Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614014260/wq3063sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614014260/wq30631sup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614014260/wq30632sup3.hkl |
CCDC references: 1008903; 1008904
During the past decade, the design of new coordination complexes has attracted ever-increasing attention in the fields of coordination chemistry and crystal engineering, the main aim being to discover new crystalline materials with useful functionality (Férey et al., 2005; Tanaka et al., 2010; Kobayashi et al., 2010; Yoon et al., 2012; Chen et al., 2008). The type of coordination polymer obtained is sensitive to many factors, including the type of organic ligand, the metal ion, the solvent, the counter-anion, the pH range etc. (Long, 2010; Moulton & Zaworotko, 2001; Li & Du, 2011; Du et al., 2009). Among these factors, the choice of organic ligands as building blocks is often the key factor in the final structures of coordination polymers.
To date, much research effort has been devoted to the coordination chemistry of pyridyl-based and polycarboxylate ligands, for example 2,2'-bipyridyl, 4,4'-bipyridyl (bpy), benzene-1,4-dicarboxylic acid and benzene-1,3,5-tricarboxylic acid (Du et al., 2004; Daiguebonne et al., 2006; Biradha et al., 2006). Recently, the angular dipyridyl ligand 4-amino-3,5-bis(pyridin-3-yl)-1,2,4-triazole (3-bpt), which can adopt three different conformations depending on the conditions (see Scheme 1), has been chosen to assemble with metal salts by ourselves and many other researchers (Du et al., 2008; Jiang et al., 2012; Yang et al., 2013). However, thiocyanuric acid (ttcH3), which can exist in either the thiol or thione tautomeric forms (see Scheme 2), has not been studied extensively in the field of metal–organic complexes compared with the above ligands. In fact, complexes involving ttcH3 have potential applications in industry, biology, pharmacology and analytical chemistry, because anions of ttcH3 have been used widely to remove heavy metals (Ag+, Hg2+, Cd2+, Pd2+ and Cu2+) from waste water (Matlock et al., 2001; Henke & Atwood, 1998; Henke et al., 2000). The ttcH3 molecule has three S- and three N-donor atoms available and can behave as either a chelating or a bridging ligand (Mahon et al., 2003; Chan et al., 1996; Hunks et al., 1999). Moreover, the multiplicity of S and N atoms can provide potential sites for hydrogen-bonding interactions, which may further extend the dimensions of the crystalline architectures. Considering all the factors stated above, we present the results of the synthesis and characterization of two mixed-ligand complexes involving ttcH3 with two kinds of dipyridyl-type ligand.
In this work, we have used 4-amino-3,5-bis(pyridin-3-yl)-1,2,4-triazole (3-bpt) and 4,4'-bipyridine (bpy), respectively, in combination with ttcH3 to prepare two new ZnII coordination complexes, namely, [Zn(ttcH2)2(3-bpt)2]·2H2O, (1), and {[Zn2(ttcH2)4(bpy)3]·bpy}n, (2) (Scheme 3). Complex (1) is mononuclear, while (2) is a one-dimensional coordination polymer. These complexes have also been characterised using FT–IR spectroscopy and elemental analyses.
A methanol (5 ml) solution of 4-amino-3,5-bis(pyridin-3-yl)-1,2,4-triazole (3-bpt) (12 mg, 0.05 mmol) was added to an aqueous solution (10 ml) of Zn(NO3)2·6H2O (15 mg, 0.05 mmol) with continuous stirring for 10 min. A solution of trithiocyanuric acid (ttcH3) (9 mg, 0.05 mmol) in methanol (5 ml) was then added dropwise. The mixture was stirred at room temperature for 30 min, filtered, and the resulting solution left to stand at room temperature. Colourless block-shaped crystals of (1) were obtained by slow evaporation of the solvents after ca 2 d (yield 53%, 12.5 mg, based on 3-bpt). Analysis, calculated for C30H28N18O2S6Zn, (1): C 38.73, H 3.03, N 27.10%; found: C 38.69, H 3.01, N 27.08%. Spectroscopic analysis: IR (KBr, ν, cm-1): 3393 (b), 3124 (b), 1569 (s), 1498 (s), 1462 (m), 1412 (vs), 1360 (m), 1284 (w), 1244 (vs), 1183 (m), 1158 (vs), 990 (w), 883 (w), 817 (w), 700 (w), 634 (w), 507 (w), 457 (m).
The synthesis of (2) was similar to (1) except that 3-bpt was replaced by bpy (7.8 mg, 0.05 mmol), affording colourless block crystals of (2) in ca 40% yield (7.3 mg, based on bpy). Analysis, calculated for C26H20N10S6Zn, (2): C 42.76, H 2.76, N 19.18%; found: C 42.72, H 2.73, N 19.17%. Spectroscopic analysis: IR (KBr, ν, cm-1): 3052 (b), 2907 (b), 1898 (b), 1600 (w), 1544 (vs), 1449 (m), 1365 (vs), 1255 (m), 1213 (s), 1135 (vs), 1057 (w), 999 (w), 806 (vs), 670 (w), 612 (s), 456 (vs).
Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were initially located in a difference Fourier map and then refined using a riding model, with C—H = 0.93, N—H = 0.89 and O—H = 0.85 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N,O).
Single-crystal X-ray diffraction reveals that complex (1) adopts a mononuclear structure. The asymmetric coordination unit of (1) consists of one half-occupied ZnII cation, one 3-bpt ligand, one ttcH2- anion existing in the thione tautomeric form and one solvent water molecule. As can be seen in Fig. 1, the central ZnII is coordinated to four N atoms from two pyridyl rings of 3-bpt ligands and two ttcH2- anions, and two S-donor atoms from two monovalent ttcH2- anions, exhibiting a distorted octahedral geometry. The triazine ring of ttcH2- forms strong bonds with the ZnII cation, as indicated by the bond distances [Zn—N1 = 2.1476 (15) Å and Zn—S1 = 2.5925 (6) Å; Table 2]. The 3-bpt ligand, showing an uncommon cisiod-II conformation (see Scheme 1), adopts a monodentate coordination mode, while the ttcH2- ligand adopts a bidentate–chelating coordination mode. For complex (1), adjacent mononuclear units are extended into a one-dimensional tubular array by N3—H3'···N9v hydrogen bonds [symmetry code: (v) x + 1, y, z - 1] between the uncoordinated pyridyl ring of 3-bpt and the triazine ring of ttcH2-. In addition, adjacent one-dimensional arrays are interconnected via N8—H8''···S3vi [symmetry code: (vi) -x + 2, -y + 2, -z + 1] hydrogen bonds between the amino group of 3-bpt and uncoordinated S atoms of ttcH2-, resulting in a two-dimensional layered network (Fig. 2). The parallel two-dimensional layers are further extended via N2—H2'···S2iv hydrogen bonds [symmetry code: (iv) -x + 1, -y + 2, -z + 1] between triazine and thione groups of ttcH2-, to give a three-dimensional supramolecular network (Fig. 3). The structure of (1) is further stabilized by hydrogen-bonding interactions involving the solvent water molecules and the amino and triazole groups of 3-bpt via N8—H8'···O1, O1—H1A···N6 and O1—H1B···N5 hydrogen bonds (see Table 3).
Compound (2) crystallizes in the monoclinic C2/c space group, and is made up of a neutral ZnII coordination unit and one uncoordinated bpy molecule. As can be seen in Fig. 4, the coordination polyhedron around the ZnII cation has octahedral geometry, coordinated by four N atoms from the triazine and pyridyl rings of bpy, and two S atoms of ttcH2- existing in the thione tautomeric form. The ttcH2- ligands adopt bidentate–chelating coordination modes. The Zn—N bond lengths are in the normal range [2.141 (2)–2.187 (3) Å] and the Zn—S bond length is 2.600 (1) Å (Table 4). Adjacent ZnII centres are extended to afford a one-dimensional polymeric chain via the bridging bpy ligand, with a Zn···Zn distance of 11.39 (1) Å. Adjacent one-dimensional chains are interconnected via N3—H3···S2ii hydrogen bonds [symmetry code: (ii) -x + 1/2, -y - 1/2, -z + 1] between the thione and triazine groups of ttcH2-, producing a two-dimensional layered hydrogen-bonded network with (4,4) topology (Fig. 5). These two-dimensional sheets are further linked by the connection of intercalated bpy in the crystalline lattice via N2—H2···N6i hydrogen bonds [symmetry code: (i) x - 1/2, -y + 1/2, z - 1/2] between the pyridyl ring of bpy and the triazine ring of ttcH2- (Fig. 6 and Table 5), resulting in an extended three-dimensional net.
From the above observations, it can be seen that self-assembly of ttcH3 and 3-bpt/bpy with ZnII under similar reaction conditions results in two kinds of coordination motif, viz. mononuclear for (1) and one-dimensional for (2). The structural difference can mainly be attributed to the introduction of different N-donor auxiliary ligands which show diverse coordination modes. In mononuclear structure (1), the 3-bpt ligand serves as the monodentate terminal around the metal centre, while the co-ligand bpy in (2) adopts a bidentate–bridging coordination mode. The central metal ions adopt the same octahedral geometry and the ttcH2- anions show the same bidentate–chelating coordination pattern in complexes (1) and (2). All the Zn—-S [2.5925 (6) and 2.600 (1) Å] and Zn—N [2.141 (2)–2.187 (3) Å] bond lengths are in normal ranges [Standard reference?]. In addition, both (1) and (2) are extended into three-dimensional supramolecular networks via multiple hydrogen-bond interactions. Notably, the presence of bpy in the crystalline lattice plays an important role in directing the resultant three-dimensional supramolecular net for (2).
In summary, two ZnII coordination complexes have been assembled based on ttcH3 and two dipyridyl-type building blocks, 3-bpt and bpy, affording two types of coordination structure, mononuclear and one-dimensional, respectively. This structural variation may arise from the different coordination modes of the N-donor auxiliary ligand (monodentate for 3-bpt and bidentate-bridging for bpy). Notably, ttcH2- adopts the same bidentate chelating coordination mode [in each complex?], existing in the thione tautomeric form. The results prove that the choice of different organic co-ligands plays an important role in preparing new crystalline materials. We are currently extending this research to assemble complexes using ttcH3 and different building blocks to enrich such inorganic–organic hybrid materials.
Data collection: CrystalClear (Rigaku, 2009) for (1); SMART (Bruker, 2002) for (2). Cell refinement: CrystalClear (Rigaku, 2009) for (1); SMART (Bruker, 2002) for (2). Data reduction: CrystalClear (Rigaku, 2009) for (1); SAINT (Bruker, 2002) for (2). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
[Zn(C3H2N3S3)2(C12H10N6)2]·2H2O | Z = 1 |
Mr = 930.43 | F(000) = 476 |
Triclinic, P1 | Dx = 1.581 Mg m−3 |
a = 7.7509 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.8253 (1) Å | Cell parameters from 2767 reflections |
c = 12.5824 (11) Å | θ = 3.0–27.5° |
α = 77.543 (16)° | µ = 1.01 mm−1 |
β = 81.089 (18)° | T = 294 K |
γ = 72.256 (16)° | Platelet, colourless |
V = 977.32 (10) Å3 | 0.25 × 0.09 × 0.03 mm |
Rigaku Mercury 375R diffractometer | 4460 independent reflections |
Radiation source: fine-focus sealed tube | 3822 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.078 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
profile data from ω scans | h = −10→10 |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | k = −14→14 |
Tmin = 0.787, Tmax = 0.970 | l = −16→16 |
10320 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0269P)2 + 0.222P] where P = (Fo2 + 2Fc2)/3 |
4460 reflections | (Δ/σ)max = 0.001 |
283 parameters | Δρmax = 0.71 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
[Zn(C3H2N3S3)2(C12H10N6)2]·2H2O | γ = 72.256 (16)° |
Mr = 930.43 | V = 977.32 (10) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.7509 (4) Å | Mo Kα radiation |
b = 10.8253 (1) Å | µ = 1.01 mm−1 |
c = 12.5824 (11) Å | T = 294 K |
α = 77.543 (16)° | 0.25 × 0.09 × 0.03 mm |
β = 81.089 (18)° |
Rigaku Mercury 375R diffractometer | 4460 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 3822 reflections with I > 2σ(I) |
Tmin = 0.787, Tmax = 0.970 | Rint = 0.078 |
10320 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.71 e Å−3 |
4460 reflections | Δρmin = −0.58 e Å−3 |
283 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 1.0000 | 0.5000 | 0.5000 | 0.02827 (10) | |
N1 | 0.90763 (19) | 0.71110 (14) | 0.45831 (12) | 0.0253 (3) | |
N2 | 0.7712 (2) | 0.93764 (16) | 0.43796 (13) | 0.0290 (3) | |
H2' | 0.682 (3) | 1.005 (2) | 0.4494 (16) | 0.026 (5)* | |
N3 | 1.0662 (2) | 0.86390 (16) | 0.36717 (13) | 0.0296 (3) | |
H3' | 1.159 (3) | 0.884 (2) | 0.3354 (19) | 0.043 (7)* | |
N4 | 1.0848 (2) | 0.52174 (16) | 0.64929 (12) | 0.0288 (3) | |
N5 | 0.7123 (2) | 0.62519 (18) | 0.92162 (14) | 0.0369 (4) | |
N6 | 0.6065 (2) | 0.69480 (19) | 0.99985 (14) | 0.0374 (4) | |
N7 | 0.8535 (2) | 0.75829 (16) | 0.95354 (12) | 0.0278 (3) | |
N8 | 0.9760 (3) | 0.8347 (2) | 0.94497 (18) | 0.0391 (4) | |
H8' | 1.073 (4) | 0.776 (3) | 0.982 (2) | 0.057 (8)* | |
H8'' | 0.994 (3) | 0.859 (3) | 0.883 (2) | 0.044 (7)* | |
N9 | 0.3782 (2) | 0.92061 (19) | 1.24065 (14) | 0.0386 (4) | |
O1 | 0.2645 (2) | 0.6503 (2) | 0.06706 (16) | 0.0519 (4) | |
H1A | 0.368 (5) | 0.659 (4) | 0.049 (3) | 0.089 (11)* | |
H1B | 0.276 (5) | 0.564 (4) | 0.085 (3) | 0.106 (14)* | |
S1 | 1.24443 (6) | 0.60758 (5) | 0.38892 (4) | 0.03241 (12) | |
S2 | 0.56113 (6) | 0.78511 (5) | 0.53560 (4) | 0.03580 (13) | |
S3 | 0.93140 (7) | 1.12356 (5) | 0.34464 (4) | 0.03862 (13) | |
C1 | 1.0623 (2) | 0.73607 (18) | 0.40536 (14) | 0.0261 (4) | |
C2 | 0.7575 (2) | 0.81119 (18) | 0.47446 (14) | 0.0254 (3) | |
C3 | 0.9230 (2) | 0.96850 (18) | 0.38512 (14) | 0.0275 (4) | |
C4 | 1.2610 (3) | 0.4899 (2) | 0.66538 (16) | 0.0359 (4) | |
H4 | 1.3476 | 0.4483 | 0.6148 | 0.043* | |
C5 | 1.3190 (3) | 0.5164 (2) | 0.75407 (17) | 0.0416 (5) | |
H5 | 1.4426 | 0.4942 | 0.7622 | 0.050* | |
C6 | 1.1914 (3) | 0.5765 (2) | 0.83083 (15) | 0.0366 (4) | |
H6 | 1.2277 | 0.5955 | 0.8911 | 0.044* | |
C7 | 1.0085 (2) | 0.60788 (18) | 0.81607 (14) | 0.0274 (4) | |
C8 | 0.9610 (2) | 0.57932 (18) | 0.72355 (14) | 0.0279 (4) | |
H8 | 0.8384 | 0.6011 | 0.7130 | 0.033* | |
C9 | 0.8606 (2) | 0.66347 (19) | 0.89558 (14) | 0.0290 (4) | |
C10 | 0.6921 (2) | 0.77514 (19) | 1.01836 (14) | 0.0284 (4) | |
C11 | 0.6178 (2) | 0.8636 (2) | 1.09825 (14) | 0.0286 (4) | |
C12 | 0.6829 (3) | 0.9658 (2) | 1.10905 (18) | 0.0391 (5) | |
H12 | 0.7856 | 0.9811 | 1.0657 | 0.047* | |
C13 | 0.5929 (3) | 1.0449 (2) | 1.18517 (19) | 0.0443 (5) | |
H13 | 0.6347 | 1.1139 | 1.1936 | 0.053* | |
C14 | 0.4411 (3) | 1.0204 (2) | 1.24816 (17) | 0.0397 (5) | |
H14 | 0.3798 | 1.0752 | 1.2978 | 0.048* | |
C15 | 0.4651 (3) | 0.8448 (2) | 1.16783 (16) | 0.0368 (5) | |
H15 | 0.4220 | 0.7751 | 1.1628 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.03719 (18) | 0.02164 (16) | 0.02543 (15) | −0.00764 (13) | 0.00109 (11) | −0.00688 (12) |
N1 | 0.0232 (7) | 0.0197 (7) | 0.0294 (7) | −0.0025 (6) | 0.0049 (6) | −0.0071 (6) |
N2 | 0.0245 (7) | 0.0199 (7) | 0.0366 (8) | −0.0012 (6) | 0.0037 (6) | −0.0044 (7) |
N3 | 0.0270 (8) | 0.0231 (8) | 0.0343 (8) | −0.0068 (7) | 0.0086 (6) | −0.0047 (7) |
N4 | 0.0308 (8) | 0.0269 (8) | 0.0264 (7) | −0.0037 (7) | 0.0023 (6) | −0.0097 (6) |
N5 | 0.0411 (9) | 0.0391 (10) | 0.0353 (8) | −0.0176 (8) | 0.0126 (7) | −0.0192 (8) |
N6 | 0.0387 (9) | 0.0441 (10) | 0.0361 (8) | −0.0205 (8) | 0.0133 (7) | −0.0207 (8) |
N7 | 0.0280 (8) | 0.0297 (8) | 0.0278 (7) | −0.0110 (7) | 0.0062 (6) | −0.0117 (6) |
N8 | 0.0360 (10) | 0.0451 (11) | 0.0429 (10) | −0.0214 (9) | 0.0130 (8) | −0.0198 (9) |
N9 | 0.0382 (9) | 0.0417 (10) | 0.0367 (9) | −0.0128 (8) | 0.0128 (7) | −0.0181 (8) |
O1 | 0.0420 (9) | 0.0588 (12) | 0.0632 (11) | −0.0231 (9) | −0.0007 (8) | −0.0187 (10) |
S1 | 0.0244 (2) | 0.0265 (2) | 0.0402 (3) | −0.00143 (19) | 0.00929 (18) | −0.0102 (2) |
S2 | 0.0242 (2) | 0.0254 (2) | 0.0525 (3) | −0.00490 (19) | 0.01038 (19) | −0.0090 (2) |
S3 | 0.0448 (3) | 0.0212 (2) | 0.0451 (3) | −0.0098 (2) | 0.0075 (2) | −0.0032 (2) |
C1 | 0.0265 (8) | 0.0227 (9) | 0.0261 (8) | −0.0044 (7) | 0.0038 (6) | −0.0065 (7) |
C2 | 0.0251 (8) | 0.0218 (8) | 0.0267 (8) | −0.0031 (7) | 0.0011 (6) | −0.0063 (7) |
C3 | 0.0299 (9) | 0.0234 (9) | 0.0268 (8) | −0.0060 (7) | 0.0026 (7) | −0.0050 (7) |
C4 | 0.0295 (9) | 0.0397 (11) | 0.0328 (9) | 0.0016 (8) | 0.0015 (7) | −0.0138 (9) |
C5 | 0.0277 (9) | 0.0530 (14) | 0.0377 (10) | 0.0042 (9) | −0.0033 (8) | −0.0170 (10) |
C6 | 0.0373 (10) | 0.0434 (12) | 0.0276 (9) | −0.0037 (9) | −0.0035 (8) | −0.0137 (9) |
C7 | 0.0319 (9) | 0.0239 (9) | 0.0242 (8) | −0.0064 (7) | 0.0060 (7) | −0.0078 (7) |
C8 | 0.0278 (9) | 0.0255 (9) | 0.0285 (8) | −0.0045 (7) | 0.0030 (7) | −0.0092 (7) |
C9 | 0.0329 (9) | 0.0288 (9) | 0.0245 (8) | −0.0085 (8) | 0.0044 (7) | −0.0081 (7) |
C10 | 0.0287 (9) | 0.0301 (9) | 0.0270 (8) | −0.0104 (8) | 0.0060 (7) | −0.0095 (8) |
C11 | 0.0272 (8) | 0.0309 (9) | 0.0269 (8) | −0.0063 (8) | 0.0035 (7) | −0.0107 (8) |
C12 | 0.0371 (11) | 0.0447 (12) | 0.0420 (11) | −0.0188 (10) | 0.0099 (8) | −0.0205 (10) |
C13 | 0.0457 (12) | 0.0473 (13) | 0.0497 (12) | −0.0209 (11) | 0.0060 (10) | −0.0253 (11) |
C14 | 0.0425 (11) | 0.0432 (12) | 0.0356 (10) | −0.0095 (10) | 0.0060 (8) | −0.0222 (9) |
C15 | 0.0383 (10) | 0.0369 (11) | 0.0383 (10) | −0.0160 (9) | 0.0124 (8) | −0.0171 (9) |
Zn1—N1i | 2.1476 (15) | N9—C14 | 1.339 (3) |
Zn1—N1 | 2.1476 (15) | O1—H1A | 0.83 (4) |
Zn1—N4 | 2.1640 (15) | O1—H1B | 0.89 (4) |
Zn1—N4i | 2.1640 (15) | S1—C1 | 1.6754 (18) |
Zn1—S1 | 2.5925 (6) | S2—C2 | 1.6712 (18) |
Zn1—S1i | 2.5925 (6) | S3—C3 | 1.6640 (19) |
N1—C2 | 1.350 (2) | C4—C5 | 1.379 (3) |
N1—C1 | 1.352 (2) | C4—H4 | 0.9300 |
N2—C3 | 1.356 (2) | C5—C6 | 1.385 (3) |
N2—C2 | 1.378 (2) | C5—H5 | 0.9300 |
N2—H2' | 0.86 (2) | C6—C7 | 1.386 (3) |
N3—C3 | 1.354 (2) | C6—H6 | 0.9300 |
N3—C1 | 1.371 (2) | C7—C8 | 1.394 (2) |
N3—H3' | 0.83 (2) | C7—C9 | 1.470 (2) |
N4—C8 | 1.339 (2) | C8—H8 | 0.9300 |
N4—C4 | 1.340 (2) | C10—C11 | 1.469 (2) |
N5—C9 | 1.310 (2) | C11—C12 | 1.387 (3) |
N5—N6 | 1.379 (2) | C11—C15 | 1.399 (2) |
N6—C10 | 1.319 (2) | C12—C13 | 1.385 (3) |
N7—C9 | 1.366 (2) | C12—H12 | 0.9300 |
N7—C10 | 1.368 (2) | C13—C14 | 1.377 (3) |
N7—N8 | 1.416 (2) | C13—H13 | 0.9300 |
N8—H8' | 0.94 (3) | C14—H14 | 0.9300 |
N8—H8'' | 0.77 (3) | C15—H15 | 0.9300 |
N9—C15 | 1.328 (2) | ||
N1i—Zn1—N1 | 180 | N1—C2—S2 | 122.13 (14) |
N1i—Zn1—N4 | 91.55 (6) | N2—C2—S2 | 120.54 (13) |
N1—Zn1—N4 | 88.45 (6) | N3—C3—N2 | 114.99 (16) |
N1i—Zn1—N4i | 88.45 (6) | N3—C3—S3 | 122.65 (14) |
N1—Zn1—N4i | 91.55 (6) | N2—C3—S3 | 122.36 (14) |
N4—Zn1—N4i | 180 | N4—C4—C5 | 122.53 (17) |
N1i—Zn1—S1 | 114.22 (4) | N4—C4—H4 | 118.7 |
N1—Zn1—S1 | 65.78 (4) | C5—C4—H4 | 118.7 |
N4—Zn1—S1 | 89.26 (4) | C4—C5—C6 | 119.33 (18) |
N4i—Zn1—S1 | 90.74 (4) | C4—C5—H5 | 120.3 |
N1i—Zn1—S1i | 65.78 (4) | C6—C5—H5 | 120.3 |
N1—Zn1—S1i | 114.22 (4) | C5—C6—C7 | 118.69 (18) |
N4—Zn1—S1i | 90.74 (4) | C5—C6—H6 | 120.7 |
N4i—Zn1—S1i | 89.26 (4) | C7—C6—H6 | 120.7 |
S1—Zn1—S1i | 180 | C6—C7—C8 | 118.52 (16) |
C2—N1—C1 | 120.42 (16) | C6—C7—C9 | 123.61 (16) |
C2—N1—Zn1 | 139.52 (12) | C8—C7—C9 | 117.79 (16) |
C1—N1—Zn1 | 99.97 (11) | N4—C8—C7 | 122.60 (17) |
C3—N2—C2 | 124.78 (16) | N4—C8—H8 | 118.7 |
C3—N2—H2' | 113.9 (13) | C7—C8—H8 | 118.7 |
C2—N2—H2' | 121.3 (13) | N5—C9—N7 | 109.66 (15) |
C3—N3—C1 | 122.63 (15) | N5—C9—C7 | 122.94 (17) |
C3—N3—H3' | 114.3 (18) | N7—C9—C7 | 127.39 (16) |
C1—N3—H3' | 122.9 (18) | N6—C10—N7 | 108.60 (16) |
C8—N4—C4 | 118.33 (16) | N6—C10—C11 | 122.64 (16) |
C8—N4—Zn1 | 119.88 (13) | N7—C10—C11 | 128.76 (16) |
C4—N4—Zn1 | 121.51 (12) | C12—C11—C15 | 117.22 (17) |
C9—N5—N6 | 107.42 (15) | C12—C11—C10 | 125.83 (17) |
C10—N6—N5 | 108.25 (15) | C15—C11—C10 | 116.93 (17) |
C9—N7—C10 | 106.06 (15) | C13—C12—C11 | 119.17 (18) |
C9—N7—N8 | 128.96 (15) | C13—C12—H12 | 120.4 |
C10—N7—N8 | 124.78 (15) | C11—C12—H12 | 120.4 |
N7—N8—H8' | 102.6 (16) | C14—C13—C12 | 119.27 (19) |
N7—N8—H8'' | 104.7 (19) | C14—C13—H13 | 120.4 |
H8'—N8—H8'' | 118 (3) | C12—C13—H13 | 120.4 |
C15—N9—C14 | 117.99 (17) | N9—C14—C13 | 122.54 (19) |
H1A—O1—H1B | 108 (4) | N9—C14—H14 | 118.7 |
C1—S1—Zn1 | 76.12 (6) | C13—C14—H14 | 118.7 |
N1—C1—N3 | 119.73 (16) | N9—C15—C11 | 123.78 (18) |
N1—C1—S1 | 118.08 (13) | N9—C15—H15 | 118.1 |
N3—C1—S1 | 122.19 (13) | C11—C15—H15 | 118.1 |
N1—C2—N2 | 117.33 (15) | ||
N4—Zn1—N1—C2 | −87.69 (19) | C8—N4—C4—C5 | −1.2 (3) |
N4i—Zn1—N1—C2 | 92.31 (19) | Zn1—N4—C4—C5 | 172.61 (17) |
S1—Zn1—N1—C2 | −177.6 (2) | N4—C4—C5—C6 | 0.9 (3) |
S1i—Zn1—N1—C2 | 2.4 (2) | C4—C5—C6—C7 | 0.2 (3) |
N4—Zn1—N1—C1 | 88.34 (11) | C5—C6—C7—C8 | −1.0 (3) |
N4i—Zn1—N1—C1 | −91.66 (11) | C5—C6—C7—C9 | 175.7 (2) |
S1—Zn1—N1—C1 | −1.54 (9) | C4—N4—C8—C7 | 0.4 (3) |
S1i—Zn1—N1—C1 | 178.46 (9) | Zn1—N4—C8—C7 | −173.55 (13) |
N1i—Zn1—N4—C8 | −117.30 (14) | C6—C7—C8—N4 | 0.7 (3) |
N1—Zn1—N4—C8 | 62.70 (14) | C9—C7—C8—N4 | −176.16 (17) |
S1—Zn1—N4—C8 | 128.50 (14) | N6—N5—C9—N7 | −1.0 (2) |
S1i—Zn1—N4—C8 | −51.50 (14) | N6—N5—C9—C7 | 178.41 (18) |
N1i—Zn1—N4—C4 | 68.96 (16) | C10—N7—C9—N5 | 0.8 (2) |
N1—Zn1—N4—C4 | −111.04 (16) | N8—N7—C9—N5 | −174.2 (2) |
S1—Zn1—N4—C4 | −45.25 (15) | C10—N7—C9—C7 | −178.61 (19) |
S1i—Zn1—N4—C4 | 134.75 (15) | N8—N7—C9—C7 | 6.4 (3) |
C9—N5—N6—C10 | 0.9 (2) | C6—C7—C9—N5 | −138.1 (2) |
N1i—Zn1—S1—C1 | −178.74 (8) | C8—C7—C9—N5 | 38.6 (3) |
N1—Zn1—S1—C1 | 1.26 (8) | C6—C7—C9—N7 | 41.3 (3) |
N4—Zn1—S1—C1 | −87.37 (8) | C8—C7—C9—N7 | −142.05 (19) |
N4i—Zn1—S1—C1 | 92.63 (8) | N5—N6—C10—N7 | −0.4 (2) |
C2—N1—C1—N3 | −0.5 (3) | N5—N6—C10—C11 | −179.53 (18) |
Zn1—N1—C1—N3 | −177.47 (14) | C9—N7—C10—N6 | −0.2 (2) |
C2—N1—C1—S1 | 179.48 (13) | N8—N7—C10—N6 | 175.0 (2) |
Zn1—N1—C1—S1 | 2.46 (15) | C9—N7—C10—C11 | 178.86 (19) |
C3—N3—C1—N1 | 3.6 (3) | N8—N7—C10—C11 | −5.9 (3) |
C3—N3—C1—S1 | −176.37 (14) | N6—C10—C11—C12 | −168.2 (2) |
Zn1—S1—C1—N1 | −2.07 (13) | N7—C10—C11—C12 | 12.8 (3) |
Zn1—S1—C1—N3 | 177.86 (16) | N6—C10—C11—C15 | 10.2 (3) |
C1—N1—C2—N2 | −1.9 (3) | N7—C10—C11—C15 | −168.8 (2) |
Zn1—N1—C2—N2 | 173.55 (13) | C15—C11—C12—C13 | −1.4 (3) |
C1—N1—C2—S2 | 177.83 (13) | C10—C11—C12—C13 | 177.0 (2) |
Zn1—N1—C2—S2 | −6.7 (3) | C11—C12—C13—C14 | −0.1 (4) |
C3—N2—C2—N1 | 1.5 (3) | C15—N9—C14—C13 | −1.3 (3) |
C3—N2—C2—S2 | −178.25 (14) | C12—C13—C14—N9 | 1.5 (4) |
C1—N3—C3—N2 | −3.9 (3) | C14—N9—C15—C11 | −0.4 (3) |
C1—N3—C3—S3 | 176.60 (14) | C12—C11—C15—N9 | 1.7 (3) |
C2—N2—C3—N3 | 1.3 (3) | C10—C11—C15—N9 | −176.9 (2) |
C2—N2—C3—S3 | −179.14 (14) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N8—H8′···O1ii | 0.94 (3) | 1.96 (3) | 2.892 (3) | 177 (2) |
O1—H1A···N6iii | 0.83 (4) | 1.98 (4) | 2.807 (2) | 175 (4) |
O1—H1B···N5iv | 0.89 (4) | 2.05 (4) | 2.906 (3) | 163 (4) |
N2—H2′···S2v | 0.86 (2) | 2.49 (2) | 3.3478 (17) | 173.6 (18) |
N3—H3′···N9vi | 0.83 (2) | 2.01 (2) | 2.837 (2) | 172 (2) |
N8—H8′′···S3vii | 0.77 (3) | 2.81 (3) | 3.560 (2) | 165 (3) |
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z−1; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+2, −z+1; (vi) x+1, y, z−1; (vii) −x+2, −y+2, −z+1. |
[Zn(C3H2N3S3)2(C10H8N2)]·C10H8N2 | F(000) = 1488 |
Mr = 730.25 | Dx = 1.658 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.3778 (10) Å | Cell parameters from 3176 reflections |
b = 11.3937 (9) Å | θ = 2.4–28.3° |
c = 19.2967 (14) Å | µ = 1.31 mm−1 |
β = 96.044 (1)° | T = 173 K |
V = 2924.9 (4) Å3 | Block, colourless |
Z = 4 | 0.14 × 0.08 × 0.04 mm |
Bruker SMART CCD area-detector diffractometer | 3633 independent reflections |
Radiation source: fine-focus sealed tube | 3159 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −17→14 |
Tmin = 0.838, Tmax = 0.950 | k = −12→15 |
10681 measured reflections | l = −25→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0411P)2 + 9.7684P] where P = (Fo2 + 2Fc2)/3 |
3633 reflections | (Δ/σ)max < 0.001 |
205 parameters | Δρmax = 0.73 e Å−3 |
146 restraints | Δρmin = −1.02 e Å−3 |
[Zn(C3H2N3S3)2(C10H8N2)]·C10H8N2 | V = 2924.9 (4) Å3 |
Mr = 730.25 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 13.3778 (10) Å | µ = 1.31 mm−1 |
b = 11.3937 (9) Å | T = 173 K |
c = 19.2967 (14) Å | 0.14 × 0.08 × 0.04 mm |
β = 96.044 (1)° |
Bruker SMART CCD area-detector diffractometer | 3633 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 3159 reflections with I > 2σ(I) |
Tmin = 0.838, Tmax = 0.950 | Rint = 0.033 |
10681 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 146 restraints |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.73 e Å−3 |
3633 reflections | Δρmin = −1.02 e Å−3 |
205 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.0000 | −0.25751 (4) | 0.2500 | 0.01235 (12) | |
S1 | −0.15626 (5) | −0.23586 (6) | 0.31854 (3) | 0.01206 (14) | |
S2 | 0.23120 (5) | −0.27432 (7) | 0.38709 (3) | 0.01784 (16) | |
S3 | 0.00163 (6) | −0.11977 (9) | 0.57434 (4) | 0.0273 (2) | |
N1 | 0.03446 (15) | −0.24435 (19) | 0.36060 (11) | 0.0107 (4) | |
N2 | −0.06795 (16) | −0.1810 (2) | 0.44531 (11) | 0.0134 (4) | |
H2 | −0.1302 (12) | −0.159 (4) | 0.452 (2) | 0.045 (12)* | |
N3 | 0.10238 (17) | −0.2033 (2) | 0.47401 (11) | 0.0150 (5) | |
H3 | 0.1554 (16) | −0.204 (3) | 0.5060 (13) | 0.028 (10)* | |
N4 | 0.0000 | −0.0656 (3) | 0.2500 | 0.0117 (6) | |
N5 | 0.0000 | 0.5559 (3) | 0.2500 | 0.0109 (6) | |
N6 | 0.24493 (17) | 0.6013 (2) | 0.97455 (12) | 0.0174 (5) | |
C1 | −0.05729 (19) | −0.2188 (2) | 0.37983 (13) | 0.0107 (5) | |
C2 | 0.11676 (19) | −0.2389 (2) | 0.40807 (13) | 0.0120 (5) | |
C3 | 0.0122 (2) | −0.1694 (3) | 0.49499 (14) | 0.0161 (5) | |
C4 | 0.08277 (19) | −0.0048 (2) | 0.27253 (13) | 0.0120 (5) | |
H4 | 0.1418 | −0.0470 | 0.2889 | 0.014* | |
C5 | 0.08640 (19) | 0.1160 (2) | 0.27312 (13) | 0.0120 (5) | |
H5 | 0.1470 | 0.1555 | 0.2891 | 0.014* | |
C6 | 0.0000 | 0.1803 (3) | 0.2500 | 0.0102 (7) | |
C7 | 0.0000 | 0.3096 (3) | 0.2500 | 0.0102 (7) | |
C8 | 0.08786 (19) | 0.3736 (2) | 0.24401 (14) | 0.0131 (5) | |
H8 | 0.1491 | 0.3340 | 0.2389 | 0.016* | |
C9 | 0.08491 (19) | 0.4946 (2) | 0.24564 (14) | 0.0140 (5) | |
H9 | 0.1459 | 0.5366 | 0.2436 | 0.017* | |
C10 | 0.2264 (2) | 0.5473 (3) | 1.03241 (17) | 0.0288 (7) | |
H10 | 0.2807 | 0.5360 | 1.0677 | 0.035* | |
C11 | 0.1323 (2) | 0.5063 (3) | 1.04454 (17) | 0.0297 (8) | |
H11 | 0.1234 | 0.4686 | 1.0874 | 0.036* | |
C12 | 0.05152 (19) | 0.5201 (2) | 0.99461 (13) | 0.0137 (5) | |
C13 | 0.0710 (3) | 0.5755 (4) | 0.93421 (17) | 0.0411 (10) | |
H13 | 0.0185 | 0.5866 | 0.8977 | 0.049* | |
C14 | 0.1672 (3) | 0.6151 (4) | 0.92657 (18) | 0.0417 (10) | |
H14 | 0.1781 | 0.6543 | 0.8846 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0152 (2) | 0.0111 (2) | 0.0107 (2) | 0.000 | 0.00138 (16) | 0.000 |
S1 | 0.0080 (3) | 0.0162 (3) | 0.0113 (3) | 0.0008 (2) | −0.0017 (2) | −0.0023 (2) |
S2 | 0.0085 (3) | 0.0333 (4) | 0.0113 (3) | 0.0054 (3) | −0.0008 (2) | −0.0028 (3) |
S3 | 0.0171 (4) | 0.0548 (6) | 0.0096 (3) | 0.0058 (3) | −0.0004 (3) | −0.0109 (3) |
N1 | 0.0089 (10) | 0.0156 (11) | 0.0072 (9) | 0.0023 (8) | −0.0008 (8) | −0.0012 (8) |
N2 | 0.0094 (10) | 0.0210 (12) | 0.0098 (10) | 0.0018 (8) | 0.0005 (8) | −0.0024 (8) |
N3 | 0.0103 (10) | 0.0266 (12) | 0.0076 (10) | 0.0035 (9) | −0.0021 (8) | −0.0030 (9) |
N4 | 0.0143 (14) | 0.0100 (14) | 0.0110 (14) | 0.000 | 0.0019 (11) | 0.000 |
N5 | 0.0114 (14) | 0.0111 (14) | 0.0099 (13) | 0.000 | −0.0001 (11) | 0.000 |
N6 | 0.0149 (11) | 0.0220 (12) | 0.0154 (11) | −0.0055 (9) | 0.0019 (9) | −0.0010 (9) |
C1 | 0.0108 (11) | 0.0106 (11) | 0.0107 (11) | 0.0004 (9) | 0.0003 (9) | 0.0024 (9) |
C2 | 0.0098 (11) | 0.0156 (12) | 0.0100 (11) | 0.0010 (9) | −0.0012 (9) | −0.0002 (9) |
C3 | 0.0122 (12) | 0.0243 (14) | 0.0115 (12) | 0.0008 (10) | −0.0006 (9) | −0.0001 (10) |
C4 | 0.0108 (11) | 0.0120 (12) | 0.0128 (11) | 0.0013 (9) | −0.0006 (9) | 0.0002 (9) |
C5 | 0.0095 (11) | 0.0139 (12) | 0.0121 (11) | −0.0019 (9) | −0.0005 (9) | −0.0009 (9) |
C6 | 0.0116 (16) | 0.0098 (16) | 0.0097 (15) | 0.000 | 0.0032 (12) | 0.000 |
C7 | 0.0113 (15) | 0.0115 (16) | 0.0075 (15) | 0.000 | −0.0011 (12) | 0.000 |
C8 | 0.0097 (11) | 0.0136 (12) | 0.0159 (12) | 0.0021 (9) | 0.0010 (9) | 0.0008 (10) |
C9 | 0.0109 (12) | 0.0138 (12) | 0.0171 (12) | −0.0015 (9) | 0.0003 (9) | 0.0003 (10) |
C10 | 0.0146 (14) | 0.0458 (19) | 0.0257 (15) | 0.0003 (13) | 0.0008 (12) | 0.0144 (14) |
C11 | 0.0163 (14) | 0.048 (2) | 0.0252 (15) | 0.0009 (13) | 0.0036 (12) | 0.0194 (14) |
C12 | 0.0156 (13) | 0.0131 (12) | 0.0129 (12) | −0.0032 (10) | 0.0037 (10) | −0.0022 (9) |
C13 | 0.0267 (17) | 0.077 (3) | 0.0178 (15) | −0.0265 (17) | −0.0077 (13) | 0.0154 (16) |
C14 | 0.0270 (17) | 0.075 (3) | 0.0217 (16) | −0.0269 (17) | −0.0027 (13) | 0.0192 (16) |
Zn1—N5i | 2.126 (3) | N6—C10 | 1.321 (4) |
Zn1—N1ii | 2.141 (2) | N6—C14 | 1.326 (4) |
Zn1—N1 | 2.141 (2) | C4—C5 | 1.377 (4) |
Zn1—N4 | 2.187 (3) | C4—H4 | 0.9500 |
Zn1—S1ii | 2.6004 (6) | C5—C6 | 1.401 (3) |
Zn1—S1 | 2.6004 (6) | C5—H5 | 0.9500 |
S1—C1 | 1.691 (3) | C6—C5ii | 1.401 (3) |
S2—C2 | 1.674 (3) | C6—C7 | 1.474 (5) |
S3—C3 | 1.652 (3) | C7—C8 | 1.398 (3) |
N1—C1 | 1.351 (3) | C7—C8ii | 1.398 (3) |
N1—C2 | 1.358 (3) | C8—C9 | 1.380 (4) |
N2—C1 | 1.357 (3) | C8—H8 | 0.9500 |
N2—C3 | 1.368 (3) | C9—H9 | 0.9500 |
N2—H2 | 0.8900 (11) | C10—C11 | 1.387 (4) |
N3—C3 | 1.367 (3) | C10—H10 | 0.9500 |
N3—C2 | 1.368 (3) | C11—C12 | 1.379 (4) |
N3—H3 | 0.8899 (11) | C11—H11 | 0.9500 |
N4—C4 | 1.339 (3) | C12—C13 | 1.374 (4) |
N4—C4ii | 1.340 (3) | C12—C12iv | 1.488 (5) |
N5—C9ii | 1.343 (3) | C13—C14 | 1.387 (4) |
N5—C9 | 1.343 (3) | C13—H13 | 0.9500 |
N5—Zn1iii | 2.126 (3) | C14—H14 | 0.9500 |
N5i—Zn1—N1ii | 94.02 (6) | N3—C2—S2 | 121.21 (19) |
N5i—Zn1—N1 | 94.02 (6) | N3—C3—N2 | 114.6 (2) |
N1ii—Zn1—N1 | 171.97 (12) | N3—C3—S3 | 122.4 (2) |
N5i—Zn1—N4 | 180 | N2—C3—S3 | 123.0 (2) |
N1ii—Zn1—N4 | 85.98 (6) | N4—C4—C5 | 123.2 (2) |
N1—Zn1—N4 | 85.98 (6) | N4—C4—H4 | 118.4 |
N5i—Zn1—S1ii | 95.444 (17) | C5—C4—H4 | 118.4 |
N1ii—Zn1—S1ii | 65.58 (6) | C4—C5—C6 | 119.5 (2) |
N1—Zn1—S1ii | 113.59 (6) | C4—C5—H5 | 120.2 |
N4—Zn1—S1ii | 84.556 (17) | C6—C5—H5 | 120.2 |
N5i—Zn1—S1 | 95.444 (17) | C5ii—C6—C5 | 117.0 (3) |
N1ii—Zn1—S1 | 113.59 (6) | C5ii—C6—C7 | 121.50 (16) |
N1—Zn1—S1 | 65.58 (6) | C5—C6—C7 | 121.50 (16) |
N4—Zn1—S1 | 84.556 (17) | C8—C7—C8ii | 117.2 (3) |
S1ii—Zn1—S1 | 169.11 (3) | C8—C7—C6 | 121.42 (17) |
C1—S1—Zn1 | 75.79 (9) | C8ii—C7—C6 | 121.42 (17) |
C1—N1—C2 | 120.0 (2) | C9—C8—C7 | 119.5 (2) |
C1—N1—Zn1 | 100.51 (15) | C9—C8—H8 | 120.2 |
C2—N1—Zn1 | 138.61 (17) | C7—C8—H8 | 120.2 |
C1—N2—C3 | 122.1 (2) | N5—C9—C8 | 123.2 (2) |
C1—N2—H2 | 114 (3) | N5—C9—H9 | 118.4 |
C3—N2—H2 | 124 (3) | C8—C9—H9 | 118.4 |
C3—N3—C2 | 125.0 (2) | N6—C10—C11 | 123.6 (3) |
C3—N3—H3 | 117 (2) | N6—C10—H10 | 118.2 |
C2—N3—H3 | 118 (2) | C11—C10—H10 | 118.2 |
C4—N4—C4ii | 117.7 (3) | C12—C11—C10 | 120.2 (3) |
C4—N4—Zn1 | 121.16 (16) | C12—C11—H11 | 119.9 |
C4ii—N4—Zn1 | 121.16 (16) | C10—C11—H11 | 119.9 |
C9ii—N5—C9 | 117.4 (3) | C13—C12—C11 | 116.1 (3) |
C9ii—N5—Zn1iii | 121.31 (16) | C13—C12—C12iv | 121.4 (3) |
C9—N5—Zn1iii | 121.31 (16) | C11—C12—C12iv | 122.5 (3) |
C10—N6—C14 | 116.3 (3) | C12—C13—C14 | 120.1 (3) |
N1—C1—N2 | 120.8 (2) | C12—C13—H13 | 120.0 |
N1—C1—S1 | 116.75 (19) | C14—C13—H13 | 120.0 |
N2—C1—S1 | 122.45 (19) | N6—C14—C13 | 123.7 (3) |
N1—C2—N3 | 117.2 (2) | N6—C14—H14 | 118.1 |
N1—C2—S2 | 121.55 (19) | C13—C14—H14 | 118.1 |
N5i—Zn1—S1—C1 | 98.25 (9) | C1—N1—C2—S2 | 177.9 (2) |
N1ii—Zn1—S1—C1 | −164.95 (11) | Zn1—N1—C2—S2 | −15.0 (4) |
N1—Zn1—S1—C1 | 6.31 (11) | C3—N3—C2—N1 | −2.2 (4) |
N4—Zn1—S1—C1 | −81.75 (9) | C3—N3—C2—S2 | 177.9 (2) |
S1ii—Zn1—S1—C1 | −81.75 (9) | C2—N3—C3—N2 | 4.3 (4) |
N5i—Zn1—N1—C1 | −101.95 (15) | C2—N3—C3—S3 | −176.2 (2) |
N4—Zn1—N1—C1 | 78.05 (15) | C1—N2—C3—N3 | −2.5 (4) |
S1ii—Zn1—N1—C1 | 160.32 (14) | C1—N2—C3—S3 | 178.1 (2) |
S1—Zn1—N1—C1 | −7.79 (14) | C4ii—N4—C4—C5 | −0.37 (18) |
N5i—Zn1—N1—C2 | 89.4 (3) | Zn1—N4—C4—C5 | 179.63 (18) |
N4—Zn1—N1—C2 | −90.6 (3) | N4—C4—C5—C6 | 0.7 (4) |
S1ii—Zn1—N1—C2 | −8.3 (3) | C4—C5—C6—C5ii | −0.34 (17) |
S1—Zn1—N1—C2 | −176.4 (3) | C4—C5—C6—C7 | 179.65 (17) |
N1ii—Zn1—N4—C4 | −118.52 (14) | C5ii—C6—C7—C8 | −152.66 (17) |
N1—Zn1—N4—C4 | 61.48 (14) | C5—C6—C7—C8 | 27.34 (17) |
S1ii—Zn1—N4—C4 | −52.70 (13) | C5ii—C6—C7—C8ii | 27.34 (17) |
S1—Zn1—N4—C4 | 127.30 (13) | C5—C6—C7—C8ii | −152.66 (17) |
N1ii—Zn1—N4—C4ii | 61.48 (14) | C8ii—C7—C8—C9 | 1.29 (17) |
N1—Zn1—N4—C4ii | −118.52 (14) | C6—C7—C8—C9 | −178.71 (17) |
S1ii—Zn1—N4—C4ii | 127.30 (13) | C9ii—N5—C9—C8 | 1.39 (19) |
S1—Zn1—N4—C4ii | −52.70 (13) | Zn1iii—N5—C9—C8 | −178.61 (19) |
C2—N1—C1—N2 | 3.8 (4) | C7—C8—C9—N5 | −2.7 (4) |
Zn1—N1—C1—N2 | −167.6 (2) | C14—N6—C10—C11 | −0.2 (6) |
C2—N1—C1—S1 | −176.37 (19) | N6—C10—C11—C12 | 0.5 (6) |
Zn1—N1—C1—S1 | 12.3 (2) | C10—C11—C12—C13 | 0.1 (5) |
C3—N2—C1—N1 | −1.4 (4) | C10—C11—C12—C12iv | −178.7 (4) |
C3—N2—C1—S1 | 178.8 (2) | C11—C12—C13—C14 | −0.8 (6) |
Zn1—S1—C1—N1 | −10.22 (18) | C12iv—C12—C13—C14 | 178.0 (4) |
Zn1—S1—C1—N2 | 169.6 (2) | C10—N6—C14—C13 | −0.6 (6) |
C1—N1—C2—N3 | −2.1 (4) | C12—C13—C14—N6 | 1.2 (7) |
Zn1—N1—C2—N3 | 165.0 (2) |
Symmetry codes: (i) x, y−1, z; (ii) −x, y, −z+1/2; (iii) x, y+1, z; (iv) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N6v | 0.89 (1) | 1.89 (1) | 2.776 (3) | 173 (4) |
N3—H3···S2vi | 0.89 (1) | 2.44 (1) | 3.309 (2) | 165 (3) |
Symmetry codes: (v) x−1/2, −y+1/2, z−1/2; (vi) −x+1/2, −y−1/2, −z+1. |
Experimental details
(1) | (2) | |
Crystal data | ||
Chemical formula | [Zn(C3H2N3S3)2(C12H10N6)2]·2H2O | [Zn(C3H2N3S3)2(C10H8N2)]·C10H8N2 |
Mr | 930.43 | 730.25 |
Crystal system, space group | Triclinic, P1 | Monoclinic, C2/c |
Temperature (K) | 294 | 173 |
a, b, c (Å) | 7.7509 (4), 10.8253 (1), 12.5824 (11) | 13.3778 (10), 11.3937 (9), 19.2967 (14) |
α, β, γ (°) | 77.543 (16), 81.089 (18), 72.256 (16) | 90, 96.044 (1), 90 |
V (Å3) | 977.32 (10) | 2924.9 (4) |
Z | 1 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.01 | 1.31 |
Crystal size (mm) | 0.25 × 0.09 × 0.03 | 0.14 × 0.08 × 0.04 |
Data collection | ||
Diffractometer | Rigaku Mercury 375R diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.787, 0.970 | 0.838, 0.950 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10320, 4460, 3822 | 10681, 3633, 3159 |
Rint | 0.078 | 0.033 |
(sin θ/λ)max (Å−1) | 0.650 | 0.667 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.090, 1.04 | 0.039, 0.103, 1.08 |
No. of reflections | 4460 | 3633 |
No. of parameters | 283 | 205 |
No. of restraints | 0 | 146 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.71, −0.58 | 0.73, −1.02 |
Computer programs: CrystalClear (Rigaku, 2009), SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Zn1—N1 | 2.1476 (15) | Zn1—S1 | 2.5925 (6) |
Zn1—N4 | 2.1640 (15) | ||
N1i—Zn1—N1 | 180 | N1—Zn1—S1 | 65.78 (4) |
N1—Zn1—N4 | 88.45 (6) | N4—Zn1—S1 | 89.26 (4) |
N1—Zn1—N4i | 91.55 (6) | N1—Zn1—S1i | 114.22 (4) |
N4—Zn1—N4i | 180 | N4—Zn1—S1i | 90.74 (4) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N8—H8'···O1ii | 0.94 (3) | 1.96 (3) | 2.892 (3) | 177 (2) |
O1—H1A···N6iii | 0.83 (4) | 1.98 (4) | 2.807 (2) | 175 (4) |
O1—H1B···N5iv | 0.89 (4) | 2.05 (4) | 2.906 (3) | 163 (4) |
N2—H2'···S2v | 0.86 (2) | 2.49 (2) | 3.3478 (17) | 173.6 (18) |
N3—H3'···N9vi | 0.83 (2) | 2.01 (2) | 2.837 (2) | 172 (2) |
N8—H8''···S3vii | 0.77 (3) | 2.81 (3) | 3.560 (2) | 165 (3) |
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z−1; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+2, −z+1; (vi) x+1, y, z−1; (vii) −x+2, −y+2, −z+1. |
Zn1—N5i | 2.126 (3) | Zn1—N4 | 2.187 (3) |
Zn1—N1 | 2.141 (2) | Zn1—S1 | 2.6004 (6) |
N5i—Zn1—N1 | 94.02 (6) | N5i—Zn1—S1 | 95.444 (17) |
N1ii—Zn1—N1 | 171.97 (12) | N1—Zn1—S1 | 65.58 (6) |
N5i—Zn1—N4 | 180 | N4—Zn1—S1 | 84.556 (17) |
N1—Zn1—N4 | 85.98 (6) | S1ii—Zn1—S1 | 169.11 (3) |
N1—Zn1—S1ii | 113.59 (6) |
Symmetry codes: (i) x, y−1, z; (ii) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N6iii | 0.890 (1) | 1.891 (6) | 2.776 (3) | 173 (4) |
N3—H3···S2iv | 0.890 (1) | 2.441 (10) | 3.309 (2) | 165 (3) |
Symmetry codes: (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+1/2, −y−1/2, −z+1. |