (14) |
C4—C5—H51 | 104.8 (18) | S1—C1—H11 | 108.9 (14) |
S2—C5—H51 | 108.3 (17) | O5—C7—H7A | 109.5 |
C4—C5—H52 | 113.2 (16) | O5—C7—H7B | 109.5 |
S2—C5—H52 | 102.5 (16) | H7A—C7—H7B | 109.5 |
H51—C5—H52 | 110 (2) | O5—C7—H7C | 109.5 |
C2—C3—C4 | 114.5 (2) | H7A—C7—H7C | 109.5 |
C2—C3—H31 | 107.7 (18) | H7B—C7—H7C | 109.5 |
C4—C3—H31 | 108.4 (18) | O5—C6—C1 | 107.2 (2) |
C2—C3—H32 | 109.8 (17) | O5—C6—H62 | 111.4 (14) |
C4—C3—H32 | 109.2 (17) | C1—C6—H62 | 106.9 (14) |
H31—C3—H32 | 107 (2) | O5—C6—H61 | 111.9 (17) |
C5—C4—C3 | 116.1 (2) | C1—C6—H61 | 105.9 (18) |
C5—C4—H41 | 112.7 (15) | H62—C6—H61 | 113 (2) |
C3—C4—H41 | 104.8 (15) | ||
O4—S2—C5—C4 | 169.5 (2) | O4—S2—C1—S1 | −168.34 (15) |
O3—S2—C5—C4 | 38.5 (2) | O3—S2—C1—S1 | −40.11 (18) |
C1—S2—C5—C4 | −78.5 (2) | C5—S2—C1—S1 | 77.89 (18) |
S2—C5—C4—C3 | 64.1 (3) | O2—S1—C1—C6 | −35.4 (2) |
C2—C3—C4—C5 | −76.7 (3) | O1—S1—C1—C6 | 92.93 (19) |
C4—C3—C2—S1 | 97.1 (3) | C2—S1—C1—C6 | −151.73 (18) |
O2—S1—C2—C3 | −168.5 (2) | O2—S1—C1—S2 | 89.34 (17) |
O1—S1—C2—C3 | 60.9 (2) | O1—S1—C1—S2 | −142.32 (14) |
C1—S1—C2—C3 | −52.1 (2) | C2—S1—C1—S2 | −27.0 (2) |
O4—S2—C1—C6 | −44.0 (2) | C7—O5—C6—C1 | 173.1 (2) |
O3—S2—C1—C6 | 84.2 (2) | S2—C1—C6—O5 | 172.5 (2) |
C5—S2—C1—C6 | −157.8 (2) | S1—C1—C6—O5 | −58.9 (3) |
Experimental details
Crystal data | |
Chemical formula | C7H14O5S2 |
Mr | 242.30 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 7.8972 (9), 14.627 (2), 9.5192 (10) |
β (°) | 108.739 (8) |
V (Å3) | 1041.3 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.51 |
Crystal size (mm) | 0.35 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Siemens P4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1933, 1800, 1255 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.068, 0.99 |
No. of reflections | 1800 |
No. of parameters | 171 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.17, −0.16 |
Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL (Siemens, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
S1—O2 | 1.4259 (19) | S2—C1 | 1.810 (2) |
S1—O1 | 1.439 (2) | O5—C6 | 1.398 (3) |
S1—C2 | 1.776 (3) | O5—C7 | 1.423 (3) |
S1—C1 | 1.816 (3) | C5—C4 | 1.515 (4) |
S2—O4 | 1.429 (2) | C3—C2 | 1.518 (4) |
S2—O3 | 1.4308 (19) | C3—C4 | 1.520 (4) |
S2—C5 | 1.762 (3) | C1—C6 | 1.521 (4) |
O2—S1—O1 | 119.86 (13) | C5—S2—C1 | 104.78 (13) |
O2—S1—C2 | 107.49 (13) | C6—O5—C7 | 111.8 (2) |
O1—S1—C2 | 107.99 (13) | C4—C5—S2 | 117.6 (2) |
O2—S1—C1 | 107.47 (13) | C2—C3—C4 | 114.5 (2) |
O1—S1—C1 | 104.47 (12) | C5—C4—C3 | 116.1 (2) |
C2—S1—C1 | 109.24 (12) | C3—C2—S1 | 115.0 (2) |
O4—S2—O3 | 118.63 (12) | C6—C1—S2 | 109.78 (17) |
O4—S2—C5 | 107.94 (14) | C6—C1—S1 | 108.92 (19) |
O3—S2—C5 | 110.34 (13) | S2—C1—S1 | 116.44 (14) |
O4—S2—C1 | 105.41 (11) | O5—C6—C1 | 107.2 (2) |
O3—S2—C1 | 108.78 (12) | ||
C1—S2—C5—C4 | −78.5 (2) | C1—S1—C2—C3 | −52.1 (2) |
S2—C5—C4—C3 | 64.1 (3) | C5—S2—C1—S1 | 77.89 (18) |
C2—C3—C4—C5 | −76.7 (3) | C2—S1—C1—S2 | −27.0 (2) |
C4—C3—C2—S1 | 97.1 (3) |
During the last decade, compounds having two geminal sulfones have been shown to be useful dienophiles, and they have reveived considerable attention. A number of aryl-substituted ketenedithioacetal tetraoxides have been shown to be good dienophiles (De Lucchi et al., 1992) in Diels–Alder reactions. The cycloadducts desulfonylate to the corresponding norbornenes.
Similarly, bis(phenylsulfonyl)ethene has been reported (De Lucchi, Fabbri, Cossu & Valle, 1991) and the bis-sulfone undergoes highly diastereoselective cycloadditions with unsymmetrical dienes. The bis-sulfone has been shown to be a useful acetylene equivalent in cycloaddition reactions (De Lucchi, Fabbri & Lucchini, 1991).
Recently, a sulfone-containing dienophile, benzenesulfonylallene, has been reported (Trudell et al., 1997), and found to undergo a Diels–Alder reaction with N-Boc-pyrrole. The cycloadduct transformed into the epibatidine precursor in three steps. The sulfonyl group has versatile functionality in organic synthesis and can be conveniently eliminated, resulting in an alkene (Little & Myong, 1980; Lopez & Carretero, 1991). Moreover, the sulfonyl group may undergo desulfonylation and oxidative desulfonylation with the formation of the corresponding ketones (Leon & Carretero, 1991).
Racemic 2-methoxymethyl-1,3-dithiolane 1,3-dioxide has been shown to be a useful starting material for the preparation of (1R,3R)-2-methylene-1,3-dithiolane 1,3-dioxide (Aggarwal et al., 1998). The crystal structure of the five-membered ring analogue of the title compound, (I), viz. 2-methoxymethyl-1,3-dithiolane 1,1,3,3-tetraoxide has been reported previously (Özcan et al., 2003). Compound (I) may also prove to be a useful starting material for the preparation of a new sulfone-containing dienophile.
The title compound, (I) (Fig. 1), consists of a seven-membered dithiepane ring with two O atoms bonded to each S atom and a methoxymethyl group attached at the 2-position. The S atoms of the dithiepane ring have electron-releasing properties, but the O atoms bonded to the S atoms have electron-withdrawing properties, thereby influencing the bond lengths and angles of the dithiepane ring (Table 1). The dithiepane ring is, of course, not planar.
The structure reveals a number of short contacts: O1···H22(C2) = 2.51 (2), O2···H62(C6) = 2.50 (3), O3···H21(C2) = 2.58 (3), O4···H61(C6) = 2.45 (3), O1i···H11(C1) = 2.59 (2), O2ii···H42(C4) = 2.52 (3), O3iii···H22(C2) = 2.59 (2), O4iv···H31(C3) = 2.63 (3) and O5i···H32(C3) = 2.68 (3) Å [symmetry codes: (i) −x, −y + 1, −z + 1; (ii) x − 1, y, z; (iii) x + 0.5, −y + 0.5, z + 0.5; (iv) −x + 0.5, y − 0.5, −z + 0.5]. These interactions may have an influence on the bond lengths and angles and also the shape of the molecule.