Download citation
Download citation
link to html
The title compounds with terminal N-heterocyclic carbenes, namely octa­carbon­yl(imidazolidinylidene-κC2)di-μ3-sulfido-tri­iron(II)(2 FeFe), [Fe3(C3H6N2)(μ3-S)2(CO)8], (I), and octacarbon­yl(1-methyl­imidazo[1,5-a]pyridin-3-ylidene-κC3)di-μ3-sulfido-triiron(II)(2 FeFe), [Fe3(C8H8N2)(μ3-S)2(CO)8], (II), have been synthesized. Each compound contains two Fe—Fe bonds and two S atoms above and below a triiron triangle. One of the eight carbonyl ligands deviates significantly from linearity. In (I), dimers generated by an N—H...S hydrogen bond are linked into [001] double chains by a second N—H...S hydrogen bond. These chains are packed by a C—H...O hydrogen bond to yield [101] sheets. In (II), dimers generated by an N—H...S hydrogen bond are linked by C—H...O hydrogen bonds to form [111] double chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614009310/wq3060sup1.cif
Contains datablocks global, 1, 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614009310/wq30601sup2.hkl
Contains datablock 1

mol

MDL mol file https://doi.org/10.1107/S2053229614009310/wq30601sup4.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614009310/wq30602sup3.hkl
Contains datablock 2

mol

MDL mol file https://doi.org/10.1107/S2053229614009310/wq30602sup5.mol
Supplementary material

CCDC references: 999386; 999387

Introduction top

Iron–sulfur cluster complexes have attracted considerable attention, not only because of their fascinating chemistry (Song, 2005; Shieh et al., 2012) but also for their ability to act as electron reservoirs, their potential as catalysts and their practical applications as biomimetic models for the active sites of the Fe–Fe hydrogenases (Capon et al., 2009; Taylor et al., 2011; Wang et al., 2010). However, to date, few efficient electrocatalysts have been obtained and the mechanism of the natural production/uptake of hydrogen remains unclear. Therefore, structural and chemical models are necessary to gain a better understanding of the protonation mechanisms implied at the molecular level (Erdem et al., 2011; Tard & Pickett, 2009; Song et al., 2006). For these reasons, we have initiated a project investigating the reactions of hetero­allyl anions G—C(Y)—Z- with iron carbonyls in order to develop synthetic methodologies towards iron–sulfur cluster complexes as model compounds (Shi, Cheng, Fu et al., 2013; Shi, Cheng & Cheng, 2013; Shi & Fu, 2013; Shi & Gu, 2013; Shi et al., 2012). As part of this on-going project, we report herein the syntheses and crystal structures of two triiron clusters with N-heterocyclic carbene ligands (Shi et al., 2014; Shi, Cheng et al., 2011; Shi, Lai et al., 2011), namely o­cta­carbonyl­(imidazolidinyl­idene-κC2)di-µ3-sulfido-triiron(II)(2 FeFe), (I), and o­cta­carbonyl­(1-methyl­imidazo[1,5-a]pyridin-3-yl­idene-κC3)di-µ3-sulfido-triiron(II)(2 FeFe), (II).

Experimental top

Synthesis and crystallization top

For the preparation of (I), a mixture of Fe3(CO)12 (1.007 g, 2 mmol) and (CH2NH)2CS (0.511 g, 5 mmol) in tetra­hydro­furan (THF; 25 ml) was refluxed for 30 min. After the solvent had been removed under reduced pressure, the resulting residue was chromatographed on a silica-gel column with petroleum ether (333–363 K) and CH2Cl2 (1:2 v/v) as eluent to give (I) as a brown–red solid (yield 71%, 0.746 g). Red single crystals of (I) were obtained by slow evaporation of a petroleum ether–CH2Cl2 [Solvent ratio?] solution at 277 K. Analysis, calculated for C11H6Fe3N2O8S2, (I): C 25.13, H 1.15, N 5.33%; found: C 25.34, H 1.19, N 5.16%. Spectroscopic analysis: IR (KBr disk, cm-1): ν(NH) 3340 (m); ν(CO) 2068 (vs), 2009 (vs, br); 1H NMR (500 MHz, CDCl3, TMS, δ, p.p.m.): 3.68–3.81 (m, 4H, C2H4), 6.28–6.37 (m, 2H, 2NH).

For the preparation of (II), a mixture of Fe3(CO)12 (1.5 g, 2.98 mmol) and [HNEt3][2-C5H4NCH(CH3)NHCS2] (0.899 g, 3 mmol) in THF (25 ml) was stirred for 3 h at room temperature to form a red–brown solution. To this solution was added PhCOCl (1.04 ml, 9 mmol). After the solution had been stirred for 24 h, the same work-up as for (I) above gave a purple–red solid of (II) (yield 28%, 0.491 g). Red single crystals of (II) were obtained by slow evaporation of a petroleum ether–CH2Cl2 [Solvent ratio?] solution at 277 K. Analysis, calculated for C16H8Fe3N2O8S2, (II): C 32.69, H 1.37, N 4.76%; found: C 32.83, H 1.19, N 4.79%. Spectroscopic analysis: IR (KBr disk, cm-1): ν(NH) 3431 (m); ν(CO) 2069 (s), 2037 (s), 1998 (vs), 1944 (s); 1H NMR (500 MHz, CDCl3, TMS, δ, p.p.m.): 2.53 (s, 3H, CH3), 6.62, 6.75, 7.27, 8.20 (4s, 4H, C5H4N), 9.59 (s, 1H, NH).

Refinement top

C-bound H atoms were placed at calculated positions and subsequently treated as riding, with C—H = 0.93 (CH, aromatic), 0.97 (CH2) or 0.96 Å (CH3), and with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise. N-bound H atoms were located in difference Fourier maps and freely refined isotropically.

Results and discussion top

The title compounds, (I) and (II), were synthesized according to the scheme. Thus, reaction of Fe3(CO)12 with (CH2NH)2CS in refluxing THF afforded cluster (I) in satisfactory yield. Reaction of Fe3(CO)12 and [HNEt3][2-C5H4NCH(CH3)NHCS2] with PhCOCl at room temperature gave cluster (II) containing an unprecedented N-heterocyclic carbene ligand, presumably via initial formation of the thio­urea derivative 1-methyl­imidazo[1,5-a]pyridine-3(2H)-thione, (III).

As shown in Figs. 1 and 2, each of (I) and (II) is a trinuclear iron carbonyl complex, with a distorted square-based pyramidal geometry similar to the previously reported cluster (µ3-S)2Fe3(CO)9 (Wei & Dahl, 1965). In (µ3-S)2Fe3(CO)9, each of the two S atoms on the square base triply bridges the two basal Fe(CO)3 units on the same base and the third Fe(CO)3 group at the apex of the pyramid, and each of the three Fe atoms obeys the 18-electron rule. Therefore, (I) and (II) may be regarded as involving formal replacement of the axial carbonyl ligand on one of the iron centres on the square base in (µ3-S)2Fe3(CO)9 by a two-electron carbene group. The carbene ligand leads to small structural effects in (I) and (II): a slight increase in the Fe1—Fe3—Fe2 bond angle [81.885 (12)° for (I) and 81.492 (15)° for (II)] compared with (µ3-S)2Fe3(CO)9 [81.0 (3)°], and a slight increase in the Fe1—Fe3 bond length compared with the Fe2—Fe3 bond length. In addition, one of the three carbonyl ligands attached to apical atom Fe3 participates in a weak inter­action with the carbene-substituted basal atom Fe1 from a direction trans to the carbene ligand. The C6···Fe1 distances are 2.686 (3) Å for (I) and 2.802 (2) Å for (II), which lie between the sum of the covalent radii and van der Waals radii for Fe and C [r(Fe) + r(C) = 2.13 Å and R(Fe) + R(C) = 3.84 Å; Standard references?]. Associated with this inter­action is a significant deviation of the O6—C6—Fe3 bond angles in (I) and (II) from linearity, with carbonyl atom C6 bent towards atom Fe1 [O6—C6—Fe3 = 171.1 (2)° for (I) and 172.1 (2)° for (II)], whereas the other Fe—C—O bond angles lie in the ranges 176.9 (2)–179.5 (3)° for (I) and 177.2 (2)–179.1 (2)° for (II). Similar inter­actions have been observed in previously reported clusters of the type (µ3-S)2Fe3(CO)8L (L = carbene), namely L axial, with O—C—Fe = 171.8 (6)° and C···Fe = 2.844 (9) Å [An et al., 1992; Cambridge Structural Database (CSD; Allen, 2002) refcode VOYWAH]; L axial, with O—C—Fe = 171.7 (9)° and C···Fe = 2.750 (10) Å (CSD refcode TAQMAZ; Liu et al., 1996); L equatorial, with O—C—Fe = 173.4 (4)° and C···Fe = 2.805 (6) Å (CSD refcode XEPZAT; Liu et al., 1998); L axial, with O—C—Fe = 172.8 (6)° and C···Fe = 2.751 (7) Å (CCDC deposition number 216503; Hong et al., 2004); and L axial, with O—C—Fe = 172.2 (3)° and C···Fe = 2.757 (4) Å (CSD refcode HY2012 [This is an IUCr paper code. Please give correct CSD code]; Zhang et al., 2008). This type of weak inter­action was also found in [(µ3-κ1P:κ2C:κ2S-Ph2PCS)Fe3(CO)8(µ-κ2S-S)]2 [O—C—Fe = 168.3 (2)° and C···Fe = 2.589 (3) Å; Shi, Cheng & Cheng, 2013].

Each of the above N-heterocyclic carbenes is planar. In agreement with this, the sums of the bond angles around atom C9 are 359.98 (16)° for (I) (Table 2) and 359.02 (15)° for (II) (Table 3), suggesting that this atom is sp2-hybridized (Shi & Fu, 2013). Furthermore, the Fe1—C9, C9—N1 and C9—N2 bond lengths are 1.925 (2), 1.323 (3) and 1.322 (3) Å, respectively, for (I), and 1.944 (2), 1.354 (3) and 1.371 (2) Å, respectively, for (II), comparable with values reported for Fe3(C8H8N2O)S2(CO)8 crystallized in the space group P1 [1.914 (2), 1.348 (3) and 1.355 (3) Å, respectively; Zhang et al., 2008], Fe3[C(NH2)NHN CH(2—C4H3S)]S2(CO)8 crystallized in the space group P1 [1.929 (6), 1.345 (7) and 1.311 (8) Å, respectively; Hong et al., 2004], Fe3[C(NHC(S)CMe2NH)]S2(CO)8 crystallized in the space group P21/n [1.898 (6), 1.310 (9) and 1.382 (9) Å, respectively; Liu et al., 1996] and Fe3(C7H6N2)S2(CO)8 crystallized in the space group P1 [1.916 (5), 1.333 (7) and 1.353 (9) Å, respectively; An et al., 1992], supporting the fact that π-bonding in each case is delocalized over atoms Fe1, C9, N1 and N2. Although the S2Fe3 core as in these complexes is well known, triiron clusters with N-heterocyclic carbenes are rare (Shi & Gu, 2013; Liu et al., 1998).

It is worth discussing the packing inter­actions in the title compounds, because there have been no reports on the supra­molecular assemblies of clusters of type (µ3-S)2Fe3(CO)8L (L = carbene). In (I), two N—H···S and one C—H···O hydrogen bond (Table 4) combine the molecules into sheets that lie in the [101] plane (Fig. 3). For (II), N—H···S and C—H···O inter­actions (Table 5) link the molecules into chains lying along the [111] direction (Fig. 4).

Related literature top

For related literature, see: An et al. (1992); Capon et al. (2009); Erdem et al. (2011); Hong et al. (2004); Liu et al. (1996, 1998); Shi & Fu (2013); Shi & Gu (2013); Shi et al. (2012, 2014); Shi, Cheng & Cheng (2013); Shi, Cheng, Fu, Gu & Wu (2013); Shi, Cheng, Yuan & Li (2011); Shi, Lai, Shen & Yuan (2011); Shieh et al. (2012); Song (2005); Song et al. (2006); Tard & Pickett (2009); Taylor et al. (2011); Wang et al. (2010); Wei & Dahl (1965); Zhang et al. (2008).

Structure description top

Iron–sulfur cluster complexes have attracted considerable attention, not only because of their fascinating chemistry (Song, 2005; Shieh et al., 2012) but also for their ability to act as electron reservoirs, their potential as catalysts and their practical applications as biomimetic models for the active sites of the Fe–Fe hydrogenases (Capon et al., 2009; Taylor et al., 2011; Wang et al., 2010). However, to date, few efficient electrocatalysts have been obtained and the mechanism of the natural production/uptake of hydrogen remains unclear. Therefore, structural and chemical models are necessary to gain a better understanding of the protonation mechanisms implied at the molecular level (Erdem et al., 2011; Tard & Pickett, 2009; Song et al., 2006). For these reasons, we have initiated a project investigating the reactions of hetero­allyl anions G—C(Y)—Z- with iron carbonyls in order to develop synthetic methodologies towards iron–sulfur cluster complexes as model compounds (Shi, Cheng, Fu et al., 2013; Shi, Cheng & Cheng, 2013; Shi & Fu, 2013; Shi & Gu, 2013; Shi et al., 2012). As part of this on-going project, we report herein the syntheses and crystal structures of two triiron clusters with N-heterocyclic carbene ligands (Shi et al., 2014; Shi, Cheng et al., 2011; Shi, Lai et al., 2011), namely o­cta­carbonyl­(imidazolidinyl­idene-κC2)di-µ3-sulfido-triiron(II)(2 FeFe), (I), and o­cta­carbonyl­(1-methyl­imidazo[1,5-a]pyridin-3-yl­idene-κC3)di-µ3-sulfido-triiron(II)(2 FeFe), (II).

The title compounds, (I) and (II), were synthesized according to the scheme. Thus, reaction of Fe3(CO)12 with (CH2NH)2CS in refluxing THF afforded cluster (I) in satisfactory yield. Reaction of Fe3(CO)12 and [HNEt3][2-C5H4NCH(CH3)NHCS2] with PhCOCl at room temperature gave cluster (II) containing an unprecedented N-heterocyclic carbene ligand, presumably via initial formation of the thio­urea derivative 1-methyl­imidazo[1,5-a]pyridine-3(2H)-thione, (III).

As shown in Figs. 1 and 2, each of (I) and (II) is a trinuclear iron carbonyl complex, with a distorted square-based pyramidal geometry similar to the previously reported cluster (µ3-S)2Fe3(CO)9 (Wei & Dahl, 1965). In (µ3-S)2Fe3(CO)9, each of the two S atoms on the square base triply bridges the two basal Fe(CO)3 units on the same base and the third Fe(CO)3 group at the apex of the pyramid, and each of the three Fe atoms obeys the 18-electron rule. Therefore, (I) and (II) may be regarded as involving formal replacement of the axial carbonyl ligand on one of the iron centres on the square base in (µ3-S)2Fe3(CO)9 by a two-electron carbene group. The carbene ligand leads to small structural effects in (I) and (II): a slight increase in the Fe1—Fe3—Fe2 bond angle [81.885 (12)° for (I) and 81.492 (15)° for (II)] compared with (µ3-S)2Fe3(CO)9 [81.0 (3)°], and a slight increase in the Fe1—Fe3 bond length compared with the Fe2—Fe3 bond length. In addition, one of the three carbonyl ligands attached to apical atom Fe3 participates in a weak inter­action with the carbene-substituted basal atom Fe1 from a direction trans to the carbene ligand. The C6···Fe1 distances are 2.686 (3) Å for (I) and 2.802 (2) Å for (II), which lie between the sum of the covalent radii and van der Waals radii for Fe and C [r(Fe) + r(C) = 2.13 Å and R(Fe) + R(C) = 3.84 Å; Standard references?]. Associated with this inter­action is a significant deviation of the O6—C6—Fe3 bond angles in (I) and (II) from linearity, with carbonyl atom C6 bent towards atom Fe1 [O6—C6—Fe3 = 171.1 (2)° for (I) and 172.1 (2)° for (II)], whereas the other Fe—C—O bond angles lie in the ranges 176.9 (2)–179.5 (3)° for (I) and 177.2 (2)–179.1 (2)° for (II). Similar inter­actions have been observed in previously reported clusters of the type (µ3-S)2Fe3(CO)8L (L = carbene), namely L axial, with O—C—Fe = 171.8 (6)° and C···Fe = 2.844 (9) Å [An et al., 1992; Cambridge Structural Database (CSD; Allen, 2002) refcode VOYWAH]; L axial, with O—C—Fe = 171.7 (9)° and C···Fe = 2.750 (10) Å (CSD refcode TAQMAZ; Liu et al., 1996); L equatorial, with O—C—Fe = 173.4 (4)° and C···Fe = 2.805 (6) Å (CSD refcode XEPZAT; Liu et al., 1998); L axial, with O—C—Fe = 172.8 (6)° and C···Fe = 2.751 (7) Å (CCDC deposition number 216503; Hong et al., 2004); and L axial, with O—C—Fe = 172.2 (3)° and C···Fe = 2.757 (4) Å (CSD refcode HY2012 [This is an IUCr paper code. Please give correct CSD code]; Zhang et al., 2008). This type of weak inter­action was also found in [(µ3-κ1P:κ2C:κ2S-Ph2PCS)Fe3(CO)8(µ-κ2S-S)]2 [O—C—Fe = 168.3 (2)° and C···Fe = 2.589 (3) Å; Shi, Cheng & Cheng, 2013].

Each of the above N-heterocyclic carbenes is planar. In agreement with this, the sums of the bond angles around atom C9 are 359.98 (16)° for (I) (Table 2) and 359.02 (15)° for (II) (Table 3), suggesting that this atom is sp2-hybridized (Shi & Fu, 2013). Furthermore, the Fe1—C9, C9—N1 and C9—N2 bond lengths are 1.925 (2), 1.323 (3) and 1.322 (3) Å, respectively, for (I), and 1.944 (2), 1.354 (3) and 1.371 (2) Å, respectively, for (II), comparable with values reported for Fe3(C8H8N2O)S2(CO)8 crystallized in the space group P1 [1.914 (2), 1.348 (3) and 1.355 (3) Å, respectively; Zhang et al., 2008], Fe3[C(NH2)NHN CH(2—C4H3S)]S2(CO)8 crystallized in the space group P1 [1.929 (6), 1.345 (7) and 1.311 (8) Å, respectively; Hong et al., 2004], Fe3[C(NHC(S)CMe2NH)]S2(CO)8 crystallized in the space group P21/n [1.898 (6), 1.310 (9) and 1.382 (9) Å, respectively; Liu et al., 1996] and Fe3(C7H6N2)S2(CO)8 crystallized in the space group P1 [1.916 (5), 1.333 (7) and 1.353 (9) Å, respectively; An et al., 1992], supporting the fact that π-bonding in each case is delocalized over atoms Fe1, C9, N1 and N2. Although the S2Fe3 core as in these complexes is well known, triiron clusters with N-heterocyclic carbenes are rare (Shi & Gu, 2013; Liu et al., 1998).

It is worth discussing the packing inter­actions in the title compounds, because there have been no reports on the supra­molecular assemblies of clusters of type (µ3-S)2Fe3(CO)8L (L = carbene). In (I), two N—H···S and one C—H···O hydrogen bond (Table 4) combine the molecules into sheets that lie in the [101] plane (Fig. 3). For (II), N—H···S and C—H···O inter­actions (Table 5) link the molecules into chains lying along the [111] direction (Fig. 4).

For related literature, see: An et al. (1992); Capon et al. (2009); Erdem et al. (2011); Hong et al. (2004); Liu et al. (1996, 1998); Shi & Fu (2013); Shi & Gu (2013); Shi et al. (2012, 2014); Shi, Cheng & Cheng (2013); Shi, Cheng, Fu, Gu & Wu (2013); Shi, Cheng, Yuan & Li (2011); Shi, Lai, Shen & Yuan (2011); Shieh et al. (2012); Song (2005); Song et al. (2006); Tard & Pickett (2009); Taylor et al. (2011); Wang et al. (2010); Wei & Dahl (1965); Zhang et al. (2008).

Synthesis and crystallization top

For the preparation of (I), a mixture of Fe3(CO)12 (1.007 g, 2 mmol) and (CH2NH)2CS (0.511 g, 5 mmol) in tetra­hydro­furan (THF; 25 ml) was refluxed for 30 min. After the solvent had been removed under reduced pressure, the resulting residue was chromatographed on a silica-gel column with petroleum ether (333–363 K) and CH2Cl2 (1:2 v/v) as eluent to give (I) as a brown–red solid (yield 71%, 0.746 g). Red single crystals of (I) were obtained by slow evaporation of a petroleum ether–CH2Cl2 [Solvent ratio?] solution at 277 K. Analysis, calculated for C11H6Fe3N2O8S2, (I): C 25.13, H 1.15, N 5.33%; found: C 25.34, H 1.19, N 5.16%. Spectroscopic analysis: IR (KBr disk, cm-1): ν(NH) 3340 (m); ν(CO) 2068 (vs), 2009 (vs, br); 1H NMR (500 MHz, CDCl3, TMS, δ, p.p.m.): 3.68–3.81 (m, 4H, C2H4), 6.28–6.37 (m, 2H, 2NH).

For the preparation of (II), a mixture of Fe3(CO)12 (1.5 g, 2.98 mmol) and [HNEt3][2-C5H4NCH(CH3)NHCS2] (0.899 g, 3 mmol) in THF (25 ml) was stirred for 3 h at room temperature to form a red–brown solution. To this solution was added PhCOCl (1.04 ml, 9 mmol). After the solution had been stirred for 24 h, the same work-up as for (I) above gave a purple–red solid of (II) (yield 28%, 0.491 g). Red single crystals of (II) were obtained by slow evaporation of a petroleum ether–CH2Cl2 [Solvent ratio?] solution at 277 K. Analysis, calculated for C16H8Fe3N2O8S2, (II): C 32.69, H 1.37, N 4.76%; found: C 32.83, H 1.19, N 4.79%. Spectroscopic analysis: IR (KBr disk, cm-1): ν(NH) 3431 (m); ν(CO) 2069 (s), 2037 (s), 1998 (vs), 1944 (s); 1H NMR (500 MHz, CDCl3, TMS, δ, p.p.m.): 2.53 (s, 3H, CH3), 6.62, 6.75, 7.27, 8.20 (4s, 4H, C5H4N), 9.59 (s, 1H, NH).

Refinement details top

C-bound H atoms were placed at calculated positions and subsequently treated as riding, with C—H = 0.93 (CH, aromatic), 0.97 (CH2) or 0.96 Å (CH3), and with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise. N-bound H atoms were located in difference Fourier maps and freely refined isotropically.

Computing details top

For both compounds, data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008b); molecular graphics: PLATON (Spek, 2009) and WinGX (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
Fig. 1. The asymmetric unit of complex (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms attached to C atoms have been omitted for clarity. The dashed line indicates the weak intramolecular interaction.

Fig. 2. The asymmetric unit of complex (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms attached to C atoms have been omitted for clarity. The dashed line indicates the weak intramolecular interaction.

Fig. 3. A partial packing diagram for (I), showing the formation of a [101] sheet. Dashed lines indicate hydrogen bonds. For clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with a hash (#), an asterisk (*) or a dollar sign ($) are at the symmetry positions (x + 1, y, z), (-x + 1, -y + 1, -z + 1) or (x, y, z + 1), respectively.

Fig. 4. A partial packing diagram for (II), showing the formation of a [111] chain. Dashed lines indicate hydrogen bonds. For clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with a hash (#) or an asterisk (*) are at the symmetry positions (-x , -y, -z) or (-x + 1, -y + 1, -z + 1), respectively.
(1) Octacarbonyl(imidazolidinyl-κC2)di-µ3-sulfido-triiron(II)(2 FeFe) top
Crystal data top
[Fe3(C3H6N2)S2(CO)8]Z = 2
Mr = 525.87F(000) = 520
Triclinic, P1Dx = 1.900 Mg m3
a = 8.7679 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0811 (3) ÅCell parameters from 4141 reflections
c = 11.8549 (15) Åθ = 1.8–27.5°
α = 78.4565 (14)°µ = 2.60 mm1
β = 72.7596 (13)°T = 296 K
γ = 67.3315 (14)°Block, red
V = 919.07 (12) Å30.18 × 0.13 × 0.13 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4141 independent reflections
Radiation source: fine-focus sealed tube3710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1011
Tmin = 0.651, Tmax = 0.708k = 1313
7989 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.130P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4141 reflectionsΔρmax = 0.47 e Å3
244 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (2)
Crystal data top
[Fe3(C3H6N2)S2(CO)8]γ = 67.3315 (14)°
Mr = 525.87V = 919.07 (12) Å3
Triclinic, P1Z = 2
a = 8.7679 (3) ÅMo Kα radiation
b = 10.0811 (3) ŵ = 2.60 mm1
c = 11.8549 (15) ÅT = 296 K
α = 78.4565 (14)°0.18 × 0.13 × 0.13 mm
β = 72.7596 (13)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4141 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3710 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 0.708Rint = 0.032
7989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.47 e Å3
4141 reflectionsΔρmin = 0.30 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6460 (3)0.6802 (2)0.7929 (2)0.0456 (5)
C20.6362 (3)0.6785 (2)0.5752 (2)0.0431 (5)
C30.3538 (3)0.2950 (3)0.8391 (2)0.0524 (5)
C40.6398 (3)0.0960 (3)0.9071 (2)0.0505 (5)
C50.6007 (4)0.0964 (3)0.6964 (2)0.0578 (6)
C60.9491 (3)0.4399 (2)0.6604 (2)0.0457 (5)
C70.9582 (3)0.2074 (3)0.5769 (2)0.0497 (5)
C80.9745 (3)0.1859 (3)0.7959 (2)0.0501 (5)
C90.3648 (3)0.6593 (2)0.75631 (17)0.0360 (4)
C100.0884 (3)0.7427 (3)0.8751 (2)0.0628 (7)
H10A0.03330.83130.91380.075*
H10B0.03630.67230.91850.075*
C110.0801 (3)0.7700 (3)0.7454 (2)0.0597 (6)
H11A0.00940.72410.73130.072*
H11B0.03740.87260.72040.072*
Fe10.60847 (3)0.56686 (3)0.71292 (2)0.03342 (10)
Fe20.58059 (4)0.23067 (3)0.78620 (3)0.03822 (10)
Fe30.84395 (3)0.30967 (3)0.70201 (2)0.03373 (10)
H1N0.289 (4)0.694 (3)0.611 (3)0.059 (8)*
H2N0.316 (4)0.655 (3)0.922 (3)0.065 (9)*
N10.2597 (2)0.7028 (3)0.68538 (18)0.0577 (6)
N20.2706 (3)0.6871 (3)0.86465 (17)0.0559 (5)
O10.6707 (3)0.7485 (2)0.8464 (2)0.0759 (6)
O20.6545 (3)0.7497 (2)0.48830 (17)0.0669 (5)
O30.2091 (3)0.3422 (3)0.8727 (2)0.0841 (7)
O40.6810 (3)0.0131 (2)0.9822 (2)0.0787 (6)
O50.6102 (4)0.0136 (2)0.6405 (3)0.0954 (8)
O61.0352 (2)0.5076 (2)0.63203 (19)0.0673 (5)
O71.0296 (3)0.1421 (3)0.4979 (2)0.0853 (7)
O81.0564 (3)0.1054 (2)0.8551 (2)0.0825 (6)
S10.63208 (6)0.39129 (5)0.86325 (4)0.03702 (13)
S20.61240 (6)0.38781 (5)0.62498 (4)0.03564 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0472 (12)0.0420 (11)0.0508 (12)0.0178 (9)0.0108 (9)0.0079 (10)
C20.0412 (10)0.0395 (11)0.0466 (11)0.0145 (9)0.0097 (9)0.0004 (9)
C30.0493 (13)0.0506 (13)0.0599 (14)0.0245 (11)0.0146 (11)0.0057 (11)
C40.0471 (12)0.0461 (12)0.0594 (14)0.0214 (10)0.0169 (10)0.0090 (11)
C50.0678 (16)0.0417 (12)0.0671 (16)0.0177 (11)0.0245 (13)0.0025 (11)
C60.0449 (11)0.0449 (12)0.0462 (12)0.0169 (9)0.0059 (9)0.0076 (9)
C70.0484 (12)0.0488 (13)0.0496 (12)0.0112 (10)0.0119 (10)0.0116 (10)
C80.0480 (12)0.0466 (12)0.0555 (13)0.0113 (10)0.0190 (10)0.0055 (10)
C90.0412 (10)0.0346 (9)0.0330 (9)0.0140 (8)0.0091 (7)0.0034 (7)
C100.0430 (12)0.0763 (18)0.0519 (14)0.0075 (12)0.0011 (10)0.0114 (13)
C110.0410 (12)0.0719 (17)0.0625 (15)0.0090 (11)0.0133 (11)0.0192 (13)
Fe10.03642 (16)0.03113 (16)0.03280 (16)0.01207 (11)0.00879 (11)0.00204 (11)
Fe20.04031 (17)0.03477 (17)0.04056 (18)0.01631 (12)0.01102 (12)0.00266 (12)
Fe30.03439 (16)0.03344 (16)0.03300 (16)0.01115 (11)0.00861 (11)0.00315 (11)
N10.0394 (10)0.0898 (16)0.0380 (10)0.0116 (10)0.0110 (8)0.0136 (10)
N20.0452 (10)0.0753 (14)0.0333 (9)0.0032 (10)0.0096 (8)0.0110 (9)
O10.0850 (14)0.0771 (13)0.0859 (14)0.0387 (11)0.0220 (11)0.0291 (11)
O20.0746 (12)0.0620 (11)0.0564 (11)0.0284 (10)0.0148 (9)0.0187 (9)
O30.0441 (10)0.0925 (16)0.1062 (17)0.0254 (10)0.0095 (10)0.0012 (13)
O40.0773 (13)0.0734 (13)0.0841 (14)0.0334 (11)0.0390 (11)0.0391 (12)
O50.127 (2)0.0595 (13)0.1128 (19)0.0250 (13)0.0442 (16)0.0289 (13)
O60.0575 (11)0.0610 (11)0.0887 (14)0.0355 (9)0.0045 (10)0.0086 (10)
O70.0868 (15)0.0880 (15)0.0683 (13)0.0063 (12)0.0097 (11)0.0426 (12)
O80.0891 (15)0.0691 (13)0.0896 (16)0.0077 (11)0.0591 (13)0.0076 (11)
S10.0424 (3)0.0394 (3)0.0278 (2)0.0127 (2)0.00969 (18)0.00136 (19)
S20.0422 (3)0.0358 (2)0.0311 (2)0.01377 (19)0.01277 (19)0.00166 (18)
Geometric parameters (Å, º) top
C1—O11.137 (3)C9—Fe11.925 (2)
C1—Fe11.795 (2)C10—N21.450 (3)
C2—O21.138 (3)C10—C111.525 (4)
C2—Fe11.798 (2)C10—H10A0.9700
C3—O31.143 (3)C10—H10B0.9700
C3—Fe21.788 (2)C11—N11.467 (3)
C4—O41.133 (3)C11—H11A0.9700
C4—Fe21.812 (2)C11—H11B0.9700
C5—O51.131 (3)Fe1—S12.2418 (6)
C5—Fe21.811 (3)Fe1—S22.2428 (5)
C6—O61.142 (3)Fe1—Fe23.4111 (6)
C6—Fe12.686 (3)Fe1—Fe32.6176 (4)
C6—Fe31.795 (2)Fe2—S22.2479 (6)
C7—O71.133 (3)Fe2—S12.2494 (6)
C7—Fe31.789 (2)Fe2—Fe32.5876 (4)
C8—O81.135 (3)Fe3—S12.2645 (5)
C8—Fe31.790 (2)Fe3—S22.2704 (6)
C9—N21.322 (3)N1—H1N0.85 (3)
C9—N11.323 (3)N2—H2N0.84 (3)
O1—C1—Fe1177.8 (2)C4—Fe2—S2157.92 (8)
O2—C2—Fe1179.4 (2)C3—Fe2—S197.66 (8)
O3—C3—Fe2176.9 (2)C5—Fe2—S1163.11 (9)
O4—C4—Fe2177.9 (2)C4—Fe2—S190.25 (8)
O5—C5—Fe2178.8 (3)S2—Fe2—S179.92 (2)
O6—C6—Fe3171.1 (2)C3—Fe2—Fe3144.06 (8)
O7—C7—Fe3179.5 (3)C5—Fe2—Fe3107.88 (9)
O8—C8—Fe3178.7 (2)C4—Fe2—Fe3102.73 (7)
N2—C9—N1107.11 (19)S2—Fe2—Fe355.470 (15)
N2—C9—Fe1125.81 (16)S1—Fe2—Fe355.298 (15)
N1—C9—Fe1127.06 (15)C7—Fe3—C893.34 (11)
N2—C10—C11101.87 (19)C7—Fe3—C697.10 (11)
N2—C10—H10A111.4C8—Fe3—C697.96 (11)
C11—C10—H10A111.4C7—Fe3—S1157.49 (8)
N2—C10—H10B111.4C8—Fe3—S190.38 (8)
C11—C10—H10B111.4C6—Fe3—S1104.36 (7)
H10A—C10—H10B109.3C7—Fe3—S287.25 (8)
N1—C11—C10101.51 (19)C8—Fe3—S2151.60 (8)
N1—C11—H11A111.5C6—Fe3—S2110.16 (8)
C10—C11—H11A111.5S1—Fe3—S279.13 (2)
N1—C11—H11B111.5C7—Fe3—Fe2102.74 (8)
C10—C11—H11B111.5C8—Fe3—Fe297.80 (8)
H11A—C11—H11B109.3C6—Fe3—Fe2153.80 (7)
C1—Fe1—C293.25 (11)S1—Fe3—Fe254.748 (16)
C1—Fe1—C993.83 (9)S2—Fe3—Fe254.655 (16)
C2—Fe1—C994.43 (9)C7—Fe3—Fe1129.23 (8)
C1—Fe1—S191.35 (8)C8—Fe3—Fe1136.70 (8)
C2—Fe1—S1166.56 (7)C6—Fe3—Fe172.29 (7)
C9—Fe1—S197.85 (6)S1—Fe3—Fe154.085 (15)
C1—Fe1—S2167.25 (8)S2—Fe3—Fe154.060 (15)
C2—Fe1—S293.01 (7)Fe2—Fe3—Fe181.885 (12)
C9—Fe1—S296.75 (6)C9—N1—C11114.0 (2)
S1—Fe1—S280.19 (2)C9—N1—H1N125 (2)
C1—Fe1—Fe3112.25 (7)C11—N1—H1N120.6 (19)
C2—Fe1—Fe3111.75 (7)C9—N2—C10114.58 (19)
C9—Fe1—Fe3140.93 (6)C9—N2—H2N119 (2)
S1—Fe1—Fe354.894 (15)C10—N2—H2N125 (2)
S2—Fe1—Fe355.044 (15)Fe1—S1—Fe298.84 (2)
C3—Fe2—C598.20 (12)Fe1—S1—Fe371.021 (18)
C3—Fe2—C4100.26 (11)Fe2—S1—Fe369.954 (17)
C5—Fe2—C492.60 (12)Fe1—S2—Fe298.85 (2)
C3—Fe2—S2100.61 (8)Fe1—S2—Fe370.896 (17)
C5—Fe2—S291.48 (9)Fe2—S2—Fe369.875 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O6i0.972.593.391 (3)141
N1—H1N···S2ii0.85 (3)2.87 (3)3.707 (2)170 (2)
N2—H2N···S1iii0.84 (3)2.64 (3)3.442 (2)162 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2.
(2) Octacarbonyl(1-methylimidazo[1,5-a]pyridin-3-yl-κC3)di-µ3-sulfido-triiron(II)(2 FeFe) top
Crystal data top
[Fe3(C8H8N2)S2(CO)8]Z = 2
Mr = 587.93F(000) = 584
Triclinic, P1Dx = 1.844 Mg m3
a = 8.9723 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1249 (11) ÅCell parameters from 4073 reflections
c = 12.0611 (16) Åθ = 1.9–27.5°
α = 108.477 (5)°µ = 2.27 mm1
β = 107.608 (2)°T = 296 K
γ = 96.455 (8)°Block, red-purple
V = 1059.1 (2) Å30.17 × 0.13 × 0.13 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4784 independent reflections
Radiation source: fine-focus sealed tube4073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1111
Tmin = 0.697, Tmax = 0.741k = 1414
9290 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.0391P]
where P = (Fo2 + 2Fc2)/3
4784 reflections(Δ/σ)max = 0.001
285 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Fe3(C8H8N2)S2(CO)8]γ = 96.455 (8)°
Mr = 587.93V = 1059.1 (2) Å3
Triclinic, P1Z = 2
a = 8.9723 (12) ÅMo Kα radiation
b = 11.1249 (11) ŵ = 2.27 mm1
c = 12.0611 (16) ÅT = 296 K
α = 108.477 (5)°0.17 × 0.13 × 0.13 mm
β = 107.608 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4784 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
4073 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.741Rint = 0.032
9290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.32 e Å3
4784 reflectionsΔρmin = 0.29 e Å3
285 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3574 (3)0.6550 (2)0.6344 (2)0.0530 (5)
C20.4721 (3)0.8911 (2)0.7945 (2)0.0529 (5)
C30.9653 (3)0.7421 (2)0.6719 (3)0.0577 (6)
C40.9925 (3)0.5436 (2)0.7588 (2)0.0501 (5)
C51.1142 (3)0.7818 (2)0.9197 (2)0.0537 (6)
C60.5227 (3)0.6540 (2)0.9021 (2)0.0558 (6)
C70.8131 (3)0.7938 (3)1.0615 (2)0.0631 (6)
C80.7822 (3)0.5441 (2)0.9280 (2)0.0562 (6)
C90.5835 (2)0.80764 (19)0.5909 (2)0.0428 (4)
C100.6107 (4)0.7103 (3)0.2754 (3)0.0819 (9)
H10A0.68410.65390.27830.123*
H10B0.64040.77120.24010.123*
H10C0.50360.65940.22450.123*
C110.6171 (3)0.7820 (2)0.4038 (2)0.0510 (5)
C120.6796 (3)0.9107 (2)0.4800 (2)0.0471 (5)
C130.7593 (3)1.0211 (2)0.4681 (2)0.0596 (6)
H130.77971.01310.39520.072*
C140.8049 (3)1.1370 (2)0.5628 (3)0.0656 (7)
H140.85641.20980.55530.079*
C150.7747 (3)1.1491 (2)0.6750 (3)0.0636 (7)
H150.80461.23050.73900.076*
C160.7043 (3)1.0460 (2)0.6904 (2)0.0530 (5)
H160.68811.05540.76510.064*
Fe10.55420 (3)0.75865 (3)0.72526 (3)0.04104 (9)
Fe20.92683 (3)0.69495 (3)0.79106 (3)0.03959 (9)
Fe30.72209 (4)0.68388 (3)0.90112 (3)0.04242 (9)
H1N0.512 (3)0.644 (3)0.443 (2)0.063 (7)*
N10.5624 (2)0.72524 (17)0.47447 (18)0.0475 (4)
N20.6555 (2)0.92438 (16)0.59346 (16)0.0435 (4)
O10.2344 (2)0.5881 (2)0.5776 (2)0.0844 (6)
O20.4161 (3)0.9707 (2)0.83834 (19)0.0780 (6)
O30.9860 (3)0.7744 (3)0.5966 (2)0.0995 (8)
O41.0315 (2)0.44821 (17)0.7375 (2)0.0792 (6)
O51.2307 (2)0.8352 (2)1.0017 (2)0.0851 (6)
O60.4007 (2)0.6263 (2)0.9108 (2)0.0825 (6)
O70.8690 (3)0.8659 (3)1.16251 (19)0.0966 (7)
O80.8154 (3)0.4526 (2)0.9421 (2)0.0831 (6)
S10.66779 (6)0.58725 (5)0.69227 (5)0.04116 (12)
S20.80693 (6)0.85570 (5)0.85743 (5)0.04302 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0439 (13)0.0651 (14)0.0575 (14)0.0143 (11)0.0251 (11)0.0254 (12)
C20.0481 (13)0.0652 (14)0.0545 (14)0.0210 (11)0.0234 (11)0.0263 (11)
C30.0543 (14)0.0683 (14)0.0746 (17)0.0245 (11)0.0409 (13)0.0371 (13)
C40.0436 (12)0.0458 (11)0.0604 (14)0.0096 (9)0.0219 (11)0.0161 (10)
C50.0474 (13)0.0471 (11)0.0642 (15)0.0168 (10)0.0247 (12)0.0112 (11)
C60.0510 (14)0.0683 (14)0.0610 (15)0.0207 (11)0.0311 (12)0.0279 (12)
C70.0540 (15)0.0873 (18)0.0514 (15)0.0159 (13)0.0237 (12)0.0260 (13)
C80.0546 (14)0.0707 (15)0.0619 (15)0.0217 (12)0.0298 (12)0.0376 (13)
C90.0419 (11)0.0435 (10)0.0490 (12)0.0133 (8)0.0193 (9)0.0208 (9)
C100.113 (3)0.0728 (17)0.0566 (16)0.0012 (16)0.0441 (17)0.0141 (13)
C110.0573 (14)0.0519 (12)0.0468 (12)0.0086 (10)0.0217 (11)0.0206 (10)
C120.0469 (12)0.0502 (11)0.0499 (12)0.0114 (9)0.0188 (10)0.0243 (10)
C130.0632 (15)0.0601 (14)0.0643 (16)0.0082 (11)0.0243 (12)0.0349 (13)
C140.0743 (17)0.0523 (13)0.0728 (17)0.0034 (12)0.0250 (14)0.0315 (13)
C150.0726 (17)0.0421 (11)0.0706 (17)0.0085 (11)0.0231 (14)0.0178 (11)
C160.0587 (14)0.0457 (11)0.0523 (13)0.0137 (10)0.0196 (11)0.0152 (10)
Fe10.03886 (17)0.04684 (16)0.04599 (18)0.01386 (12)0.02065 (14)0.02175 (13)
Fe20.03811 (17)0.03823 (15)0.04785 (18)0.01034 (12)0.02211 (13)0.01607 (13)
Fe30.04096 (18)0.05190 (17)0.04507 (18)0.01455 (13)0.02267 (14)0.02356 (14)
N10.0553 (11)0.0398 (9)0.0481 (10)0.0056 (8)0.0216 (9)0.0162 (8)
N20.0449 (10)0.0437 (9)0.0463 (10)0.0118 (7)0.0182 (8)0.0201 (8)
O10.0480 (11)0.0979 (15)0.0896 (15)0.0003 (10)0.0192 (11)0.0228 (12)
O20.0806 (13)0.0825 (13)0.0837 (14)0.0466 (11)0.0442 (12)0.0239 (11)
O30.1075 (18)0.140 (2)0.1192 (19)0.0520 (16)0.0793 (16)0.0906 (18)
O40.0713 (13)0.0482 (10)0.1129 (17)0.0243 (9)0.0344 (12)0.0185 (10)
O50.0562 (12)0.0757 (12)0.0828 (14)0.0138 (10)0.0085 (11)0.0070 (11)
O60.0568 (11)0.1098 (16)0.1024 (16)0.0223 (10)0.0504 (11)0.0453 (13)
O70.0882 (16)0.1288 (19)0.0493 (12)0.0114 (14)0.0202 (11)0.0117 (12)
O80.0934 (15)0.0851 (13)0.1061 (17)0.0414 (11)0.0459 (13)0.0644 (13)
S10.0416 (3)0.0386 (2)0.0458 (3)0.0071 (2)0.0193 (2)0.0163 (2)
S20.0436 (3)0.0380 (2)0.0498 (3)0.0124 (2)0.0202 (2)0.0149 (2)
Geometric parameters (Å, º) top
C1—O11.129 (3)C10—H10C0.9600
C1—Fe11.795 (2)C11—C121.372 (3)
C2—O21.132 (3)C11—N11.376 (3)
C2—Fe11.802 (2)C12—N21.414 (3)
C3—O31.133 (3)C12—C131.420 (3)
C3—Fe21.788 (2)C13—C141.342 (4)
C4—O41.132 (3)C13—H130.9300
C4—Fe21.811 (2)C14—C151.428 (4)
C5—O51.134 (3)C14—H140.9300
C5—Fe21.809 (3)C15—C161.339 (3)
C6—O61.149 (3)C15—H150.9300
C6—Fe12.802 (2)C16—N21.394 (3)
C6—Fe31.787 (2)C16—H160.9300
C7—O71.140 (3)Fe1—S22.2406 (7)
C7—Fe31.796 (3)Fe1—S12.2437 (6)
C8—O81.141 (3)Fe1—Fe23.4050 (6)
C8—Fe31.793 (2)Fe1—Fe32.6319 (5)
C9—N11.354 (3)Fe2—S22.2456 (6)
C9—N21.371 (2)Fe2—S12.2473 (7)
C9—Fe11.944 (2)Fe2—Fe32.5846 (5)
C10—C111.480 (3)Fe3—S22.2505 (6)
C10—H10A0.9600Fe3—S12.2719 (7)
C10—H10B0.9600N1—H1N0.86 (3)
O1—C1—Fe1178.9 (2)S1—Fe1—Fe354.850 (17)
O2—C2—Fe1177.2 (2)C3—Fe2—C599.42 (12)
O3—C3—Fe2177.7 (2)C3—Fe2—C498.80 (11)
O4—C4—Fe2179.1 (2)C5—Fe2—C492.05 (10)
O5—C5—Fe2178.8 (3)C3—Fe2—S296.58 (8)
O6—C6—Fe3172.1 (2)C5—Fe2—S291.21 (7)
O7—C7—Fe3178.3 (3)C4—Fe2—S2163.53 (7)
O8—C8—Fe3177.6 (2)C3—Fe2—S1101.03 (9)
N1—C9—N2102.41 (17)C5—Fe2—S1158.50 (8)
N1—C9—Fe1126.24 (14)C4—Fe2—S191.32 (7)
N2—C9—Fe1130.37 (16)S2—Fe2—S179.95 (2)
C11—C10—H10A109.5C3—Fe2—Fe3143.35 (8)
C11—C10—H10B109.5C5—Fe2—Fe3103.38 (8)
H10A—C10—H10B109.5C4—Fe2—Fe3108.57 (7)
C11—C10—H10C109.5S2—Fe2—Fe355.001 (17)
H10A—C10—H10C109.5S1—Fe2—Fe355.565 (18)
H10B—C10—H10C109.5C6—Fe3—C899.40 (11)
C12—C11—N1105.01 (19)C6—Fe3—C795.81 (12)
C12—C11—C10130.7 (2)C8—Fe3—C795.94 (12)
N1—C11—C10124.2 (2)C6—Fe3—S2118.87 (8)
C11—C12—N2106.24 (17)C8—Fe3—S2141.52 (8)
C11—C12—C13134.6 (2)C7—Fe3—S284.66 (9)
N2—C12—C13119.2 (2)C6—Fe3—S199.32 (8)
C14—C13—C12119.4 (2)C8—Fe3—S191.40 (8)
C14—C13—H13120.3C7—Fe3—S1161.87 (9)
C12—C13—H13120.3S2—Fe3—S179.33 (2)
C13—C14—C15120.3 (2)C6—Fe3—Fe2153.00 (8)
C13—C14—H14119.9C8—Fe3—Fe289.34 (7)
C15—C14—H14119.9C7—Fe3—Fe2108.72 (8)
C16—C15—C14121.6 (2)S2—Fe3—Fe254.822 (16)
C16—C15—H15119.2S1—Fe3—Fe254.672 (17)
C14—C15—H15119.2C6—Fe3—Fe176.04 (8)
C15—C16—N2119.3 (2)C8—Fe3—Fe1142.49 (9)
C15—C16—H16120.3C7—Fe3—Fe1121.48 (9)
N2—C16—H16120.3S2—Fe3—Fe153.950 (18)
C1—Fe1—C291.72 (11)S1—Fe3—Fe153.854 (17)
C1—Fe1—C995.87 (10)Fe2—Fe3—Fe181.492 (15)
C2—Fe1—C999.14 (10)C9—N1—C11114.84 (18)
C1—Fe1—S2167.63 (8)C9—N1—H1N123.7 (17)
C2—Fe1—S294.02 (8)C11—N1—H1N121.3 (17)
C9—Fe1—S294.02 (7)C9—N2—C16128.35 (19)
C1—Fe1—S191.33 (8)C9—N2—C12111.49 (17)
C2—Fe1—S1163.43 (8)C16—N2—C12120.16 (18)
C9—Fe1—S196.75 (6)Fe1—S1—Fe298.60 (2)
S2—Fe1—S180.14 (2)Fe1—S1—Fe371.297 (19)
C1—Fe1—Fe3113.41 (8)Fe2—S1—Fe369.763 (19)
C2—Fe1—Fe3109.23 (8)Fe1—S2—Fe298.75 (2)
C9—Fe1—Fe3137.75 (6)Fe1—S2—Fe371.75 (2)
S2—Fe1—Fe354.301 (16)Fe2—S2—Fe370.177 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.86 (3)2.59 (3)3.4404 (19)168 (2)
C16—H16···O5ii0.932.513.359 (3)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+2.

Experimental details

(1)(2)
Crystal data
Chemical formula[Fe3(C3H6N2)S2(CO)8][Fe3(C8H8N2)S2(CO)8]
Mr525.87587.93
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)296296
a, b, c (Å)8.7679 (3), 10.0811 (3), 11.8549 (15)8.9723 (12), 11.1249 (11), 12.0611 (16)
α, β, γ (°)78.4565 (14), 72.7596 (13), 67.3315 (14)108.477 (5), 107.608 (2), 96.455 (8)
V3)919.07 (12)1059.1 (2)
Z22
Radiation typeMo KαMo Kα
µ (mm1)2.602.27
Crystal size (mm)0.18 × 0.13 × 0.130.17 × 0.13 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detectorBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.651, 0.7080.697, 0.741
No. of measured, independent and
observed [I > 2σ(I)] reflections
7989, 4141, 3710 9290, 4784, 4073
Rint0.0320.032
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.080, 1.07 0.028, 0.081, 1.06
No. of reflections41414784
No. of parameters244285
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.300.32, 0.29

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SIR2004 (Burla et al., 2005), SHELXTL (Sheldrick, 2008b), PLATON (Spek, 2009) and WinGX (Farrugia, 2012), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) for (1) top
C6—Fe12.686 (3)Fe1—Fe32.6176 (4)
C9—N21.322 (3)Fe2—S22.2479 (6)
C9—N11.323 (3)Fe2—S12.2494 (6)
C9—Fe11.925 (2)Fe2—Fe32.5876 (4)
Fe1—S12.2418 (6)Fe3—S12.2645 (5)
Fe1—S22.2428 (5)Fe3—S22.2704 (6)
Fe1—Fe23.4111 (6)
O6—C6—Fe3171.1 (2)N1—C9—Fe1127.06 (15)
O7—C7—Fe3179.5 (3)Fe2—Fe3—Fe181.885 (12)
N2—C9—N1107.11 (19)Fe1—S1—Fe298.84 (2)
N2—C9—Fe1125.81 (16)Fe1—S2—Fe298.85 (2)
Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O6i0.972.593.391 (3)140.5
N1—H1N···S2ii0.85 (3)2.87 (3)3.707 (2)170 (2)
N2—H2N···S1iii0.84 (3)2.64 (3)3.442 (2)162 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2.
Selected geometric parameters (Å, º) for (2) top
C6—Fe12.802 (2)Fe1—Fe32.6319 (5)
C9—N11.354 (3)Fe2—S22.2456 (6)
C9—N21.371 (2)Fe2—S12.2473 (7)
C9—Fe11.944 (2)Fe2—Fe32.5846 (5)
Fe1—S22.2406 (7)Fe3—S22.2505 (6)
Fe1—S12.2437 (6)Fe3—S12.2719 (7)
Fe1—Fe23.4050 (6)
O6—C6—Fe3172.1 (2)N2—C9—Fe1130.37 (16)
O7—C7—Fe3178.3 (3)Fe2—Fe3—Fe181.492 (15)
N1—C9—N2102.41 (17)Fe1—S1—Fe298.60 (2)
N1—C9—Fe1126.24 (14)Fe1—S2—Fe298.75 (2)
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.86 (3)2.59 (3)3.4404 (19)168 (2)
C16—H16···O5ii0.932.513.359 (3)151.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds