Download citation
Download citation
link to html
Reduction of VCl3(THF)3 (THF is tetra­hydro­furan) and NbCl4(THF)2 by alkali metal pyrene radical anion salts in THF affords the paramagnetic sandwich complexes bis­[(1,2,3,3a,10a,10b-η)-pyrene]vanadium(0), [V(C16H10)2], and bis­[(1,2,3,3a,10a,10b-η)-pyrene]niobium(0), [Nb(C16H10)2]. Treat­ment of tris­(naphthalene)­titanate(2−) with pyrene provides the isoelectronic titanium species, isolated as an (18-crown-6)potassium salt, namely catena-poly[[(18-crown-6)potassium]-μ-[(1,2-η:1,2,3,3a,10a,10b-η)-pyrene]-titanate(−I)-μ-[(1,2,3,3a,10a,10b-η:6,7-η)-pyrene]], {[K(C12H24O6)][Ti(C16H10)2]}n. The first two compounds have very similar packing, with neighboring mol­ecules arranged orthogonally to one another, such that aromatic donor–acceptor inter­actions are likely responsible for the specific arrangement. The asymmetric unit contains a half-occupancy metal center η6-coordinated to one pyrene ligand, with the full M(pyrene)2 mol­ecule generated by a crystallographic inversion center. In the titanium compound, the cations and anions are in alternating contact throughout the crystal structure, in one-dimensional chains along the [101] direction. As in the other two compounds, the asymmetric unit contains a half-occupancy Ti atom η6-coordinated to one pyrene ligand. Additionally, the asymmetric unit contains one half of an (18-crown-6)potassium cation, located on a crystallographic inversion center coincident with the K atom. The full formula units are generated by those inversion centers. In all three structures, the pyrene ligands are eclipsed and sandwich the metals in one of two inversion-related sites. These species are of inter­est as the first isolable homoleptic pyrene transition metal complexes to be described in the scientific literature.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614015290/wq3068sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614015290/wq3068Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614015290/wq3068IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614015290/wq3068IIIsup4.hkl
Contains datablock III

CCDC references: 1010952; 1010953; 1010954

Introduction top

Bis(arene) metal complexes are well established for most transition metals as cationic, neutral or anionic substances, and have found applications in polymer synthesis, molecular-based magnets and crystal engineering, and in the preparation of new materials. Although such species are known for numerous mono- and polycyclic aromatic hydro­carbons (Pampaloni, 2010), surprisingly, bis­(pyrene)chromium(0) is the sole example of an isolable binary or homoleptic transition metal complex of pyrene, a classic polycyclic aromatic hydro­carbon (Harvey, 1997). Bis(pyrene)chromium(0) has been structurally characterized and obtained, in unspecified yield, by the co-condensation of chromium and pyrene vapors at 77 K in a metal-atom reactor (Elschenbroich, 2006). However, unfortunately, no details of this study are available in the primary literature, but were mentioned only at a conference (Vasil'kov et al., 2003). A recent synthesis and structural characterization of an unprecedented heteroleptic or mixed-ligand bis­(pyrene)metal complex, (η4-cyclo­octa­diene)bis­(η2-pyrene)cobaltate(1-) (Brennessel & Ellis, 2012a), suggested that homoleptic bis­(pyrene)metal complexes should also be available by similar conventional syntheses. These use normal laboratory equipment and, specifically, do not require specialized metal-atom reactor apparatus. The latter equipment is inaccessible to most chemists and employs procedures that are not easily scaled up (Young & Green, 1975).

We now report on the first conventional syntheses of homoleptic bis­(pyrene)metal complexes, including V(η6-pyrene)2, (I) (Fig. 1), Nb(η6-pyrene)2, (II), and [K(18-crown-6)][Ti(η6-pyrene)2], (III) (Fig. 2). The niobium species, (II), is of inter­est because only one other Nb(0) complex has been prepared by a conventional procedure, bis­(mesitylene)niobium(0) (Calderazzo et al., 1991). Also, the titanate, (III), is a rare example of a compound containing titanium in an oxidation state of -1, precedented only by related bis­(arene)titanates(1-), for arene = benzene and toluene (Bandy et al., 1984), and bi­phenyl and 4,4'-di-tert-butyl­biphenyl (Blackburn et al., 1992). Unlike the prior diamagnetic Cr(η6-pyrene)2 (Vasil'kov et al., 2003), (I), (II) and (III) are NMR-silent paramagnetic 17-electron complexes. Whereas (I) and (III) have been isolated as relatively pure bulk samples (see Synthesis and crystallization), characterization of (II) is based entirely on the single-crystal X-ray diffraction study reported herein. The chemical properties of these species have not been examined in any detail (Jilek, 2009). However, they and the presently unknown Zr, Hf and Ta analogs promise to be useful precursors to potentially exciting new classes of homo- and/or hetero-multimetallic sandwich complexes, possibly containing up to four metals. In this regard, recent studies of tetra­nuclear metal sandwich frameworks (Murahashi et al., 2012), and gas-phase studies of [Nb(pyrene)2]+ and [Nb2(pyrene)2]+ (Foster et al., 2001), and iron-pyrene cluster anions (Li et al., 2011), are of inter­est.

Experimental top

Synthesis and crystallization top

All manipulations were carried out under argon using standard Schlenk techniques to maintain strictly anaerobic conditions. A glass-covered magnetic bar was used for stirring because Teflon is attacked by certain metallic salts. Solvents were dried using standard techniques, as described previously (Brennessel & Ellis, 2012b). Unless otherwise stated, reagents were obtained from commercial sources and used without further purification. Literature procedures were used to prepare VCl3(THF)3 (THF is tetra­hydro­furan), NbCl4(THF)4 (Manzer, 1982), and [K(18-crown-6)]2[Ti(C10H8)3] (C10H8 is naphthalene; Jilek et al., 2008).

Preparation of V(η6-C16H10)2, (I) top

Initially, a dark orange–brown solution of sodium pyrene, NaC16H10, was prepared by stirring sublimed pyrene (1.662 g, 8.22 mmol) with sodium metal (0.190 g, 8.22 mmol) in THF (50 ml) for 6 h at 293 K. This solution was then cooled to 200 K, and to it was added, via cannula, a salmon-colored solution of VCl3(THF)3 (1.000 g, 2.68 mmol) in cold THF (50 ml, 200 K). The resulting red–brown solution was warmed to ambient temperature (ca 293 K) over an 18 h period. During this process, microcrystals of (I) formed in the reaction mixture. Addition of isoo­ctane (150 ml) resulted in precipitation of (I), along with NaCl. The resulting crude product was then extracted with boiling THF (150 ml) in a Soxhlet extractor for 65 h to remove the NaCl by-product. Treatment of the THF solution with pentane (250 ml) at 293 K afforded satisfactorily pure brown microcrystals of (I) [yield 0.543 g, 44%; m.p. 506 K (decomposition)]. Elemental analysis, calculated for C32H20V (%): C 84.39, H 4.41, found: C 84.27, H 4.70. Magnetic susceptibility (Evans balance): µeff (293 K) = 1.71 µB. X-ray quality crystals of (I) were grown as black needles by slow evaporation of a THF solution of (I) under strictly anaerobic conditions.

Preparation of Nb(η6-C16H10)2, (II) top

The synthesis of (II) is very similar to the procedure for (I). Reduction of NbCl4(THF)2 with four equivalents of KC16H10 in THF yielded a suspension of KCl and microcrystalline (II). Single black needles of (II) suitable for X-ray study were harvested directly from this reaction mixture. Unfortunately, niobium complex (II) is more prone to decomposition in solution than (I), so attempts to obtain a pure bulk sample of (II), free of KCl, have not been successful to date.

Preparation of [K(18-crown-6)][Ti(η6-C16H10)2], (III) top

A colorless solution of pyrene (0.584 g, 2.89 mmol) in THF (25 ml, 210 K) was added to a red–brown slurry of [K(18-crown-6)]2[Ti(C10H8)3] (1.000 g, 0.962 mmol) in THF (25 ml, 210 K). The reaction mixture was warmed to about 293 K over a 16 h period. During this time, a dark-green microcrystalline solid formed. The product was isolated by filtration, washed with THF and dried under vacuum to afford forest-green microcrystals of (III) [yield 0.448 g, 62%; m.p. 451–453 K (decomposition)]. Elemental analysis, calculated for C44H44KO6Ti (%): C 69.92, H 5.87, found: C 67.63, H 5.86. Magnetic susceptibility (Evans NMR method) in (Me2N)3PO: µeff (292 K) = 2.03 µB. Thus far, attempts have failed to obtain a sample which gives a satisfactory carbon analysis, perhaps as a result of the extraordinarily high air sensitivity of this species. A dark-red solution of (III) (0.300 g, 0.397 mmol) in (Me2N)3PO (8 ml) was slowly layered with Et2O (15 ml) in a Schlenk tube. After 3 d at ca 290 K, dark metallic green blocks of (III) had deposited. One of these was harvested for the single-crystal X-ray study. Inter­estingly, attempts to obtain relatively pure (III) directly by the addition of a THF solution of TiCl4(THF)2 (Manzer, 1982) to five or six equivalents of KC16H10 in THF in the presence of 18-crown-6 were unsuccessful under a variety of conditions.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The transition metal in all three structures was refined with half occupancy because it is disordered over a crystallographic inversion center.

H atoms were placed geometrically and treated as riding atoms, with methyl­ene C—H = 0.99 Å and sp2 C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C).

Results and discussion top

The structures of the bis­(pyrene)metal units in (I), (II), and (III) are closely related (Tables 2–4). In all cases, the pyrene ligands are eclipsed and the metal center is disordered (0.50:0.50, by symmetry) over a crystallographic inversion center. The average C—C distances in the three species are statistically identical, 1.413 (5) Å in (I), 1.416 (5) Å in (II) and 1.417 (6) Å in (III), and are inter­mediate between C—C single and C C double bonds, as expected. Also of inter­est are the M–centroid distances, viz. 1.727 Å in (I), 1.830 Å in (II) and 1.774 Å in (III). This last distance is essentially identical to the Ti–centroid distance of 1.780 Å reported for a structurally similar syn-rotamer of [Ti(η6-bi­phenyl)2]- (Blackburn et al., 1992). Although niobium and titanium have similar atomic radii, about 0.12 Å larger than that of vanadium (Emsley, 1998), the significantly longer Nb–centroid distance compared with the corresponding Ti–centroid value suggests the metal-arene inter­action is stronger in the titanium complex, consistent with the lower oxidation state of titanium and the Chatt–Dewar–Duncanson model for metal–arene δ-backbonding (Elschenbroich, 2006).

Compounds (I) and (II) have very similar packing motifs, with their molecules arranged nearly orthogonally to one another (Fig. 3) and angles between inter­molecular pyrene planes of 87.97 (2)° in (I) and 84.02 (3)° in (II). Inter­molecular aromatic donor–acceptor inter­actions are favored by this arrangement (Martinez & Iverson, 2012), and the closest H[pyrene]···plane[pyrene] distances are approximately 2.55 Å in (I) and 2.60 Å in (II). The cation in (III) is a normal [K(18-crown-6)]+ of approximately D3d symmetry (Hossain et al., 2003). The axial positions of the macrocyclic cations are occupied by equivalent anions in an infinite linear alternating chain of cation (potassium) and anion (pyrene) (Fig. 4), a common structural motif in unsolvated [K(18-crown-6)]+ salts (Schlueter & Geiser, 2003). The formation of this strong crystalline structure undoubtedly contributes to the low solubility of the salt in THF.

Related literature top

For related literature, see: Bandy et al. (1984); Blackburn et al. (1992); Brennessel & Ellis (2012a, 2012b); Calderazzo et al. (1991); Elschenbroich (2006); Emsley (1998); Foster et al. (2001); Harvey (1997); Hossain et al. (2003); Jilek (2009); Jilek et al. (2008); Li et al. (2011); Manzer (1982); Martinez & Iverson (2012); Murahashi et al. (2012); Pampaloni (2010); Schlueter & Geiser (2003); Vasil'kov, Elschenbroich & Harms (2003); Young & Green (1975).

Computing details top

For all compounds, data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I), (II); SIR97 (Altomare et al., 1999) for (III). For all compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2014); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme, with displacement ellipsoids drawn at the 50% probability level. The molecule lies on a crystallographic inversion center with the symmetry-equivalent portion generated by the operation (-x + 1, -y + 1, -z + 1). The metal atom is half-occupancy because it is disordered over the center, and only one position is displayed. The above description applies equally to (II).
[Figure 2] Fig. 2. The structure of (III), showing the atom-numbering scheme, with displacement ellipsoids drawn at the 50% probability level. The cation and anion form a contact ion pair, and both are located on independent crystallographic inversion centers. The symmetry-equivalent portion of the cation is generated by the operation (-x, -y + 1, -z + 1), and that of the anion is generated by the operation (-x + 1, -y + 1, -z + 2). The K atom is on an inversion center and the Ti atom is half-occupancy because it is disordered over its proximal center, and only one position is displayed. [Meaning of dashed lines?]
[Figure 3] Fig. 3. Each bis(pyrene)metal molecule in (I) and (II) is orthogonal to its intermolecular neighbors, favoring aromatic donor–acceptor interactions. Only one position of the disordered metal centers is shown per molecule, and displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. The molecular structure of (III), highlighting its polymeric crystalline structure. The chains lie along the [101] direction. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. Crystallographic inversion centers are located at the K-atom positions and in the center of each pair of eclipsed pyrene ligands. Only one position of the disordered metal centers is shown per molecule.
(I) Bis[(1,2,3,3a,10a,10b-η)-pyrene]vanadium(0) top
Crystal data top
[V(C16H10)2]F(000) = 470
Mr = 455.42Dx = 1.485 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4905 (8) ÅCell parameters from 2538 reflections
b = 9.4969 (8) Åθ = 2.6–25.3°
c = 11.4851 (10) ŵ = 0.51 mm1
β = 100.306 (2)°T = 173 K
V = 1018.45 (15) Å3Needle, black
Z = 20.50 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1599 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.041
ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1111
Tmin = 0.786, Tmax = 0.951k = 1111
10868 measured reflectionsl = 1414
2087 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.5242P]
where P = (Fo2 + 2Fc2)/3
2087 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[V(C16H10)2]V = 1018.45 (15) Å3
Mr = 455.42Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.4905 (8) ŵ = 0.51 mm1
b = 9.4969 (8) ÅT = 173 K
c = 11.4851 (10) Å0.50 × 0.15 × 0.10 mm
β = 100.306 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2087 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
1599 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.951Rint = 0.041
10868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
2087 reflectionsΔρmin = 0.22 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The vanadium atom is modeled as disordered over a crystallographic inversion center (0.50:0.50) by refining it with half occupancy.

All H atoms were placed geometrically and treated as riding atoms: C—H = 0.95 Å, with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.29452 (6)0.59831 (6)0.46449 (5)0.01980 (18)0.5
C10.1293 (2)0.4299 (2)0.42226 (17)0.0316 (5)
H10.05580.40330.46410.038*
C20.1028 (2)0.5353 (2)0.33615 (18)0.0349 (5)
H20.01120.57850.31910.042*
C30.2103 (2)0.5772 (2)0.27507 (17)0.0314 (5)
H30.19190.65080.21840.038*
C40.34614 (19)0.51178 (19)0.29623 (16)0.0248 (4)
C50.4594 (2)0.5497 (2)0.23440 (16)0.0301 (4)
H50.44330.62230.17660.036*
C60.5878 (2)0.4852 (2)0.25607 (16)0.0303 (4)
H60.65930.51280.21240.036*
C70.61989 (19)0.37588 (19)0.34317 (16)0.0247 (4)
C80.7553 (2)0.3103 (2)0.37001 (17)0.0326 (5)
H80.82860.33640.32760.039*
C90.7829 (2)0.2076 (2)0.45809 (18)0.0347 (5)
H90.87470.16460.47520.042*
C100.6766 (2)0.1678 (2)0.52117 (17)0.0328 (5)
H100.69710.09830.58130.039*
C110.53907 (19)0.22931 (19)0.49700 (16)0.0254 (4)
C120.4261 (2)0.1918 (2)0.55979 (17)0.0308 (4)
H120.44340.12130.61930.037*
C130.2967 (2)0.2541 (2)0.53655 (17)0.0304 (4)
H130.22500.22570.57970.036*
C140.26389 (19)0.36248 (19)0.44801 (15)0.0248 (4)
C150.37363 (18)0.40397 (18)0.38459 (15)0.0207 (4)
C160.51109 (18)0.33630 (18)0.40833 (15)0.0211 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0189 (3)0.0199 (3)0.0200 (3)0.0012 (2)0.0019 (2)0.0019 (2)
C10.0229 (9)0.0386 (12)0.0339 (11)0.0051 (8)0.0068 (8)0.0102 (9)
C20.0240 (10)0.0408 (12)0.0361 (11)0.0066 (9)0.0046 (8)0.0113 (9)
C30.0341 (10)0.0291 (11)0.0271 (10)0.0066 (8)0.0054 (8)0.0024 (8)
C40.0278 (10)0.0222 (9)0.0223 (9)0.0001 (7)0.0016 (7)0.0037 (7)
C50.0401 (11)0.0261 (10)0.0235 (10)0.0031 (8)0.0035 (8)0.0044 (8)
C60.0341 (11)0.0336 (11)0.0252 (10)0.0080 (9)0.0108 (8)0.0012 (8)
C70.0246 (9)0.0259 (10)0.0235 (9)0.0021 (7)0.0039 (7)0.0075 (7)
C80.0259 (10)0.0415 (12)0.0311 (10)0.0030 (9)0.0072 (8)0.0110 (9)
C90.0305 (10)0.0362 (11)0.0355 (11)0.0133 (9)0.0003 (9)0.0096 (9)
C100.0397 (12)0.0251 (10)0.0303 (10)0.0090 (8)0.0029 (9)0.0024 (8)
C110.0316 (10)0.0193 (9)0.0237 (9)0.0010 (7)0.0008 (8)0.0034 (7)
C120.0418 (11)0.0240 (10)0.0261 (10)0.0041 (8)0.0048 (8)0.0037 (8)
C130.0349 (10)0.0298 (10)0.0287 (10)0.0107 (9)0.0115 (8)0.0021 (8)
C140.0242 (9)0.0247 (10)0.0251 (9)0.0049 (7)0.0038 (7)0.0067 (7)
C150.0224 (8)0.0195 (9)0.0193 (8)0.0023 (7)0.0013 (7)0.0042 (7)
C160.0239 (9)0.0190 (9)0.0196 (8)0.0013 (7)0.0015 (7)0.0045 (7)
Geometric parameters (Å, º) top
V1—C32.1885 (19)C6—H60.9500
V1—C22.210 (2)C7—C81.412 (3)
V1—C8i2.2162 (19)C7—C161.430 (2)
V1—C7i2.2266 (19)C7—V1i2.2266 (18)
V1—C16i2.2268 (17)C8—C91.396 (3)
V1—C9i2.227 (2)C8—V1i2.2162 (19)
V1—C12.231 (2)C8—H80.9500
V1—C42.2335 (19)C9—C101.396 (3)
V1—C10i2.240 (2)C9—V1i2.227 (2)
V1—C152.2492 (18)C9—H90.9500
V1—C142.2620 (19)C10—C111.411 (3)
V1—C11i2.2628 (19)C10—V1i2.240 (2)
C1—C21.397 (3)C10—H100.9500
C1—C141.412 (3)C11—C161.429 (2)
C1—H10.9500C11—C121.440 (3)
C2—C31.396 (3)C11—V1i2.2628 (19)
C2—H20.9500C12—C131.346 (3)
C3—C41.412 (2)C12—H120.9500
C3—H30.9500C13—C141.441 (3)
C4—C151.432 (2)C13—H130.9500
C4—C51.436 (3)C14—C151.429 (2)
C5—C61.347 (3)C15—C161.436 (2)
C5—H50.9500C16—V1i2.2268 (17)
C6—C71.436 (3)
C3—V1—C237.00 (7)C3—C2—H2119.9
C3—V1—C8i142.42 (7)C1—C2—H2119.9
C2—V1—C8i113.68 (7)V1—C2—H2129.4
C3—V1—C7i178.94 (8)C2—C3—C4121.00 (18)
C2—V1—C7i143.36 (8)C2—C3—V172.32 (11)
C8i—V1—C7i37.06 (7)C4—C3—V173.12 (10)
C3—V1—C16i142.17 (8)C2—C3—H3119.5
C2—V1—C16i179.13 (8)C4—C3—H3119.5
C8i—V1—C16i66.87 (7)V1—C3—H3127.1
C7i—V1—C16i37.45 (6)C3—C4—C15118.77 (17)
C3—V1—C9i112.63 (8)C3—C4—C5123.06 (17)
C2—V1—C9i101.50 (8)C15—C4—C5118.16 (16)
C8i—V1—C9i36.61 (7)C3—C4—V169.65 (10)
C7i—V1—C9i66.47 (7)C15—C4—V171.96 (10)
C16i—V1—C9i78.53 (7)C5—C4—V1129.43 (13)
C3—V1—C166.47 (8)C6—C5—C4121.82 (17)
C2—V1—C136.68 (8)C6—C5—H5119.1
C8i—V1—C1102.57 (8)C4—C5—H5119.1
C7i—V1—C1114.33 (7)C5—C6—C7121.96 (17)
C16i—V1—C1144.09 (8)C5—C6—H6119.0
C9i—V1—C1114.24 (8)C7—C6—H6119.0
C3—V1—C437.22 (7)C8—C7—C16118.97 (17)
C2—V1—C466.73 (7)C8—C7—C6122.82 (17)
C8i—V1—C4178.52 (8)C16—C7—C6118.16 (16)
C7i—V1—C4143.26 (7)C8—C7—V1i71.07 (10)
C16i—V1—C4112.70 (7)C16—C7—V1i71.28 (10)
C9i—V1—C4142.08 (8)C6—C7—V1i127.29 (13)
C1—V1—C478.61 (7)C9—C8—C7120.78 (18)
C3—V1—C10i100.49 (8)C9—C8—V1i72.13 (11)
C2—V1—C10i113.15 (8)C7—C8—V1i71.87 (10)
C8i—V1—C10i65.85 (8)C9—C8—H8119.6
C7i—V1—C10i78.45 (7)C7—C8—H8119.6
C16i—V1—C10i66.37 (7)V1i—C8—H8128.7
C9i—V1—C10i36.41 (7)C10—C9—C8120.41 (18)
C1—V1—C10i142.99 (8)C10—C9—V1i72.30 (11)
C4—V1—C10i112.67 (8)C8—C9—V1i71.26 (11)
C3—V1—C1566.94 (7)C10—C9—H9119.8
C2—V1—C1578.50 (7)C8—C9—H9119.8
C8i—V1—C15144.03 (8)V1i—C9—H9129.0
C7i—V1—C15113.95 (7)C9—C10—C11121.00 (18)
C16i—V1—C15101.46 (6)C9—C10—V1i71.29 (12)
C9i—V1—C15179.29 (8)C11—C10—V1i72.61 (11)
C1—V1—C1566.17 (7)C9—C10—H10119.5
C4—V1—C1537.27 (6)C11—C10—H10119.5
C10i—V1—C15142.95 (8)V1i—C10—H10129.0
C3—V1—C1478.90 (7)C10—C11—C16118.79 (17)
C2—V1—C1466.28 (7)C10—C11—C12122.99 (17)
C8i—V1—C14114.55 (8)C16—C11—C12118.20 (16)
C7i—V1—C14102.16 (7)C10—C11—V1i70.87 (11)
C16i—V1—C14114.21 (7)C16—C11—V1i70.07 (10)
C9i—V1—C14143.71 (8)C12—C11—V1i129.58 (13)
C1—V1—C1436.62 (7)C13—C12—C11121.80 (18)
C4—V1—C1466.93 (7)C13—C12—H12119.1
C10i—V1—C14179.37 (8)C11—C12—H12119.1
C15—V1—C1436.93 (6)C12—C13—C14121.87 (17)
C3—V1—C11i112.24 (8)C12—C13—H13119.1
C2—V1—C11i142.10 (8)C14—C13—H13119.1
C8i—V1—C11i78.33 (7)C1—C14—C15118.85 (17)
C7i—V1—C11i66.95 (7)C1—C14—C13123.03 (17)
C16i—V1—C11i37.12 (6)C15—C14—C13118.11 (16)
C9i—V1—C11i65.92 (7)C1—C14—V170.50 (11)
C1—V1—C11i178.70 (8)C15—C14—V171.05 (10)
C4—V1—C11i100.47 (7)C13—C14—V1129.78 (13)
C10i—V1—C11i36.52 (7)C14—C15—C4120.08 (16)
C15—V1—C11i113.65 (7)C14—C15—C16120.00 (16)
C14—V1—C11i143.85 (7)C4—C15—C16119.91 (16)
C2—C1—C14120.98 (18)C14—C15—V172.02 (10)
C2—C1—V170.83 (11)C4—C15—V170.77 (10)
C14—C1—V172.88 (11)C16—C15—V1130.39 (12)
C2—C1—H1119.5C11—C16—C7120.02 (16)
C14—C1—H1119.5C11—C16—C15120.00 (16)
V1—C1—H1129.2C7—C16—C15119.98 (16)
C3—C2—C1120.29 (18)C11—C16—V1i72.81 (10)
C3—C2—V170.68 (11)C7—C16—V1i71.27 (10)
C1—C2—V172.49 (11)C15—C16—V1i128.15 (12)
C14—C1—C2—C31.0 (3)C12—C13—C14—C150.3 (3)
V1—C1—C2—C354.12 (17)C12—C13—C14—V188.4 (2)
C14—C1—C2—V155.09 (16)C1—C14—C15—C40.3 (2)
C1—C2—C3—C41.9 (3)C13—C14—C15—C4179.68 (16)
V1—C2—C3—C456.84 (16)V1—C14—C15—C453.98 (14)
C1—C2—C3—V154.97 (17)C1—C14—C15—C16179.49 (16)
C2—C3—C4—C151.9 (3)C13—C14—C15—C161.1 (2)
V1—C3—C4—C1554.52 (15)V1—C14—C15—C16126.82 (15)
C2—C3—C4—C5179.01 (18)C1—C14—C15—V153.69 (15)
V1—C3—C4—C5124.53 (17)C13—C14—C15—V1125.70 (16)
C2—C3—C4—V156.46 (16)C3—C4—C15—C141.1 (2)
C3—C4—C5—C6179.76 (18)C5—C4—C15—C14179.76 (16)
C15—C4—C5—C61.2 (3)V1—C4—C15—C1454.56 (14)
V1—C4—C5—C690.3 (2)C3—C4—C15—C16179.65 (16)
C4—C5—C6—C70.8 (3)C5—C4—C15—C160.6 (2)
C5—C6—C7—C8177.79 (18)V1—C4—C15—C16126.24 (15)
C5—C6—C7—C160.3 (3)C3—C4—C15—V153.42 (15)
C5—C6—C7—V1i87.4 (2)C5—C4—C15—V1125.68 (16)
C16—C7—C8—C90.5 (3)C10—C11—C16—C72.1 (2)
C6—C7—C8—C9177.93 (18)C12—C11—C16—C7179.47 (16)
V1i—C7—C8—C955.18 (16)V1i—C11—C16—C755.45 (14)
C16—C7—C8—V1i54.71 (15)C10—C11—C16—C15177.96 (16)
C6—C7—C8—V1i122.75 (17)C12—C11—C16—C150.5 (2)
C7—C8—C9—C100.1 (3)V1i—C11—C16—C15124.61 (15)
V1i—C8—C9—C1055.16 (17)C10—C11—C16—V1i53.35 (15)
C7—C8—C9—V1i55.06 (16)C12—C11—C16—V1i125.08 (16)
C8—C9—C10—C110.5 (3)C8—C7—C16—C111.6 (2)
V1i—C9—C10—C1155.13 (17)C6—C7—C16—C11179.16 (16)
C8—C9—C10—V1i54.67 (17)V1i—C7—C16—C1156.19 (14)
C9—C10—C11—C161.6 (3)C8—C7—C16—C15178.49 (16)
V1i—C10—C11—C1652.97 (15)C6—C7—C16—C150.9 (2)
C9—C10—C11—C12179.90 (18)V1i—C7—C16—C15123.87 (15)
V1i—C10—C11—C12125.37 (18)C8—C7—C16—V1i54.61 (15)
C9—C10—C11—V1i54.53 (17)C6—C7—C16—V1i122.97 (16)
C10—C11—C12—C13178.69 (18)C14—C15—C16—C111.2 (2)
C16—C11—C12—C130.3 (3)C4—C15—C16—C11179.60 (16)
V1i—C11—C12—C1387.0 (2)V1—C15—C16—C1190.1 (2)
C11—C12—C13—C140.4 (3)C14—C15—C16—C7178.74 (15)
C2—C1—C14—C150.2 (3)C4—C15—C16—C70.5 (2)
V1—C1—C14—C1553.95 (15)V1—C15—C16—C789.9 (2)
C2—C1—C14—C13179.55 (17)C14—C15—C16—V1i92.32 (19)
V1—C1—C14—C13125.40 (17)C4—C15—C16—V1i88.48 (19)
C2—C1—C14—V154.14 (16)V1—C15—C16—V1i1.0 (2)
C12—C13—C14—C1179.69 (18)
Symmetry code: (i) x+1, y+1, z+1.
(II) Bis[(1,2,3,3a,10a,10b-η)-pyrene]niobium(0) top
Crystal data top
[Nb(C16H10)2]F(000) = 506
Mr = 497.39Dx = 1.615 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.5838 (12) ÅCell parameters from 2133 reflections
b = 9.5974 (13) Åθ = 2.5–25.1°
c = 12.8876 (18) ŵ = 0.61 mm1
β = 105.554 (2)°T = 123 K
V = 1022.8 (2) Å3Needle, black
Z = 20.30 × 0.05 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1360 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.059
ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1010
Tmin = 0.839, Tmax = 0.970k = 1111
9829 measured reflectionsl = 1515
1814 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0302P)2 + 1.0797P]
where P = (Fo2 + 2Fc2)/3
1814 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Nb(C16H10)2]V = 1022.8 (2) Å3
Mr = 497.39Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.5838 (12) ŵ = 0.61 mm1
b = 9.5974 (13) ÅT = 123 K
c = 12.8876 (18) Å0.30 × 0.05 × 0.05 mm
β = 105.554 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1814 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
1360 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.970Rint = 0.059
9829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.07Δρmax = 0.36 e Å3
1814 reflectionsΔρmin = 0.29 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The niobium atom is modeled as disordered over a crystallographic inversion center (0.50:0.50) by refining it with half occupancy.

All H atoms were placed geometrically and treated as riding atoms: C—H = 0.95 Å, with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nb10.73045 (6)0.58271 (5)0.60072 (4)0.01324 (15)0.5
C10.7240 (3)0.8181 (3)0.5674 (2)0.0228 (7)
H10.72520.89000.61830.027*
C20.8707 (4)0.7637 (3)0.5566 (2)0.0230 (7)
H20.97030.80110.59840.028*
C30.8708 (3)0.6547 (3)0.4846 (2)0.0210 (7)
H30.97100.61730.47960.025*
C40.7249 (3)0.5991 (3)0.4192 (2)0.0178 (6)
C50.7199 (3)0.4864 (3)0.3446 (2)0.0182 (6)
H50.81850.44720.33820.022*
C60.5787 (3)0.4353 (3)0.2837 (2)0.0195 (6)
H60.58050.36030.23600.023*
C70.4249 (3)0.4911 (3)0.2889 (2)0.0178 (6)
C80.2766 (3)0.4382 (3)0.2254 (2)0.0230 (7)
H80.27600.36400.17650.028*
C90.1305 (4)0.4948 (3)0.2342 (2)0.0244 (7)
H90.03130.45840.19100.029*
C100.1280 (3)0.6043 (3)0.3057 (2)0.0215 (7)
H100.02750.64160.31020.026*
C110.2747 (3)0.6596 (3)0.3712 (2)0.0174 (6)
C120.2800 (3)0.7694 (3)0.4494 (2)0.0203 (6)
H120.18140.80710.45720.024*
C130.4211 (3)0.8193 (3)0.5111 (2)0.0195 (6)
H130.41910.89120.56130.023*
C140.5746 (3)0.7672 (3)0.5035 (2)0.0179 (6)
C150.5754 (3)0.6560 (3)0.4288 (2)0.0153 (6)
C160.4246 (3)0.6022 (3)0.3633 (2)0.0145 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.0147 (2)0.0125 (3)0.0122 (2)0.0003 (2)0.00303 (18)0.0007 (2)
C10.0317 (17)0.0194 (16)0.0164 (16)0.0015 (13)0.0046 (14)0.0014 (12)
C20.0241 (16)0.0214 (16)0.0194 (15)0.0016 (13)0.0012 (13)0.0006 (13)
C30.0224 (16)0.0193 (15)0.0204 (16)0.0005 (13)0.0040 (13)0.0055 (13)
C40.0202 (14)0.0165 (15)0.0169 (14)0.0001 (12)0.0052 (11)0.0034 (12)
C50.0192 (15)0.0185 (15)0.0196 (15)0.0029 (12)0.0096 (12)0.0021 (13)
C60.0269 (15)0.0151 (15)0.0176 (14)0.0009 (13)0.0076 (12)0.0021 (13)
C70.0226 (15)0.0147 (15)0.0167 (15)0.0000 (12)0.0066 (12)0.0027 (12)
C80.0275 (16)0.0187 (16)0.0200 (15)0.0003 (13)0.0012 (13)0.0001 (13)
C90.0222 (16)0.0238 (17)0.0237 (17)0.0045 (13)0.0003 (13)0.0039 (13)
C100.0187 (14)0.0231 (17)0.0230 (15)0.0043 (12)0.0062 (12)0.0067 (13)
C110.0231 (15)0.0140 (15)0.0166 (15)0.0010 (12)0.0079 (13)0.0040 (12)
C120.0254 (16)0.0168 (15)0.0210 (15)0.0054 (13)0.0104 (13)0.0026 (13)
C130.0294 (17)0.0113 (14)0.0195 (15)0.0032 (12)0.0095 (13)0.0000 (12)
C140.0243 (15)0.0129 (14)0.0169 (15)0.0004 (12)0.0064 (12)0.0029 (12)
C150.0206 (15)0.0128 (14)0.0124 (14)0.0007 (12)0.0043 (11)0.0024 (12)
C160.0187 (14)0.0117 (14)0.0128 (13)0.0004 (11)0.0035 (11)0.0044 (11)
Geometric parameters (Å, º) top
Nb1—C32.266 (3)C6—H60.9500
Nb1—C8i2.267 (3)C7—C81.410 (4)
Nb1—C9i2.268 (3)C7—C161.435 (4)
Nb1—C22.271 (3)C7—Nb1i2.307 (3)
Nb1—C12.297 (3)C8—C91.399 (4)
Nb1—C7i2.307 (3)C8—Nb1i2.267 (3)
Nb1—C10i2.317 (3)C8—H80.9500
Nb1—C42.333 (3)C9—C101.401 (4)
Nb1—C16i2.338 (3)C9—Nb1i2.268 (3)
Nb1—C11i2.356 (3)C9—H90.9500
Nb1—C142.365 (3)C10—C111.419 (4)
Nb1—C152.366 (3)C10—Nb1i2.317 (3)
C1—C21.404 (4)C10—H100.9500
C1—C141.413 (4)C11—C161.428 (4)
C1—H10.9500C11—C121.450 (4)
C2—C31.399 (4)C11—Nb1i2.356 (3)
C2—H20.9500C12—C131.346 (4)
C3—C41.413 (4)C12—H120.9500
C3—H30.9500C13—C141.437 (4)
C4—C151.431 (4)C13—H130.9500
C4—C51.440 (4)C14—C151.439 (4)
C5—C61.347 (4)C15—C161.437 (4)
C5—H50.9500C16—Nb1i2.338 (3)
C6—C71.443 (4)
C3—Nb1—C8i147.11 (11)C3—C2—H2119.9
C3—Nb1—C9i118.70 (11)C1—C2—H2119.9
C8i—Nb1—C9i35.95 (10)Nb1—C2—H2127.1
C3—Nb1—C235.91 (10)C2—C3—C4121.4 (3)
C8i—Nb1—C2118.14 (11)C2—C3—Nb172.24 (17)
C9i—Nb1—C2107.74 (11)C4—C3—Nb174.70 (16)
C3—Nb1—C164.34 (11)C2—C3—H3119.3
C8i—Nb1—C1105.45 (11)C4—C3—H3119.3
C9i—Nb1—C1118.58 (11)Nb1—C3—H3125.5
C2—Nb1—C135.79 (10)C3—C4—C15118.5 (3)
C3—Nb1—C7i176.88 (10)C3—C4—C5123.0 (3)
C8i—Nb1—C7i35.91 (10)C15—C4—C5118.5 (2)
C9i—Nb1—C7i64.32 (10)C3—C4—Nb169.55 (16)
C2—Nb1—C7i145.31 (11)C15—C4—Nb173.53 (16)
C1—Nb1—C7i115.37 (10)C5—C4—Nb1127.4 (2)
C3—Nb1—C10i106.42 (10)C6—C5—C4121.6 (3)
C8i—Nb1—C10i64.26 (10)C6—C5—H5119.2
C9i—Nb1—C10i35.56 (11)C4—C5—H5119.2
C2—Nb1—C10i118.92 (10)C5—C6—C7121.9 (3)
C1—Nb1—C10i147.36 (10)C5—C6—H6119.0
C7i—Nb1—C10i75.53 (10)C7—C6—H6119.0
C3—Nb1—C435.76 (10)C8—C7—C16119.5 (3)
C8i—Nb1—C4177.13 (10)C8—C7—C6122.3 (3)
C9i—Nb1—C4145.79 (11)C16—C7—C6118.2 (2)
C2—Nb1—C464.34 (10)C8—C7—Nb1i70.52 (17)
C1—Nb1—C475.70 (10)C16—C7—Nb1i73.21 (15)
C7i—Nb1—C4141.23 (10)C6—C7—Nb1i127.01 (19)
C10i—Nb1—C4116.20 (10)C9—C8—C7120.1 (3)
C3—Nb1—C16i142.57 (10)C9—C8—Nb1i72.04 (17)
C8i—Nb1—C16i64.49 (10)C7—C8—Nb1i73.57 (17)
C9i—Nb1—C16i75.49 (10)C9—C8—H8119.9
C2—Nb1—C16i176.77 (10)C7—C8—H8119.9
C1—Nb1—C16i142.85 (10)Nb1i—C8—H8126.3
C7i—Nb1—C16i35.97 (10)C8—C9—C10121.1 (3)
C10i—Nb1—C16i63.62 (9)C8—C9—Nb1i72.01 (17)
C4—Nb1—C16i112.98 (10)C10—C9—Nb1i74.12 (17)
C3—Nb1—C11i115.96 (10)C8—C9—H9119.4
C8i—Nb1—C11i75.77 (10)C10—C9—H9119.4
C9i—Nb1—C11i63.83 (10)Nb1i—C9—H9126.3
C2—Nb1—C11i145.76 (10)C9—C10—C11120.3 (3)
C1—Nb1—C11i177.30 (10)C9—C10—Nb1i70.32 (17)
C7i—Nb1—C11i64.17 (10)C11—C10—Nb1i73.85 (16)
C10i—Nb1—C11i35.34 (10)C9—C10—H10119.8
C4—Nb1—C11i102.97 (10)C11—C10—H10119.8
C16i—Nb1—C11i35.42 (9)Nb1i—C10—H10128.2
C3—Nb1—C1475.36 (10)C10—C11—C16119.1 (3)
C8i—Nb1—C14115.39 (10)C10—C11—C12122.9 (3)
C9i—Nb1—C14145.42 (11)C16—C11—C12118.0 (2)
C2—Nb1—C1463.73 (10)C10—C11—Nb1i70.81 (16)
C1—Nb1—C1435.23 (10)C16—C11—Nb1i71.62 (15)
C7i—Nb1—C14102.60 (10)C12—C11—Nb1i127.52 (19)
C10i—Nb1—C14177.28 (10)C13—C12—C11121.6 (3)
C4—Nb1—C1464.00 (9)C13—C12—H12119.2
C16i—Nb1—C14113.70 (10)C11—C12—H12119.2
C11i—Nb1—C14142.08 (10)C12—C13—C14122.2 (3)
C3—Nb1—C1563.64 (10)C12—C13—H13118.9
C8i—Nb1—C15142.65 (10)C14—C13—H13118.9
C9i—Nb1—C15177.25 (10)C1—C14—C13123.1 (3)
C2—Nb1—C1575.00 (10)C1—C14—C15118.7 (3)
C1—Nb1—C1563.46 (10)C13—C14—C15118.2 (3)
C7i—Nb1—C15113.32 (10)C1—C14—Nb169.75 (16)
C10i—Nb1—C15143.43 (10)C13—C14—Nb1128.53 (19)
C4—Nb1—C1535.45 (9)C15—C14—Nb172.31 (15)
C16i—Nb1—C15101.77 (9)C4—C15—C16120.0 (2)
C11i—Nb1—C15114.09 (10)C4—C15—C14120.4 (2)
C14—Nb1—C1535.41 (9)C16—C15—C14119.6 (2)
C2—C1—C14120.8 (3)C4—C15—Nb171.02 (15)
C2—C1—Nb171.09 (18)C16—C15—Nb1129.41 (18)
C14—C1—Nb175.01 (17)C14—C15—Nb172.28 (15)
C2—C1—H1119.6C11—C16—C7119.8 (2)
C14—C1—H1119.6C11—C16—C15120.4 (2)
Nb1—C1—H1126.2C7—C16—C15119.8 (2)
C3—C2—C1120.2 (3)C11—C16—Nb1i72.97 (15)
C3—C2—Nb171.85 (17)C7—C16—Nb1i70.81 (15)
C1—C2—Nb173.13 (17)C15—C16—Nb1i128.82 (18)
C14—C1—C2—C32.1 (4)C12—C13—C14—C151.4 (4)
Nb1—C1—C2—C356.4 (3)C12—C13—C14—Nb190.6 (3)
C14—C1—C2—Nb158.5 (3)C3—C4—C15—C16179.9 (2)
C1—C2—C3—C41.7 (4)C5—C4—C15—C161.1 (4)
Nb1—C2—C3—C458.7 (2)Nb1—C4—C15—C16125.2 (2)
C1—C2—C3—Nb157.0 (3)C3—C4—C15—C140.0 (4)
C2—C3—C4—C150.6 (4)C5—C4—C15—C14179.0 (2)
Nb1—C3—C4—C1556.9 (2)Nb1—C4—C15—C1454.9 (2)
C2—C3—C4—C5179.6 (3)C3—C4—C15—Nb154.9 (2)
Nb1—C3—C4—C5122.1 (3)C5—C4—C15—Nb1124.1 (2)
C2—C3—C4—Nb157.5 (2)C1—C14—C15—C40.4 (4)
C3—C4—C5—C6179.7 (3)C13—C14—C15—C4179.1 (2)
C15—C4—C5—C60.7 (4)Nb1—C14—C15—C454.3 (2)
Nb1—C4—C5—C691.2 (3)C1—C14—C15—C16179.7 (2)
C4—C5—C6—C70.6 (4)C13—C14—C15—C161.0 (4)
C5—C6—C7—C8180.0 (3)Nb1—C14—C15—C16125.8 (2)
C5—C6—C7—C161.4 (4)C1—C14—C15—Nb153.9 (2)
C5—C6—C7—Nb1i91.1 (3)C13—C14—C15—Nb1124.8 (2)
C16—C7—C8—C90.6 (4)C10—C11—C16—C70.7 (4)
C6—C7—C8—C9179.2 (3)C12—C11—C16—C7178.5 (2)
Nb1i—C7—C8—C957.1 (3)Nb1i—C11—C16—C755.1 (2)
C16—C7—C8—Nb1i56.5 (2)C10—C11—C16—C15179.9 (2)
C6—C7—C8—Nb1i122.1 (3)C12—C11—C16—C152.1 (4)
C7—C8—C9—C100.0 (4)Nb1i—C11—C16—C15125.5 (2)
Nb1i—C8—C9—C1057.9 (3)C10—C11—C16—Nb1i54.5 (2)
C7—C8—C9—Nb1i57.9 (2)C12—C11—C16—Nb1i123.4 (2)
C8—C9—C10—C110.3 (4)C8—C7—C16—C111.0 (4)
Nb1i—C9—C10—C1156.5 (2)C6—C7—C16—C11179.6 (2)
C8—C9—C10—Nb1i56.9 (3)Nb1i—C7—C16—C1156.1 (2)
C9—C10—C11—C160.0 (4)C8—C7—C16—C15179.6 (2)
Nb1i—C10—C11—C1654.8 (2)C6—C7—C16—C151.0 (4)
C9—C10—C11—C12177.8 (3)Nb1i—C7—C16—C15124.4 (2)
Nb1i—C10—C11—C12122.9 (3)C8—C7—C16—Nb1i55.2 (2)
C9—C10—C11—Nb1i54.9 (2)C6—C7—C16—Nb1i123.5 (2)
C10—C11—C12—C13179.5 (3)C4—C15—C16—C11179.1 (2)
C16—C11—C12—C131.7 (4)C14—C15—C16—C110.8 (4)
Nb1i—C11—C12—C1389.3 (3)Nb1—C15—C16—C1191.5 (3)
C11—C12—C13—C140.0 (4)C4—C15—C16—C70.3 (4)
C2—C1—C14—C13179.9 (3)C14—C15—C16—C7179.8 (2)
Nb1—C1—C14—C13123.5 (3)Nb1—C15—C16—C789.0 (3)
C2—C1—C14—C151.5 (4)C4—C15—C16—Nb1i88.8 (3)
Nb1—C1—C14—C1555.2 (2)C14—C15—C16—Nb1i91.3 (3)
C2—C1—C14—Nb156.6 (3)Nb1—C15—C16—Nb1i0.5 (4)
C12—C13—C14—C1179.9 (3)
Symmetry code: (i) x+1, y+1, z+1.
(III) catena-Poly[[(18-crown-6)potassium]-µ-[(1,2-η:1,2,3,3a,10a,10b-η)-pyrene]-titanate(I)-µ-[(1,2,3,3a,10a,10b-η:6,7-η)-pyrene]] top
Crystal data top
[KTi(C16H10)2(C12H24O6)]F(000) = 794
Mr = 755.79Dx = 1.453 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.3934 (13) ÅCell parameters from 2393 reflections
b = 15.682 (2) Åθ = 2.2–26.9°
c = 11.3559 (14) ŵ = 0.42 mm1
β = 111.084 (2)°T = 173 K
V = 1727.0 (4) Å3Block, green
Z = 20.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2929 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.046
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
h = 1313
Tmin = 0.617, Tmax = 0.746k = 2020
19900 measured reflectionsl = 1414
3941 independent reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.8538P]
where P = (Fo2 + 2Fc2)/3
3941 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[KTi(C16H10)2(C12H24O6)]V = 1727.0 (4) Å3
Mr = 755.79Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.3934 (13) ŵ = 0.42 mm1
b = 15.682 (2) ÅT = 173 K
c = 11.3559 (14) Å0.30 × 0.30 × 0.20 mm
β = 111.084 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3941 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
2929 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.746Rint = 0.046
19900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
3941 reflectionsΔρmin = 0.26 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The titanium atom is modeled as disordered over a crystallographic inversion center (0.50:0.50) by refining it with half occupancy.

All H atoms were placed geometrically and treated as riding atoms: methylene, C—H = 0.99 Å, and sp2, C—H = 0.95 Å, with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.29151 (6)0.47176 (4)0.97136 (6)0.01825 (16)0.5
K10.00000.50000.50000.02600 (16)
O10.22886 (13)0.51617 (8)0.56481 (13)0.0264 (3)
O20.10153 (14)0.66619 (9)0.52264 (13)0.0274 (3)
O30.15945 (14)0.64358 (9)0.50731 (13)0.0281 (3)
C10.1979 (2)0.39747 (13)0.78780 (18)0.0280 (4)
H1A0.16380.34070.77480.034*
C20.1098 (2)0.46328 (14)0.79049 (18)0.0306 (5)
H2A0.01700.45100.78060.037*
C30.1568 (2)0.54749 (14)0.80761 (18)0.0287 (4)
H3A0.09560.59200.80990.034*
C40.29462 (18)0.56742 (12)0.82169 (17)0.0226 (4)
C50.3478 (2)0.65211 (13)0.84138 (19)0.0290 (4)
H5A0.28780.69770.84170.035*
C60.4815 (2)0.66965 (12)0.85969 (19)0.0288 (4)
H6A0.51260.72710.87330.035*
C70.57661 (19)0.60426 (13)0.85910 (17)0.0246 (4)
C80.7182 (2)0.62056 (14)0.88240 (18)0.0302 (5)
H8A0.75150.67750.89470.036*
C90.8091 (2)0.55380 (15)0.88743 (19)0.0336 (5)
H9A0.90350.56580.90350.040*
C100.7622 (2)0.46964 (15)0.86903 (19)0.0312 (5)
H10A0.82550.42500.87330.037*
C110.62154 (19)0.44959 (13)0.84401 (17)0.0250 (4)
C120.5685 (2)0.36466 (13)0.82663 (19)0.0287 (4)
H12A0.62890.31880.82850.034*
C130.4341 (2)0.34735 (13)0.80748 (18)0.0288 (4)
H13A0.40340.28980.79610.035*
C140.33817 (19)0.41306 (12)0.80411 (17)0.0232 (4)
C150.38682 (18)0.49937 (12)0.82161 (16)0.0200 (4)
C160.52845 (19)0.51779 (12)0.84106 (17)0.0211 (4)
C170.29514 (19)0.59705 (13)0.54602 (19)0.0282 (4)
H17A0.36060.59920.59130.034*
H17B0.34770.60600.45500.034*
C180.1894 (2)0.66564 (13)0.59427 (19)0.0288 (4)
H18A0.23550.72170.58710.035*
H18B0.13420.65540.68440.035*
C190.0040 (2)0.72894 (13)0.56531 (19)0.0285 (4)
H19A0.06130.71860.65490.034*
H19B0.03760.78640.55830.034*
C200.0912 (2)0.72374 (12)0.48536 (19)0.0283 (4)
H20A0.03270.72940.39510.034*
H20B0.15980.77050.50760.034*
C210.2540 (2)0.63514 (13)0.4435 (2)0.0297 (4)
H21A0.32230.68200.46870.036*
H21B0.20400.63870.35120.036*
C220.3261 (2)0.55137 (13)0.4762 (2)0.0293 (4)
H22A0.39510.54640.43500.035*
H22B0.37520.54760.56860.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0150 (3)0.0230 (3)0.0181 (3)0.0006 (2)0.0076 (2)0.0002 (2)
K10.0248 (3)0.0261 (3)0.0330 (3)0.0022 (2)0.0176 (3)0.0003 (2)
O10.0175 (7)0.0290 (8)0.0344 (8)0.0002 (5)0.0113 (6)0.0017 (6)
O20.0252 (7)0.0295 (7)0.0309 (7)0.0049 (6)0.0140 (6)0.0054 (6)
O30.0265 (7)0.0279 (7)0.0344 (8)0.0011 (6)0.0164 (6)0.0022 (6)
C10.0268 (10)0.0310 (11)0.0243 (10)0.0097 (8)0.0068 (8)0.0004 (8)
C20.0183 (9)0.0468 (13)0.0261 (10)0.0061 (9)0.0072 (8)0.0035 (9)
C30.0198 (9)0.0415 (12)0.0251 (10)0.0040 (8)0.0083 (8)0.0016 (8)
C40.0179 (9)0.0299 (10)0.0198 (9)0.0017 (7)0.0067 (7)0.0011 (7)
C50.0280 (10)0.0274 (10)0.0304 (11)0.0056 (8)0.0091 (9)0.0022 (8)
C60.0318 (11)0.0227 (10)0.0305 (11)0.0050 (8)0.0097 (9)0.0019 (8)
C70.0228 (9)0.0315 (11)0.0211 (9)0.0044 (8)0.0098 (8)0.0016 (8)
C80.0242 (10)0.0408 (12)0.0266 (10)0.0098 (9)0.0105 (8)0.0012 (8)
C90.0195 (10)0.0581 (14)0.0267 (10)0.0059 (9)0.0126 (8)0.0014 (10)
C100.0217 (10)0.0473 (13)0.0279 (11)0.0073 (9)0.0129 (8)0.0015 (9)
C110.0213 (9)0.0356 (11)0.0198 (9)0.0043 (8)0.0095 (7)0.0000 (8)
C120.0286 (10)0.0285 (10)0.0292 (10)0.0077 (8)0.0105 (9)0.0038 (8)
C130.0351 (11)0.0242 (10)0.0271 (10)0.0024 (8)0.0111 (9)0.0038 (8)
C140.0243 (9)0.0270 (10)0.0187 (9)0.0024 (8)0.0081 (7)0.0007 (7)
C150.0169 (8)0.0271 (9)0.0167 (9)0.0017 (7)0.0070 (7)0.0012 (7)
C160.0192 (9)0.0286 (10)0.0173 (9)0.0007 (7)0.0087 (7)0.0007 (7)
C170.0203 (9)0.0340 (11)0.0325 (11)0.0028 (8)0.0122 (8)0.0025 (8)
C180.0264 (10)0.0320 (11)0.0310 (11)0.0041 (8)0.0138 (8)0.0014 (8)
C190.0260 (10)0.0247 (10)0.0331 (11)0.0024 (8)0.0088 (8)0.0037 (8)
C200.0247 (10)0.0256 (10)0.0328 (11)0.0032 (8)0.0082 (8)0.0017 (8)
C210.0244 (10)0.0337 (11)0.0348 (11)0.0064 (8)0.0154 (9)0.0027 (9)
C220.0208 (10)0.0368 (12)0.0331 (11)0.0037 (8)0.0133 (8)0.0011 (9)
Geometric parameters (Å, º) top
Ti1—C32.226 (2)C6—H6A0.9500
Ti1—C8i2.233 (2)C7—C81.422 (3)
Ti1—C22.239 (2)C7—C161.434 (3)
Ti1—C9i2.243 (2)C7—Ti1i2.260 (2)
Ti1—C7i2.260 (2)C8—C91.397 (3)
Ti1—C10i2.273 (2)C8—Ti1i2.233 (2)
Ti1—C42.276 (2)C8—H8A0.9500
Ti1—C12.278 (2)C9—C101.396 (3)
Ti1—C16i2.2799 (19)C9—Ti1i2.243 (2)
Ti1—C152.2961 (18)C9—H9A0.9500
Ti1—C142.3135 (19)C10—C111.420 (3)
Ti1—C11i2.318 (2)C10—Ti1i2.273 (2)
K1—O12.7429 (13)C10—H10A0.9500
K1—O1ii2.7430 (13)C11—C121.428 (3)
K1—O3ii2.7793 (14)C11—C161.435 (3)
K1—O32.7793 (14)C11—Ti1i2.318 (2)
K1—O22.8578 (14)C12—C131.361 (3)
K1—O2ii2.8578 (14)C12—H12A0.9500
K1—C23.132 (2)C13—C141.425 (3)
K1—C2ii3.132 (2)C13—H13A0.9500
K1—C3ii3.364 (2)C14—C151.433 (3)
K1—C33.364 (2)C15—C161.437 (2)
O1—C22ii1.422 (2)C16—Ti1i2.2799 (19)
O1—C171.422 (2)C17—C181.494 (3)
O2—C191.422 (2)C17—H17A0.9900
O2—C181.425 (2)C17—H17B0.9900
O3—C201.421 (2)C18—H18A0.9900
O3—C211.421 (2)C18—H18B0.9900
C1—C21.387 (3)C19—C201.498 (3)
C1—C141.423 (3)C19—H19A0.9900
C1—H1A0.9500C19—H19B0.9900
C2—C31.397 (3)C20—H20A0.9900
C2—H2A0.9500C20—H20B0.9900
C3—C41.418 (3)C21—C221.492 (3)
C3—H3A0.9500C21—H21A0.9900
C4—C51.425 (3)C21—H21B0.9900
C4—C151.435 (3)C22—O1ii1.422 (2)
C5—C61.357 (3)C22—H22A0.9900
C5—H5A0.9500C22—H22B0.9900
C6—C71.426 (3)
C3—Ti1—C8i141.64 (8)C14—C1—H1A119.2
C3—Ti1—C236.47 (8)Ti1—C1—H1A129.4
C8i—Ti1—C2113.26 (8)C1—C2—C3120.38 (18)
C3—Ti1—C9i112.19 (8)C1—C2—Ti173.66 (11)
C8i—Ti1—C9i36.38 (8)C3—C2—Ti171.27 (11)
C2—Ti1—C9i100.90 (8)C1—C2—K196.14 (12)
C3—Ti1—C7i178.11 (7)C3—C2—K187.10 (12)
C8i—Ti1—C7i36.89 (7)Ti1—C2—K1145.38 (8)
C2—Ti1—C7i143.43 (8)C1—C2—H2A119.8
C9i—Ti1—C7i65.95 (7)C3—C2—H2A119.8
C3—Ti1—C10i100.91 (8)Ti1—C2—H2A127.3
C8i—Ti1—C10i65.12 (8)K1—C2—H2A86.8
C2—Ti1—C10i112.80 (8)C2—C3—C4120.83 (19)
C9i—Ti1—C10i36.01 (8)C2—C3—Ti172.26 (12)
C7i—Ti1—C10i77.38 (7)C4—C3—Ti173.57 (11)
C3—Ti1—C436.69 (7)C2—C3—K168.39 (11)
C8i—Ti1—C4178.17 (8)C4—C3—K1104.97 (12)
C2—Ti1—C465.67 (7)Ti1—C3—K1132.33 (9)
C9i—Ti1—C4141.92 (8)C2—C3—H3A119.6
C7i—Ti1—C4144.75 (7)C4—C3—H3A119.6
C10i—Ti1—C4113.73 (8)Ti1—C3—H3A126.5
C3—Ti1—C164.86 (8)K1—C3—H3A96.4
C8i—Ti1—C1103.31 (8)C3—C4—C5122.85 (18)
C2—Ti1—C135.76 (8)C3—C4—C15118.94 (18)
C9i—Ti1—C1114.04 (8)C5—C4—C15118.15 (17)
C7i—Ti1—C1115.99 (8)C3—C4—Ti169.74 (11)
C10i—Ti1—C1142.16 (8)C5—C4—Ti1127.31 (13)
C4—Ti1—C176.70 (7)C15—C4—Ti172.48 (10)
C3—Ti1—C16i143.16 (8)C6—C5—C4122.08 (18)
C8i—Ti1—C16i66.00 (7)C6—C5—H5A119.0
C2—Ti1—C16i177.98 (8)C4—C5—H5A119.0
C9i—Ti1—C16i77.39 (7)C5—C6—C7121.79 (18)
C7i—Ti1—C16i36.83 (7)C5—C6—H6A119.1
C10i—Ti1—C16i65.19 (7)C7—C6—H6A119.1
C4—Ti1—C16i115.02 (7)C8—C7—C6122.87 (19)
C1—Ti1—C16i145.95 (8)C8—C7—C16118.77 (18)
C3—Ti1—C1565.80 (7)C6—C7—C16118.27 (17)
C8i—Ti1—C15145.10 (8)C8—C7—Ti1i70.51 (11)
C2—Ti1—C1577.18 (7)C6—C7—Ti1i125.75 (13)
C9i—Ti1—C15177.92 (8)C16—C7—Ti1i72.34 (11)
C7i—Ti1—C15116.06 (7)C9—C8—C7120.80 (19)
C10i—Ti1—C15144.02 (8)C9—C8—Ti1i72.21 (12)
C4—Ti1—C1536.57 (7)C7—C8—Ti1i72.60 (11)
C1—Ti1—C1564.84 (7)C9—C8—H8A119.6
C16i—Ti1—C15104.52 (7)C7—C8—H8A119.6
C3—Ti1—C1477.36 (7)Ti1i—C8—H8A127.7
C8i—Ti1—C14115.57 (8)C10—C9—C8120.51 (18)
C2—Ti1—C1465.16 (7)C10—C9—Ti1i73.18 (11)
C9i—Ti1—C14143.62 (8)C8—C9—Ti1i71.41 (11)
C7i—Ti1—C14104.33 (7)C10—C9—H9A119.7
C10i—Ti1—C14177.96 (8)C8—C9—H9A119.7
C4—Ti1—C1465.53 (7)Ti1i—C9—H9A127.8
C1—Ti1—C1436.10 (7)C9—C10—C11121.20 (19)
C16i—Ti1—C14116.85 (7)C9—C10—Ti1i70.80 (11)
C15—Ti1—C1436.23 (7)C11—C10—Ti1i73.68 (11)
C3—Ti1—C11i113.28 (8)C9—C10—H10A119.4
C8i—Ti1—C11i77.26 (8)C11—C10—H10A119.4
C2—Ti1—C11i141.94 (8)Ti1i—C10—H10A128.4
C9i—Ti1—C11i65.08 (8)C10—C11—C12123.55 (18)
C7i—Ti1—C11i65.82 (7)C10—C11—C16118.45 (18)
C10i—Ti1—C11i36.02 (7)C12—C11—C16117.95 (17)
C4—Ti1—C11i102.66 (7)C10—C11—Ti1i70.29 (11)
C1—Ti1—C11i177.67 (8)C12—C11—Ti1i128.83 (14)
C16i—Ti1—C11i36.35 (6)C16—C11—Ti1i70.39 (10)
C15—Ti1—C11i115.97 (7)C13—C12—C11122.08 (18)
C14—Ti1—C11i145.67 (7)C13—C12—H12A119.0
O1—K1—O1ii180.0C11—C12—H12A119.0
O1—K1—O3ii61.16 (4)C12—C13—C14121.86 (18)
O1ii—K1—O3ii118.85 (4)C12—C13—H13A119.1
O1—K1—O3118.84 (4)C14—C13—H13A119.1
O1ii—K1—O361.15 (4)C1—C14—C13123.60 (18)
O3ii—K1—O3180.0C1—C14—C15118.29 (17)
O1—K1—O260.50 (4)C13—C14—C15118.08 (17)
O1ii—K1—O2119.49 (4)C1—C14—Ti170.59 (11)
O3ii—K1—O2120.40 (4)C13—C14—Ti1128.10 (13)
O3—K1—O259.60 (4)C15—C14—Ti171.22 (10)
O1—K1—O2ii119.50 (4)C14—C15—C4120.01 (16)
O1ii—K1—O2ii60.51 (4)C14—C15—C16120.12 (17)
O3ii—K1—O2ii59.60 (4)C4—C15—C16119.86 (17)
O3—K1—O2ii120.40 (4)C14—C15—Ti172.55 (10)
O2—K1—O2ii180.0C4—C15—Ti170.95 (10)
O1—K1—C275.93 (5)C16—C15—Ti1127.96 (12)
O1ii—K1—C2104.07 (5)C7—C16—C11120.25 (17)
O3ii—K1—C282.52 (5)C7—C16—C15119.84 (17)
O3—K1—C297.48 (5)C11—C16—C15119.91 (17)
O2—K1—C294.55 (5)C7—C16—Ti1i70.83 (10)
O2ii—K1—C285.45 (5)C11—C16—Ti1i73.25 (11)
O1—K1—C2ii104.07 (5)C15—C16—Ti1i127.52 (12)
O1ii—K1—C2ii75.93 (5)O1—C17—C18109.54 (15)
O3ii—K1—C2ii97.48 (5)O1—C17—H17A109.8
O3—K1—C2ii82.52 (5)C18—C17—H17A109.8
O2—K1—C2ii85.45 (5)O1—C17—H17B109.8
O2ii—K1—C2ii94.55 (5)C18—C17—H17B109.8
C2—K1—C2ii180.00 (8)H17A—C17—H17B108.2
O1—K1—C3ii98.98 (4)O2—C18—C17109.45 (16)
O1ii—K1—C3ii81.02 (4)O2—C18—H18A109.8
O3ii—K1—C3ii74.26 (5)C17—C18—H18A109.8
O3—K1—C3ii105.74 (5)O2—C18—H18B109.8
O2—K1—C3ii103.81 (4)C17—C18—H18B109.8
O2ii—K1—C3ii76.19 (4)H18A—C18—H18B108.2
C2—K1—C3ii155.49 (5)O2—C19—C20108.44 (16)
C2ii—K1—C3ii24.51 (5)O2—C19—H19A110.0
O1—K1—C381.02 (4)C20—C19—H19A110.0
O1ii—K1—C398.98 (4)O2—C19—H19B110.0
O3ii—K1—C3105.74 (5)C20—C19—H19B110.0
O3—K1—C374.26 (5)H19A—C19—H19B108.4
O2—K1—C376.19 (4)O3—C20—C19108.34 (16)
O2ii—K1—C3103.81 (4)O3—C20—H20A110.0
C2—K1—C324.51 (5)C19—C20—H20A110.0
C2ii—K1—C3155.49 (5)O3—C20—H20B110.0
C3ii—K1—C3180.00 (3)C19—C20—H20B110.0
C22ii—O1—C17111.48 (14)H20A—C20—H20B108.4
C22ii—O1—K1115.25 (11)O3—C21—C22109.46 (16)
C17—O1—K1117.52 (10)O3—C21—H21A109.8
C19—O2—C18112.56 (15)C22—C21—H21A109.8
C19—O2—K1113.41 (11)O3—C21—H21B109.8
C18—O2—K1112.28 (11)C22—C21—H21B109.8
C20—O3—C21112.71 (15)H21A—C21—H21B108.2
C20—O3—K1117.19 (11)O1ii—C22—C21109.88 (16)
C21—O3—K1115.06 (11)O1ii—C22—H22A109.7
C2—C1—C14121.52 (18)C21—C22—H22A109.7
C2—C1—Ti170.58 (12)O1ii—C22—H22B109.7
C14—C1—Ti173.31 (11)C21—C22—H22B109.7
C2—C1—H1A119.2H22A—C22—H22B108.2
C14—C1—C2—C31.0 (3)C1—C14—C15—C40.3 (3)
Ti1—C1—C2—C355.96 (17)C13—C14—C15—C4178.64 (16)
C14—C1—C2—Ti155.01 (17)Ti1—C14—C15—C454.78 (15)
C14—C1—C2—K191.19 (18)C1—C14—C15—C16178.70 (16)
Ti1—C1—C2—K1146.20 (8)C13—C14—C15—C160.4 (3)
C1—C2—C3—C40.4 (3)Ti1—C14—C15—C16124.26 (16)
Ti1—C2—C3—C457.53 (16)C1—C14—C15—Ti154.44 (15)
K1—C2—C3—C494.99 (17)C13—C14—C15—Ti1123.86 (16)
C1—C2—C3—Ti157.11 (17)C3—C4—C15—C141.7 (3)
K1—C2—C3—Ti1152.53 (7)C5—C4—C15—C14179.04 (16)
C1—C2—C3—K195.42 (18)Ti1—C4—C15—C1455.54 (15)
Ti1—C2—C3—K1152.53 (7)C3—C4—C15—C16177.39 (16)
C2—C3—C4—C5178.96 (18)C5—C4—C15—C160.0 (3)
Ti1—C3—C4—C5122.06 (18)Ti1—C4—C15—C16123.51 (16)
K1—C3—C4—C5107.56 (17)C3—C4—C15—Ti153.88 (15)
C2—C3—C4—C151.7 (3)C5—C4—C15—Ti1123.50 (17)
Ti1—C3—C4—C1555.19 (15)C8—C7—C16—C111.3 (3)
K1—C3—C4—C1575.19 (17)C6—C7—C16—C11177.90 (17)
C2—C3—C4—Ti156.91 (16)Ti1i—C7—C16—C1156.23 (15)
K1—C3—C4—Ti1130.39 (9)C8—C7—C16—C15177.90 (17)
C3—C4—C5—C6177.31 (19)C6—C7—C16—C151.3 (3)
C15—C4—C5—C60.0 (3)Ti1i—C7—C16—C15122.95 (16)
Ti1—C4—C5—C688.8 (2)C8—C7—C16—Ti1i54.95 (15)
C4—C5—C6—C70.6 (3)C6—C7—C16—Ti1i121.67 (17)
C5—C6—C7—C8177.75 (19)C10—C11—C16—C72.0 (3)
C5—C6—C7—C161.3 (3)C12—C11—C16—C7179.45 (17)
C5—C6—C7—Ti1i89.1 (2)Ti1i—C11—C16—C755.08 (15)
C6—C7—C8—C9176.59 (18)C10—C11—C16—C15177.22 (17)
C16—C7—C8—C90.1 (3)C12—C11—C16—C150.3 (3)
Ti1i—C7—C8—C955.98 (17)Ti1i—C11—C16—C15124.10 (16)
C6—C7—C8—Ti1i120.61 (18)C10—C11—C16—Ti1i53.12 (16)
C16—C7—C8—Ti1i55.84 (15)C12—C11—C16—Ti1i124.37 (17)
C7—C8—C9—C100.3 (3)C14—C15—C16—C7179.71 (16)
Ti1i—C8—C9—C1056.46 (17)C4—C15—C16—C70.7 (3)
C7—C8—C9—Ti1i56.17 (17)Ti1—C15—C16—C789.0 (2)
C8—C9—C10—C110.4 (3)C14—C15—C16—C110.5 (3)
Ti1i—C9—C10—C1156.04 (17)C4—C15—C16—C11178.52 (16)
C8—C9—C10—Ti1i55.62 (17)Ti1—C15—C16—C1190.2 (2)
C9—C10—C11—C12178.88 (18)C14—C15—C16—Ti1i91.8 (2)
Ti1i—C10—C11—C12124.17 (19)C4—C15—C16—Ti1i87.2 (2)
C9—C10—C11—C161.5 (3)Ti1—C15—C16—Ti1i1.1 (3)
Ti1i—C10—C11—C1653.17 (15)C22ii—O1—C17—C18178.12 (15)
C9—C10—C11—Ti1i54.71 (17)K1—O1—C17—C1845.67 (18)
C10—C11—C12—C13177.47 (19)C19—O2—C18—C17178.70 (16)
C16—C11—C12—C130.1 (3)K1—O2—C18—C1749.28 (17)
Ti1i—C11—C12—C1386.6 (2)O1—C17—C18—O263.6 (2)
C11—C12—C13—C140.2 (3)C18—O2—C19—C20179.38 (15)
C2—C1—C14—C13177.22 (18)K1—O2—C19—C2050.54 (17)
Ti1—C1—C14—C13123.46 (18)C21—O3—C20—C19175.10 (16)
C2—C1—C14—C151.0 (3)K1—O3—C20—C1947.92 (18)
Ti1—C1—C14—C1554.74 (15)O2—C19—C20—O365.3 (2)
C2—C1—C14—Ti153.76 (17)C20—O3—C21—C22177.27 (16)
C12—C13—C14—C1178.22 (19)K1—O3—C21—C2244.79 (18)
C12—C13—C14—C150.0 (3)O3—C21—C22—O1ii61.9 (2)
C12—C13—C14—Ti187.4 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[V(C16H10)2][Nb(C16H10)2][KTi(C16H10)2(C12H24O6)]
Mr455.42497.39755.79
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)173123173
a, b, c (Å)9.4905 (8), 9.4969 (8), 11.4851 (10)8.5838 (12), 9.5974 (13), 12.8876 (18)10.3934 (13), 15.682 (2), 11.3559 (14)
β (°) 100.306 (2) 105.554 (2) 111.084 (2)
V3)1018.45 (15)1022.8 (2)1727.0 (4)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.510.610.42
Crystal size (mm)0.50 × 0.15 × 0.100.30 × 0.05 × 0.050.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Multi-scan
(SADABS; Sheldrick, 2008)
Multi-scan
(SADABS; Sheldrick, 2012)
Tmin, Tmax0.786, 0.9510.839, 0.9700.617, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
10868, 2087, 1599 9829, 1814, 1360 19900, 3941, 2929
Rint0.0410.0590.046
(sin θ/λ)max1)0.6260.5960.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.05 0.034, 0.085, 1.07 0.041, 0.115, 1.06
No. of reflections208718143941
No. of parameters154154241
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.220.36, 0.290.38, 0.26

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SIR97 (Altomare et al., 1999), SHELXL2014 (Sheldrick, 2014), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) for (I) top
V1—C32.1885 (19)C7—V1i2.2266 (18)
V1—C22.210 (2)C8—V1i2.2162 (19)
V1—C12.231 (2)C9—V1i2.227 (2)
V1—C42.2335 (19)C10—V1i2.240 (2)
V1—C152.2492 (18)C11—V1i2.2628 (19)
V1—C142.2620 (19)C16—V1i2.2268 (17)
Symmetry code: (i) x+1, y+1, z+1.
Selected bond lengths (Å) for (II) top
Nb1—C32.266 (3)C7—Nb1i2.307 (3)
Nb1—C22.271 (3)C8—Nb1i2.267 (3)
Nb1—C12.297 (3)C9—Nb1i2.268 (3)
Nb1—C42.333 (3)C10—Nb1i2.317 (3)
Nb1—C142.365 (3)C11—Nb1i2.356 (3)
Nb1—C152.366 (3)C16—Nb1i2.338 (3)
Symmetry code: (i) x+1, y+1, z+1.
Selected bond lengths (Å) for (III) top
Ti1—C32.226 (2)K1—C33.364 (2)
Ti1—C22.239 (2)C7—Ti1i2.260 (2)
Ti1—C42.276 (2)C8—Ti1i2.233 (2)
Ti1—C12.278 (2)C9—Ti1i2.243 (2)
Ti1—C152.2961 (18)C10—Ti1i2.273 (2)
Ti1—C142.3135 (19)C11—Ti1i2.318 (2)
K1—C23.132 (2)C16—Ti1i2.2799 (19)
Symmetry code: (i) x+1, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds