Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614020853/wq3072sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614020853/wq3072Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614020853/wq3072IIsup3.hkl |
CCDC references: 1024752; 1024513
A great deal of attention has been paid to the crystal engineering of metal–organic coordination polymers in recent years, due to a conbination of their fascinating molecular structures and their potential applications as functional materials (Kahn & Martinez, 1998; Xiong et al., 2001; Batten et al., 2009; Liao et al., 2004). A series of cadmium coordination polymers containing carboxylate ligands have been reported (Yang et al., 2009; Zheng et al., 2012; Zhou et al., 2011; Nie & Wang, 2011; Han et al., 2012; Wang et al., 2012). According to previous reports, asymmetric bridging ligands containing carboxylic acid and nitrogen groups with a variety of properties are excellent candidates for the construction of highly connected topological frameworks. The structural topologies of these polymers are affected by the coordination geometries of both the organic ligands and the metal atoms. Bridging ligands with N- and O-donor atoms play an instrumental role in building coordination polymers. Among the various ligands, the versatile carboxylic acid ligands display diverse coordination modes. In particular, the aromatic carboxylic acids, such as benzene- and naphthalene-based derivatives, have been used and well documented in the preparation of numerous carboxylate-containing coordination complexes. In order to explore new coordination polymers using rigid building blocks, we synthesized a novel benzimidazole-derivative ligand containing a carboxylic acid group, namely, (2-methylbenzimidazol-l-yl)acetate, L, which is formed in situ from the corresponding cyano-substituted derivative under solvothermal conditions in the presence of CdII cations. We report here the crystal structure of two new `polymorphic' CdII coordination polymers based on this ligand, (I) and (II), which show some interesting structural features.
(2-Methylbenzimidazol-1-yl)acetonitrile was prepared by an adaptation of the literature method of Ramla et al. (2006) for the synthesis of 2-(2-methyl-5-nitro-1H-benzimidazol-1-yl)acetonitrile. To a solution of 2-methylbenzimidazole (7.48g, 56.6 mmol) and sodium hydride (1.5g, 56.6 mmol) in tetrahydrofuran (30 ml), bromoacetonitrile (3.96 ml, 56.6 mmol) was added dropwise. The reaction mixture was stirred for 8 h at room temperature and then poured onto iced water. The obtained precipitate was filtered off, dried and recrystallized from ethanol (yield 8.24 g, 85%).
For the synthesis of (I), a mixture of (2-methylbenzimidazol-1-yl)acetonitrile (0.0274g, 0.16mmol), Cd(ClO4)2·6H2O (0.0336g, 0.08 mmol) and pyridine (0.0312 g, 0.2 mmol) was dissolved in deionized water and stirred for 30 min in air. The mixture was sealed in a 25 ml Teflon-lined stainless steel vessel, heated at 453 K for 3 d under autogenous pressure and then cooled to room temperature. Highly pure and well shaped colourless block crystals of (I) were collected in 67% yield. During the reaction under solvothermal conditions, the nitrile group of (I) is hydrolysed to a carboxylate group (Liu & Ye, 2013).
For the synthesis of (II), a mixture of Cd(CH3COO)2.2H2O (0.053 g, 0.2 mmol), (2-methylbenzimidazol-1-yl)acetonitrile (0.068 g, 0.4 mmol) and distilled water (9 ml) was stirred to homogeneity for 10 min in air. The mixture was then transferred to a 20 ml Teflon-lined steel autoclave and heated at 433 K for 5 d under autogenously controlled pressure, followed by slow cooling to room temperature. Colourless blocks of complex (II) were collected (yield ca 65%, based on Cd).
Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic), 0.96 (methyl) or 0.97 Å (methylene), and with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise.
The asymmetric unit of complex (I) contains two independent Cd atoms located on twofold symmetry axes and (2-methylbenzimidazol-l-yl)acetate ligands in general positions. In this context, the cyano group of (2-methylbenzimidazol-1-yl)acetonitrile has been hydrolysed to a carboxylate group under hydrothermal conditions. As shown in Fig. 1, each of the central Cd atoms (Cd1 and Cd2) is six-coordinated by four O atoms from two L carboxylate groups and two N atoms from imidazole rings of two further L ligands. Both Cd atoms adopt a distorted octahedral coordination geometry, brought about mainly by the small bite angles of the bidentate carboxylate groups (Table 2). All the carboxylate groups maintain approximate equivalence of their C—O bonds, with lengths in the range 1.23–1.27 Å. The ranges shown by the Cd—O and Cd—N bond lengths (Table 2) are in good agreement with those found in other Cd complexes with six-coordinated geometries (Dai et al., 2002). The O1—Cd1—O2 and O3—Cd2—O4 angles (Table 2) are similar to those reported in other cadmium polymers coordinated by two O atoms from a carboxylate group (Luo et al., 2004).
Compound (I) is a new coordination polymer in which both of the six-coordinated Cd centres adopt a distorted octahedral coordination geometry. It displays a novel coordination architecture compared with a similar compound, {[Cd(H2PIMDC)2]}n (Zhai et al., 2013), in which the central CdII cation is coordinated by only one O atom of one carboxylate group of each of four 2-propyl-1H-imidazole-4,5-dicarboxylate (H2PIMDC) ligands, rather than two O atoms of a carboxylate group, plus the N atoms from just two of these ligands. Compound (I) also differs from another Cd complex with H2PIDMC, [Cd(H2PIMDC)2(H2O)2]·4H2O (Deng et al., 2012), where the central Cd cation is again coordinated by one O atom of one carboxylate group and an N atom of each of two H2PIMDC ligands, plus two O atoms from two coordinated water molecules, resulting in a distorted octahedral geometry.
The (2-methylbenzimidazol-l-yl)acetate ligand in (I) is tridentate and links two Cd centres in chelate and chelate-bridged (µ3-N:O,O) modes to form one-dimensional chains, in which two L ligands bridge each Cd atom (Figs. 2 and 3). In our notation, the letters A, B, C, D and A', B', C', D' denote imidazole rings in adjacent parallel sets of one-dimensional chains involving atoms Cd1 and Cd2, respectively. Within the chains containing Cd1, the dihedral angles between the planes of A and B, and between the symmetry-related pair C and D, are 53.07 (14)°, whereas within the chains containing Cd2, the dihedral angles between the planes of A' and B', and between C' and D', are 57.98 (14)°. Planes B and C, which are in adjacent chains composed of Cd1 atoms, and planes B' and C' from adjacent chains composed of Cd2 atoms, are close to being parallel, with dihedral angles of 3.73 (14) and 6.30 (14)°, respectively. Thus, for each of the two independent polymeric chains, there are weak π–π stacking interactions between adjacent imidazole rings, which leads to stacks of chains containing just one of the independent types of Cd atom. They are characterized by ring B–C and B'–C' centroid-to-centroid distances of 3.8446 (14) and 3.9664 (15) Å, respectively. The perpendicular displacement from the ring centroid of plane B to the mean plane C is 3.7096 (10) Å, and the perpendicular distance from the ring centroid of plane B' to the mean plane C' is 3.4548 (10) Å. In addition, it is likely that the steric interaction resulting from the optimization of this stacking interaction may explain the difference in the dihedral angles between adjacent imidazole rings, and the effect of this interaction is to link molecules related by translation into chains.
A noteworthy feature of this structure is that the chains containing the Cd1 atoms run perpendicular to those containing the Cd2 atoms (Figs. 2 and 3). The chains containing the Cd1 atoms run parallel to the [100] direction with an intrachain Cd···Cd distance of 7.3521 (4) Å, while the chains containing the Cd2 atoms run parallel to the [010] direction with an intrachain Cd···Cd distance of 7.0037 (4) Å. In both cases, the π–π interactions link the chains into layers which lie parallel to the (001) plane (Fig. 4), but the two types are turned through 90° in this plane with respect to each other. These layers containing atoms Cd1 then stack along the [001] direction in an alternating fashion with those containing atoms Cd2.
The asymmetric unit of complex (II) contains one CdII cation and one L ligand, both in general positions (Fig. 5). As shown in Fig. 6, the central CdII cation is coordinated by four O atoms from the carboxylate group of two L ligands and two benzimidazole N atoms from another two L ligands, forming a highly distorted CdO4N2 octahedral coordination geometry. Each L ligand acts in a µ3-N:O,O mode to bridge two CdII cations through one chelating carboxylate group and one benzimidazole N atom.
The six-coordinate geometry of (II) is similar to that in other carboxylate-containing CdII complexes, e.g. [Cd(4-pyridylacrylate)2].H2O (Evans & Lin, 2001) and [Cd(oba)(1,4-bix)] [oba = 4,4'-oxybis(benzoate) and 1,4-bix = 1,4-bis(imidazol-1-ylmethyl)benzene; Yang et al., 2009]. The Cd—O and Cd—N bond lengths (Table 3), with the bond angles around each CdII centre ranging from 54.39 (18) to 154.3 (2)°, are fundamentally consistent with those in the above-mentioned CdII complexes. In contrast, the crystal structure of {Cd[4-(4-pyridyl)benzoate]2}.H2O exhibits two distinct metal-atom coordination geometries; one is octahedral and similar to that in (II), while the other is trigonal–bipyramidal, with one of the carboxylate groups only coordinating in a monodentate fashion (Evans & Lin, 2001).
In contrast with the structure of (I), where double bridges of L exist between adjacent Cd atoms to give a chain structure, each Cd atom in (II) is singly bridged by four L ligands to four different Cd atoms, which generates a two-dimensional (4,4) net structure that extends parallel to the (001) plane (Fig. 7). This connectivity leads to square-grid sheets, with a Cd···Cd distance along each grid side of 8.173 (4) Å. In each grid of two-dimensional sheets there are two benzimidazole rings projecting above and two below the plane defined by the Cd atoms. These benzimidazole rings participate in π–π interactions with benzimidazole rings from adjacent layers, with an interplanar spacing of 3.415 (3) Å and a centroid separation of 3.564 (5) Å. These weak π–π stacking interactions between symmetry-related benzimidazole rings complete the three-dimensional supramolecular structure of (II) (Fig. 8). The cavities in the (4,4) grid apparent in Fig. 7 are occupied by the benzene rings of L ligands in the adjacent layers on either side.
In conclusion, to the best of our knowledge, complexes (I) and (II) are new one- and two-dimensional cadmium coordination polymers of a new (2-methylbenzimidazol-l-yl)acetate ligand. The complexes are polymorphs which form under solvothermal conditions involving slightly different components; for (I), pyridine was included in the reaction mixure, whereas no pyridine was used for the synthesis of (II). This work suggests that this carboxylate-based ligand will be a rich source of new coordination polymers.
For both compounds, data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
[Cd(C10H9N2O2)2] | F(000) = 3936 |
Mr = 490.79 | Dx = 1.668 Mg m−3 |
Orthorhombic, Ibca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -I 2b 2c | Cell parameters from 26640 reflections |
a = 14.7042 (4) Å | θ = 3.0–27.6° |
b = 14.0074 (4) Å | µ = 1.15 mm−1 |
c = 37.9500 (9) Å | T = 293 K |
V = 7816.5 (4) Å3 | Block, colourless |
Z = 16 | 0.38 × 0.34 × 0.3 mm |
Rigaku SCXmini diffractometer | 3781 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.041 |
Graphite monochromator | θmax = 27.5°, θmin = 3.1° |
ω scans | h = −18→19 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −18→18 |
Tmin = 0.652, Tmax = 0.708 | l = −48→43 |
29375 measured reflections | 3 standard reflections every 180 reflections |
4479 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.022P)2 + 9.7962P] where P = (Fo2 + 2Fc2)/3 |
4479 reflections | (Δ/σ)max = 0.001 |
265 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
[Cd(C10H9N2O2)2] | V = 7816.5 (4) Å3 |
Mr = 490.79 | Z = 16 |
Orthorhombic, Ibca | Mo Kα radiation |
a = 14.7042 (4) Å | µ = 1.15 mm−1 |
b = 14.0074 (4) Å | T = 293 K |
c = 37.9500 (9) Å | 0.38 × 0.34 × 0.3 mm |
Rigaku SCXmini diffractometer | 3781 reflections with I > 2σ(I) |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | Rint = 0.041 |
Tmin = 0.652, Tmax = 0.708 | 3 standard reflections every 180 reflections |
29375 measured reflections | intensity decay: none |
4479 independent reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.43 e Å−3 |
4479 reflections | Δρmin = −0.37 e Å−3 |
265 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.129398 (16) | 0.5000 | 0.2500 | 0.03330 (8) | |
Cd2 | 0.2500 | 0.593964 (16) | 0.0000 | 0.03393 (8) | |
O1 | 0.26067 (13) | 0.46968 (13) | 0.21094 (6) | 0.0518 (5) | |
O2 | 0.17001 (13) | 0.35199 (13) | 0.22580 (6) | 0.0506 (5) | |
O4 | 0.08714 (16) | 0.56909 (13) | 0.02627 (6) | 0.0578 (6) | |
O3 | 0.20319 (14) | 0.47327 (13) | 0.03579 (5) | 0.0520 (5) | |
N1 | 0.53243 (13) | 0.41704 (14) | 0.21568 (5) | 0.0335 (4) | |
N2 | 0.40367 (14) | 0.34711 (14) | 0.19958 (5) | 0.0329 (4) | |
N4 | 0.09618 (14) | 0.32183 (13) | 0.05082 (5) | 0.0342 (4) | |
N3 | 0.16944 (15) | 0.19040 (14) | 0.03481 (5) | 0.0356 (5) | |
C3 | 0.4919 (2) | 0.3809 (2) | 0.10906 (7) | 0.0559 (8) | |
H3 | 0.4802 | 0.3721 | 0.0852 | 0.067* | |
C4 | 0.5733 (2) | 0.4205 (2) | 0.11924 (8) | 0.0569 (8) | |
H4 | 0.6157 | 0.4363 | 0.1020 | 0.068* | |
C5 | 0.5944 (2) | 0.4377 (2) | 0.15400 (7) | 0.0469 (7) | |
H5 | 0.6493 | 0.4656 | 0.1605 | 0.056* | |
C8 | 0.42830 (18) | 0.36733 (19) | 0.26423 (6) | 0.0406 (6) | |
H8A | 0.4810 | 0.3723 | 0.2790 | 0.061* | |
H8B | 0.4004 | 0.3060 | 0.2676 | 0.061* | |
H8C | 0.3857 | 0.4166 | 0.2703 | 0.061* | |
C7 | 0.45592 (15) | 0.37813 (16) | 0.22664 (6) | 0.0307 (5) | |
C10 | 0.24304 (17) | 0.38308 (18) | 0.21353 (6) | 0.0351 (5) | |
C2 | 0.4270 (2) | 0.3537 (2) | 0.13340 (7) | 0.0472 (7) | |
H2 | 0.3720 | 0.3266 | 0.1266 | 0.057* | |
C9 | 0.31234 (16) | 0.30858 (18) | 0.20261 (7) | 0.0374 (6) | |
H9A | 0.3125 | 0.2574 | 0.2198 | 0.045* | |
H9B | 0.2944 | 0.2816 | 0.1801 | 0.045* | |
C1 | 0.44851 (16) | 0.36892 (17) | 0.16840 (6) | 0.0337 (5) | |
C6 | 0.52988 (17) | 0.41136 (17) | 0.17888 (6) | 0.0342 (5) | |
C20 | 0.11966 (19) | 0.49194 (17) | 0.03585 (7) | 0.0389 (6) | |
C15 | 0.1860 (2) | 0.1231 (2) | 0.09647 (8) | 0.0506 (7) | |
H15 | 0.2130 | 0.0657 | 0.0899 | 0.061* | |
C14 | 0.1687 (2) | 0.1439 (3) | 0.13138 (8) | 0.0587 (8) | |
H14 | 0.1840 | 0.0995 | 0.1486 | 0.070* | |
C19 | 0.05368 (18) | 0.41504 (17) | 0.04737 (7) | 0.0394 (6) | |
H19A | 0.0273 | 0.4330 | 0.0698 | 0.047* | |
H19B | 0.0047 | 0.4109 | 0.0303 | 0.047* | |
C12 | 0.10187 (19) | 0.2971 (2) | 0.11700 (7) | 0.0463 (7) | |
H12 | 0.0748 | 0.3543 | 0.1237 | 0.056* | |
C13 | 0.1286 (2) | 0.2298 (3) | 0.14133 (8) | 0.0565 (8) | |
H13 | 0.1197 | 0.2421 | 0.1652 | 0.068* | |
C18 | 0.12148 (19) | 0.29955 (18) | −0.01369 (7) | 0.0413 (6) | |
H18A | 0.1713 | 0.3410 | −0.0195 | 0.062* | |
H18B | 0.0651 | 0.3330 | −0.0170 | 0.062* | |
H18C | 0.1230 | 0.2444 | −0.0287 | 0.062* | |
C11 | 0.11781 (16) | 0.27448 (19) | 0.08191 (7) | 0.0357 (5) | |
C16 | 0.16161 (17) | 0.19135 (18) | 0.07157 (6) | 0.0363 (5) | |
C17 | 0.12932 (16) | 0.26905 (17) | 0.02374 (6) | 0.0326 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.02637 (13) | 0.03605 (14) | 0.03748 (15) | 0.000 | 0.000 | −0.00250 (11) |
Cd2 | 0.03733 (15) | 0.02713 (12) | 0.03732 (14) | 0.000 | 0.00199 (11) | 0.000 |
O1 | 0.0407 (11) | 0.0396 (10) | 0.0752 (14) | 0.0031 (8) | 0.0003 (10) | −0.0025 (10) |
O2 | 0.0367 (11) | 0.0500 (11) | 0.0652 (14) | 0.0004 (8) | 0.0178 (10) | −0.0049 (9) |
O4 | 0.0817 (16) | 0.0354 (10) | 0.0562 (13) | −0.0030 (10) | 0.0024 (11) | 0.0125 (9) |
O3 | 0.0498 (13) | 0.0408 (11) | 0.0655 (14) | −0.0089 (9) | 0.0116 (10) | 0.0007 (9) |
N1 | 0.0280 (11) | 0.0419 (11) | 0.0307 (11) | −0.0014 (9) | 0.0012 (8) | 0.0038 (9) |
N2 | 0.0276 (10) | 0.0370 (11) | 0.0341 (11) | −0.0015 (8) | 0.0030 (8) | −0.0029 (9) |
N4 | 0.0387 (12) | 0.0283 (10) | 0.0355 (11) | −0.0012 (8) | 0.0042 (9) | 0.0006 (8) |
N3 | 0.0424 (12) | 0.0324 (10) | 0.0320 (11) | 0.0026 (9) | −0.0055 (9) | −0.0004 (9) |
C3 | 0.067 (2) | 0.072 (2) | 0.0283 (15) | 0.0027 (16) | 0.0006 (14) | 0.0008 (14) |
C4 | 0.057 (2) | 0.077 (2) | 0.0364 (16) | −0.0037 (16) | 0.0138 (14) | 0.0127 (14) |
C5 | 0.0411 (15) | 0.0571 (17) | 0.0424 (16) | −0.0062 (13) | 0.0054 (12) | 0.0096 (13) |
C8 | 0.0410 (15) | 0.0480 (15) | 0.0327 (14) | −0.0059 (12) | 0.0042 (11) | 0.0022 (11) |
C7 | 0.0272 (12) | 0.0326 (12) | 0.0324 (13) | 0.0028 (9) | 0.0018 (9) | 0.0012 (10) |
C10 | 0.0307 (13) | 0.0411 (13) | 0.0336 (13) | 0.0007 (11) | −0.0040 (11) | −0.0037 (10) |
C2 | 0.0464 (17) | 0.0543 (17) | 0.0409 (16) | −0.0009 (13) | −0.0051 (13) | −0.0064 (13) |
C9 | 0.0303 (13) | 0.0374 (13) | 0.0445 (15) | −0.0030 (10) | 0.0035 (11) | −0.0063 (11) |
C1 | 0.0314 (13) | 0.0363 (12) | 0.0332 (13) | 0.0047 (10) | 0.0016 (10) | −0.0001 (10) |
C6 | 0.0315 (13) | 0.0378 (13) | 0.0333 (13) | 0.0024 (10) | 0.0017 (10) | 0.0028 (10) |
C20 | 0.0562 (18) | 0.0318 (13) | 0.0287 (13) | −0.0073 (12) | 0.0082 (11) | −0.0040 (10) |
C15 | 0.0486 (17) | 0.0564 (17) | 0.0467 (18) | 0.0098 (14) | −0.0077 (13) | 0.0074 (14) |
C14 | 0.055 (2) | 0.082 (2) | 0.0387 (17) | 0.0079 (17) | −0.0069 (14) | 0.0173 (15) |
C19 | 0.0413 (15) | 0.0320 (13) | 0.0448 (15) | 0.0039 (10) | 0.0108 (12) | 0.0012 (11) |
C12 | 0.0467 (16) | 0.0540 (17) | 0.0382 (15) | −0.0086 (13) | 0.0069 (12) | −0.0058 (13) |
C13 | 0.0529 (19) | 0.085 (2) | 0.0311 (16) | −0.0061 (16) | −0.0006 (13) | −0.0007 (15) |
C18 | 0.0507 (17) | 0.0359 (14) | 0.0373 (14) | 0.0055 (12) | −0.0028 (12) | 0.0026 (11) |
C11 | 0.0315 (13) | 0.0400 (13) | 0.0356 (14) | −0.0083 (11) | −0.0002 (10) | −0.0006 (11) |
C16 | 0.0351 (13) | 0.0399 (13) | 0.0340 (13) | −0.0028 (11) | −0.0028 (10) | 0.0004 (11) |
C17 | 0.0342 (13) | 0.0305 (11) | 0.0331 (13) | −0.0034 (10) | −0.0017 (10) | −0.0002 (10) |
Cd1—N1i | 2.254 (2) | C3—H3 | 0.9300 |
Cd1—N1ii | 2.254 (2) | C4—C5 | 1.376 (4) |
Cd1—O1iii | 2.471 (2) | C4—H4 | 0.9300 |
Cd1—O1 | 2.471 (2) | C5—C6 | 1.388 (3) |
Cd1—O2iii | 2.3448 (19) | C5—H5 | 0.9300 |
Cd1—O2 | 2.3448 (19) | C8—C7 | 1.491 (3) |
Cd1—C10iii | 2.718 (2) | C8—H8A | 0.9600 |
Cd2—N3iv | 2.230 (2) | C8—H8B | 0.9600 |
Cd2—N3v | 2.230 (2) | C8—H8C | 0.9600 |
Cd2—O3vi | 2.2753 (19) | C10—C9 | 1.516 (3) |
Cd2—O3 | 2.2753 (19) | C2—C1 | 1.382 (4) |
Cd2—O4vi | 2.617 (2) | C2—H2 | 0.9300 |
Cd2—O4 | 2.617 (2) | C9—H9A | 0.9700 |
Cd2—C20vi | 2.751 (3) | C9—H9B | 0.9700 |
O1—C10 | 1.244 (3) | C1—C6 | 1.394 (3) |
O2—C10 | 1.249 (3) | C20—C19 | 1.514 (3) |
O4—C20 | 1.236 (3) | C15—C14 | 1.381 (4) |
O3—C20 | 1.256 (3) | C15—C16 | 1.392 (4) |
N1—C7 | 1.317 (3) | C15—H15 | 0.9300 |
N1—C6 | 1.400 (3) | C14—C13 | 1.392 (5) |
N1—Cd1vii | 2.254 (2) | C14—H14 | 0.9300 |
N2—C7 | 1.354 (3) | C19—H19A | 0.9700 |
N2—C1 | 1.389 (3) | C19—H19B | 0.9700 |
N2—C9 | 1.452 (3) | C12—C13 | 1.377 (4) |
N4—C17 | 1.356 (3) | C12—C11 | 1.389 (4) |
N4—C11 | 1.390 (3) | C12—H12 | 0.9300 |
N4—C19 | 1.453 (3) | C13—H13 | 0.9300 |
N3—C17 | 1.318 (3) | C18—C17 | 1.488 (3) |
N3—C16 | 1.400 (3) | C18—H18A | 0.9600 |
N3—Cd2viii | 2.230 (2) | C18—H18B | 0.9600 |
C3—C4 | 1.375 (5) | C18—H18C | 0.9600 |
C3—C2 | 1.381 (4) | C11—C16 | 1.387 (4) |
N1i—Cd1—N1ii | 101.51 (10) | C4—C5—H5 | 121.6 |
N1i—Cd1—O2iii | 86.07 (7) | C6—C5—H5 | 121.6 |
N1ii—Cd1—O2iii | 113.00 (7) | C7—C8—H8A | 109.5 |
N1i—Cd1—O2 | 113.00 (7) | C7—C8—H8B | 109.5 |
N1ii—Cd1—O2 | 86.07 (7) | H8A—C8—H8B | 109.5 |
O2iii—Cd1—O2 | 150.49 (10) | C7—C8—H8C | 109.5 |
N1i—Cd1—O1iii | 138.79 (7) | H8A—C8—H8C | 109.5 |
N1ii—Cd1—O1iii | 103.66 (7) | H8B—C8—H8C | 109.5 |
O2iii—Cd1—O1iii | 54.13 (6) | N1—C7—N2 | 112.2 (2) |
O2—Cd1—O1iii | 100.84 (7) | N1—C7—C8 | 125.2 (2) |
N1i—Cd1—O1 | 103.66 (7) | N2—C7—C8 | 122.6 (2) |
N1ii—Cd1—O1 | 138.79 (7) | O1—C10—O2 | 123.3 (2) |
O2iii—Cd1—O1 | 100.84 (7) | O1—C10—C9 | 120.6 (2) |
O2—Cd1—O1 | 54.13 (6) | O2—C10—C9 | 116.1 (2) |
O1iii—Cd1—O1 | 77.24 (10) | C3—C2—C1 | 116.3 (3) |
N1i—Cd1—C10iii | 111.87 (7) | C3—C2—H2 | 121.9 |
N1ii—Cd1—C10iii | 113.91 (7) | C1—C2—H2 | 121.9 |
O2iii—Cd1—C10iii | 27.30 (7) | N2—C9—C10 | 112.8 (2) |
O2—Cd1—C10iii | 125.13 (7) | N2—C9—H9A | 109.0 |
O1iii—Cd1—C10iii | 27.21 (7) | C10—C9—H9A | 109.0 |
O1—Cd1—C10iii | 85.91 (7) | N2—C9—H9B | 109.0 |
N3iv—Cd2—N3v | 105.44 (10) | C10—C9—H9B | 109.0 |
N3iv—Cd2—O3vi | 130.02 (8) | H9A—C9—H9B | 107.8 |
N3v—Cd2—O3vi | 104.90 (7) | C2—C1—N2 | 132.6 (2) |
N3iv—Cd2—O3 | 104.90 (7) | C2—C1—C6 | 122.4 (2) |
N3v—Cd2—O3 | 130.02 (8) | N2—C1—C6 | 105.0 (2) |
O3vi—Cd2—O3 | 84.02 (10) | C5—C6—C1 | 120.4 (2) |
N3iv—Cd2—O4vi | 79.65 (7) | C5—C6—N1 | 130.2 (2) |
N3v—Cd2—O4vi | 109.94 (7) | C1—C6—N1 | 109.4 (2) |
O3vi—Cd2—O4vi | 52.90 (7) | O4—C20—O3 | 124.0 (2) |
O3—Cd2—O4vi | 113.91 (7) | O4—C20—C19 | 117.3 (3) |
N3iv—Cd2—O4 | 109.94 (7) | O3—C20—C19 | 118.6 (2) |
N3v—Cd2—O4 | 79.65 (7) | C14—C15—C16 | 117.3 (3) |
O3vi—Cd2—O4 | 113.91 (7) | C14—C15—H15 | 121.3 |
O3—Cd2—O4 | 52.90 (7) | C16—C15—H15 | 121.3 |
O4vi—Cd2—O4 | 164.70 (8) | C15—C14—C13 | 121.4 (3) |
N3iv—Cd2—C20vi | 103.75 (8) | C15—C14—H14 | 119.3 |
N3v—Cd2—C20vi | 113.06 (7) | C13—C14—H14 | 119.3 |
O3vi—Cd2—C20vi | 26.86 (7) | N4—C19—C20 | 112.9 (2) |
O3—Cd2—C20vi | 96.90 (7) | N4—C19—H19A | 109.0 |
O4vi—Cd2—C20vi | 26.48 (7) | C20—C19—H19A | 109.0 |
O4—Cd2—C20vi | 139.18 (7) | N4—C19—H19B | 109.0 |
C10—O1—Cd1 | 87.56 (15) | C20—C19—H19B | 109.0 |
C10—O2—Cd1 | 93.25 (15) | H19A—C19—H19B | 107.8 |
C20—O4—Cd2 | 82.79 (17) | C13—C12—C11 | 116.0 (3) |
C20—O3—Cd2 | 98.18 (16) | C13—C12—H12 | 122.0 |
C7—N1—C6 | 105.6 (2) | C11—C12—H12 | 122.0 |
C7—N1—Cd1vii | 124.82 (16) | C12—C13—C14 | 122.1 (3) |
C6—N1—Cd1vii | 128.54 (15) | C12—C13—H13 | 119.0 |
C7—N2—C1 | 107.83 (19) | C14—C13—H13 | 119.0 |
C7—N2—C9 | 125.7 (2) | C17—C18—H18A | 109.5 |
C1—N2—C9 | 126.0 (2) | C17—C18—H18B | 109.5 |
C17—N4—C11 | 107.5 (2) | H18A—C18—H18B | 109.5 |
C17—N4—C19 | 125.1 (2) | C17—C18—H18C | 109.5 |
C11—N4—C19 | 127.1 (2) | H18A—C18—H18C | 109.5 |
C17—N3—C16 | 105.8 (2) | H18B—C18—H18C | 109.5 |
C17—N3—Cd2viii | 123.71 (17) | C16—C11—C12 | 122.8 (3) |
C16—N3—Cd2viii | 129.78 (16) | C16—C11—N4 | 105.4 (2) |
C4—C3—C2 | 121.6 (3) | C12—C11—N4 | 131.8 (3) |
C4—C3—H3 | 119.2 | C11—C16—C15 | 120.3 (2) |
C2—C3—H3 | 119.2 | C11—C16—N3 | 109.2 (2) |
C3—C4—C5 | 122.4 (3) | C15—C16—N3 | 130.5 (2) |
C3—C4—H4 | 118.8 | N3—C17—N4 | 112.0 (2) |
C5—C4—H4 | 118.8 | N3—C17—C18 | 125.4 (2) |
C4—C5—C6 | 116.8 (3) | N4—C17—C18 | 122.6 (2) |
N1i—Cd1—O1—C10 | −116.07 (15) | C7—N2—C1—C6 | 1.6 (3) |
N1ii—Cd1—O1—C10 | 10.0 (2) | C9—N2—C1—C6 | 174.8 (2) |
O2iii—Cd1—O1—C10 | 155.38 (15) | C4—C5—C6—C1 | 0.6 (4) |
O2—Cd1—O1—C10 | −7.38 (14) | C4—C5—C6—N1 | 178.0 (3) |
O1iii—Cd1—O1—C10 | 106.30 (17) | C2—C1—C6—C5 | −1.9 (4) |
C10iii—Cd1—O1—C10 | 132.41 (14) | N2—C1—C6—C5 | 176.4 (2) |
N1i—Cd1—O2—C10 | 97.92 (16) | C2—C1—C6—N1 | −179.9 (2) |
N1ii—Cd1—O2—C10 | −161.24 (16) | N2—C1—C6—N1 | −1.5 (3) |
O2iii—Cd1—O2—C10 | −28.88 (15) | C7—N1—C6—C5 | −176.8 (3) |
O1iii—Cd1—O2—C10 | −58.06 (16) | Cd1vii—N1—C6—C5 | 14.6 (4) |
O1—Cd1—O2—C10 | 7.36 (14) | C7—N1—C6—C1 | 0.8 (3) |
C10iii—Cd1—O2—C10 | −44.6 (2) | Cd1vii—N1—C6—C1 | −167.70 (16) |
N3iv—Cd2—O4—C20 | −101.91 (16) | Cd2—O4—C20—O3 | 14.0 (3) |
N3v—Cd2—O4—C20 | 155.28 (17) | Cd2—O4—C20—C19 | −164.3 (2) |
O3vi—Cd2—O4—C20 | 53.46 (17) | Cd2—O3—C20—O4 | −16.2 (3) |
O3—Cd2—O4—C20 | −7.98 (15) | Cd2—O3—C20—C19 | 162.1 (2) |
O4vi—Cd2—O4—C20 | 25.06 (15) | C16—C15—C14—C13 | −0.2 (5) |
C20vi—Cd2—O4—C20 | 41.8 (2) | C17—N4—C19—C20 | −67.7 (3) |
N3iv—Cd2—O3—C20 | 111.83 (16) | C11—N4—C19—C20 | 106.0 (3) |
N3v—Cd2—O3—C20 | −13.8 (2) | O4—C20—C19—N4 | 167.6 (2) |
O3vi—Cd2—O3—C20 | −118.29 (19) | O3—C20—C19—N4 | −10.8 (4) |
O4vi—Cd2—O3—C20 | −163.07 (15) | C11—C12—C13—C14 | −0.4 (4) |
O4—Cd2—O3—C20 | 7.88 (15) | C15—C14—C13—C12 | 1.9 (5) |
C20vi—Cd2—O3—C20 | −141.91 (14) | C13—C12—C11—C16 | −2.8 (4) |
C2—C3—C4—C5 | −1.6 (5) | C13—C12—C11—N4 | 176.3 (3) |
C3—C4—C5—C6 | 1.2 (5) | C17—N4—C11—C16 | −2.0 (3) |
C6—N1—C7—N2 | 0.2 (3) | C19—N4—C11—C16 | −176.6 (2) |
Cd1vii—N1—C7—N2 | 169.31 (15) | C17—N4—C11—C12 | 178.8 (3) |
C6—N1—C7—C8 | 179.6 (2) | C19—N4—C11—C12 | 4.2 (4) |
Cd1vii—N1—C7—C8 | −11.3 (3) | C12—C11—C16—C15 | 4.6 (4) |
C1—N2—C7—N1 | −1.2 (3) | N4—C11—C16—C15 | −174.7 (2) |
C9—N2—C7—N1 | −174.4 (2) | C12—C11—C16—N3 | −178.4 (2) |
C1—N2—C7—C8 | 179.4 (2) | N4—C11—C16—N3 | 2.3 (3) |
C9—N2—C7—C8 | 6.2 (4) | C14—C15—C16—C11 | −2.9 (4) |
Cd1—O1—C10—O2 | 13.5 (3) | C14—C15—C16—N3 | −179.1 (3) |
Cd1—O1—C10—C9 | −164.6 (2) | C17—N3—C16—C11 | −1.7 (3) |
Cd1—O2—C10—O1 | −14.3 (3) | Cd2viii—N3—C16—C11 | 169.00 (17) |
Cd1—O2—C10—C9 | 163.97 (19) | C17—N3—C16—C15 | 174.9 (3) |
C4—C3—C2—C1 | 0.2 (5) | Cd2viii—N3—C16—C15 | −14.4 (4) |
C7—N2—C9—C10 | 68.6 (3) | C16—N3—C17—N4 | 0.4 (3) |
C1—N2—C9—C10 | −103.4 (3) | Cd2viii—N3—C17—N4 | −171.01 (15) |
O1—C10—C9—N2 | 17.0 (3) | C16—N3—C17—C18 | 179.3 (2) |
O2—C10—C9—N2 | −161.3 (2) | Cd2viii—N3—C17—C18 | 7.9 (3) |
C3—C2—C1—N2 | −176.4 (3) | C11—N4—C17—N3 | 1.0 (3) |
C3—C2—C1—C6 | 1.5 (4) | C19—N4—C17—N3 | 175.8 (2) |
C7—N2—C1—C2 | 179.7 (3) | C11—N4—C17—C18 | −177.9 (2) |
C9—N2—C1—C2 | −7.1 (4) | C19—N4—C17—C18 | −3.2 (4) |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) x−1/2, y, −z+1/2; (iii) x, −y+1, −z+1/2; (iv) −x+1/2, y+1/2, z; (v) x, y+1/2, −z; (vi) −x+1/2, y, −z; (vii) x+1/2, y, −z+1/2; (viii) x, y−1/2, −z. |
[Cd(C10H9N2O2)2] | F(000) = 984 |
Mr = 490.79 | Dx = 1.735 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2201 reflections |
a = 11.476 (7) Å | θ = 3.5–27.5° |
b = 11.641 (7) Å | µ = 1.20 mm−1 |
c = 14.064 (13) Å | T = 293 K |
β = 90.701 (14)° | Block, colourless |
V = 1879 (2) Å3 | 0.20 × 0.20 × 0.20 mm |
Z = 4 |
Rigaku SCXmini diffractometer | 2168 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.061 |
Graphite monochromator | θmax = 28.7°, θmin = 2.5° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −15→15 |
Tmin = 0.787, Tmax = 0.787 | l = −18→19 |
9836 measured reflections | 3 standard reflections every 180 reflections |
2421 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.195 | H-atom parameters constrained |
S = 1.23 | w = 1/[σ2(Fo2) + (0.0827P)2 + 8.5997P] where P = (Fo2 + 2Fc2)/3 |
2421 reflections | (Δ/σ)max = 0.007 |
133 parameters | Δρmax = 0.90 e Å−3 |
0 restraints | Δρmin = −1.42 e Å−3 |
[Cd(C10H9N2O2)2] | V = 1879 (2) Å3 |
Mr = 490.79 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 11.476 (7) Å | µ = 1.20 mm−1 |
b = 11.641 (7) Å | T = 293 K |
c = 14.064 (13) Å | 0.20 × 0.20 × 0.20 mm |
β = 90.701 (14)° |
Rigaku SCXmini diffractometer | 2168 reflections with I > 2σ(I) |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | Rint = 0.061 |
Tmin = 0.787, Tmax = 0.787 | 3 standard reflections every 180 reflections |
9836 measured reflections | intensity decay: none |
2421 independent reflections |
R[F2 > 2σ(F2)] = 0.066 | 0 restraints |
wR(F2) = 0.195 | H-atom parameters constrained |
S = 1.23 | Δρmax = 0.90 e Å−3 |
2421 reflections | Δρmin = −1.42 e Å−3 |
133 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 1.0000 | 0.19978 (5) | 0.2500 | 0.0358 (2) | |
O2 | 0.4757 (5) | 0.5517 (5) | 0.3602 (4) | 0.0522 (13) | |
O1 | 0.6585 (5) | 0.5978 (4) | 0.3348 (4) | 0.0504 (12) | |
N1 | 0.7357 (4) | 0.3863 (5) | 0.4092 (4) | 0.0366 (11) | |
N3 | 0.8943 (5) | 0.3183 (5) | 0.3423 (4) | 0.0362 (11) | |
C7 | 0.8174 (7) | 0.4160 (6) | 0.5756 (5) | 0.0486 (16) | |
H7 | 0.7498 | 0.4423 | 0.6041 | 0.058* | |
C6 | 0.9206 (8) | 0.4061 (7) | 0.6259 (5) | 0.0535 (18) | |
H6 | 0.9224 | 0.4257 | 0.6900 | 0.064* | |
C5 | 1.0228 (8) | 0.3675 (7) | 0.5834 (6) | 0.0543 (19) | |
H5 | 1.0917 | 0.3658 | 0.6188 | 0.065* | |
C4 | 1.0234 (6) | 0.3321 (6) | 0.4900 (5) | 0.0444 (15) | |
H4 | 1.0909 | 0.3032 | 0.4628 | 0.053* | |
C3A | 0.9202 (5) | 0.3407 (5) | 0.4375 (5) | 0.0359 (12) | |
C7A | 0.8189 (6) | 0.3852 (5) | 0.4805 (4) | 0.0363 (12) | |
C2 | 0.7836 (6) | 0.3459 (5) | 0.3291 (4) | 0.0361 (13) | |
C8 | 0.6168 (6) | 0.4225 (6) | 0.4193 (5) | 0.0450 (15) | |
H8A | 0.6015 | 0.4330 | 0.4864 | 0.054* | |
H8B | 0.5663 | 0.3613 | 0.3965 | 0.054* | |
C9 | 0.5842 (6) | 0.5333 (6) | 0.3667 (5) | 0.0394 (13) | |
C10 | 0.7180 (7) | 0.3343 (7) | 0.2375 (5) | 0.0496 (17) | |
H10A | 0.7622 | 0.2882 | 0.1943 | 0.074* | |
H10B | 0.7054 | 0.4090 | 0.2105 | 0.074* | |
H10C | 0.6443 | 0.2981 | 0.2489 | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0359 (4) | 0.0343 (4) | 0.0374 (4) | 0.000 | 0.0061 (3) | 0.000 |
O2 | 0.049 (3) | 0.060 (3) | 0.048 (3) | 0.019 (2) | 0.014 (2) | 0.006 (2) |
O1 | 0.058 (3) | 0.040 (2) | 0.054 (3) | −0.005 (2) | −0.001 (2) | 0.010 (2) |
N1 | 0.036 (3) | 0.039 (3) | 0.036 (3) | 0.008 (2) | 0.002 (2) | 0.004 (2) |
N3 | 0.039 (3) | 0.037 (3) | 0.033 (3) | 0.007 (2) | 0.001 (2) | −0.001 (2) |
C7 | 0.063 (4) | 0.043 (4) | 0.040 (4) | 0.007 (3) | 0.008 (3) | 0.001 (3) |
C6 | 0.070 (5) | 0.052 (4) | 0.039 (4) | −0.001 (4) | 0.002 (3) | 0.005 (3) |
C5 | 0.061 (5) | 0.046 (4) | 0.055 (4) | −0.004 (3) | −0.016 (4) | 0.008 (3) |
C4 | 0.043 (4) | 0.043 (3) | 0.047 (4) | −0.002 (3) | 0.000 (3) | 0.005 (3) |
C3A | 0.036 (3) | 0.033 (3) | 0.039 (3) | −0.002 (2) | 0.000 (2) | 0.003 (2) |
C7A | 0.042 (3) | 0.033 (3) | 0.034 (3) | 0.000 (2) | 0.002 (2) | 0.005 (2) |
C2 | 0.042 (3) | 0.031 (3) | 0.036 (3) | 0.009 (2) | 0.001 (2) | 0.003 (2) |
C8 | 0.040 (3) | 0.040 (3) | 0.055 (4) | 0.004 (3) | 0.013 (3) | 0.008 (3) |
C9 | 0.047 (4) | 0.035 (3) | 0.037 (3) | 0.003 (3) | 0.005 (3) | −0.004 (2) |
C10 | 0.054 (4) | 0.054 (4) | 0.041 (4) | 0.014 (3) | −0.006 (3) | 0.001 (3) |
Cd1—N3 | 2.258 (5) | C7—C6 | 1.377 (11) |
Cd1—N3i | 2.258 (5) | C7—H7 | 0.9300 |
Cd1—O2ii | 2.337 (5) | C6—C5 | 1.397 (12) |
Cd1—O1ii | 2.467 (5) | C6—H6 | 0.9300 |
Cd1—O1iii | 2.467 (5) | C5—C4 | 1.377 (11) |
Cd1—O2iii | 2.337 (5) | C5—H5 | 0.9300 |
Cd1—C9ii | 2.710 (7) | C4—C3A | 1.392 (9) |
Cd1—C9iii | 2.710 (7) | C4—H4 | 0.9300 |
O2—C9 | 1.266 (8) | C3A—C7A | 1.414 (9) |
O2—Cd1iv | 2.337 (5) | C2—C10 | 1.489 (9) |
O1—C9 | 1.224 (8) | C8—C9 | 1.532 (9) |
O1—Cd1iv | 2.467 (5) | C8—H8A | 0.9700 |
N1—C2 | 1.346 (8) | C8—H8B | 0.9700 |
N1—C7A | 1.376 (8) | C9—Cd1iv | 2.710 (7) |
N1—C8 | 1.436 (8) | C10—H10A | 0.9600 |
N3—C2 | 1.321 (8) | C10—H10B | 0.9600 |
N3—C3A | 1.394 (8) | C10—H10C | 0.9600 |
C7—C7A | 1.385 (9) | ||
O2ii—Cd1—N3i | 90.03 (19) | C6—C7—H7 | 121.5 |
O2iii—Cd1—N3i | 154.3 (2) | C7—C6—C5 | 121.9 (7) |
N3—Cd1—N3i | 104.7 (3) | C7—C6—H6 | 119.1 |
N3—Cd1—O2ii | 154.3 (2) | C5—C6—H6 | 119.1 |
N3—Cd1—O2iii | 90.03 (19) | C4—C5—C6 | 121.3 (7) |
O2ii—Cd1—O2iii | 84.9 (3) | C4—C5—H5 | 119.4 |
N3—Cd1—O1ii | 100.02 (19) | C6—C5—H5 | 119.4 |
N3i—Cd1—O1ii | 114.47 (19) | C5—C4—C3A | 118.0 (7) |
O2ii—Cd1—O1ii | 54.39 (18) | C5—C4—H4 | 121.0 |
O2iii—Cd1—O1ii | 82.7 (2) | C3A—C4—H4 | 121.0 |
N3—Cd1—O1iii | 114.47 (19) | N3—C3A—C4 | 131.8 (6) |
N3i—Cd1—O1iii | 100.02 (19) | N3—C3A—C7A | 108.2 (5) |
O2ii—Cd1—O1iii | 82.7 (2) | C4—C3A—C7A | 119.9 (6) |
O2iii—Cd1—O1iii | 54.39 (18) | N1—C7A—C7 | 133.2 (6) |
O1ii—Cd1—O1iii | 122.5 (2) | N1—C7A—C3A | 105.0 (5) |
N3—Cd1—C9ii | 126.5 (2) | C7—C7A—C3A | 121.8 (6) |
N3i—Cd1—C9ii | 106.2 (2) | N3—C2—N1 | 111.7 (6) |
O2ii—Cd1—C9ii | 27.82 (19) | N3—C2—C10 | 125.0 (6) |
O2iii—Cd1—C9ii | 80.2 (2) | N1—C2—C10 | 123.3 (6) |
O1ii—Cd1—C9ii | 26.84 (19) | N1—C8—C9 | 115.2 (6) |
O1iii—Cd1—C9ii | 101.8 (2) | N1—C8—H8A | 108.5 |
N3—Cd1—C9iii | 106.2 (2) | C9—C8—H8A | 108.5 |
N3i—Cd1—C9iii | 126.5 (2) | N1—C8—H8B | 108.5 |
O2ii—Cd1—C9iii | 80.2 (2) | C9—C8—H8B | 108.5 |
O2iii—Cd1—C9iii | 27.82 (19) | H8A—C8—H8B | 107.5 |
O1ii—Cd1—C9iii | 101.8 (2) | O1—C9—O2 | 123.9 (7) |
O1iii—Cd1—C9iii | 26.84 (19) | O1—C9—C8 | 121.8 (6) |
C9ii—Cd1—C9iii | 88.7 (3) | O2—C9—C8 | 114.3 (6) |
C9—O2—Cd1iv | 92.7 (4) | O1—C9—Cd1iv | 65.5 (4) |
C9—O1—Cd1iv | 87.7 (4) | O2—C9—Cd1iv | 59.5 (4) |
C2—N1—C7A | 108.7 (5) | C8—C9—Cd1iv | 168.0 (5) |
C2—N1—C8 | 125.7 (6) | C2—C10—H10A | 109.5 |
C7A—N1—C8 | 125.6 (6) | C2—C10—H10B | 109.5 |
C2—N3—C3A | 106.4 (5) | H10A—C10—H10B | 109.5 |
C2—N3—Cd1 | 126.2 (4) | C2—C10—H10C | 109.5 |
C3A—N3—Cd1 | 123.9 (4) | H10A—C10—H10C | 109.5 |
C7A—C7—C6 | 117.0 (7) | H10B—C10—H10C | 109.5 |
C7A—C7—H7 | 121.5 | ||
N3i—Cd1—N3—C2 | 100.6 (5) | C2—N1—C7A—C3A | −0.2 (7) |
O2ii—Cd1—N3—C2 | −22.4 (8) | C8—N1—C7A—C3A | 178.6 (6) |
O2iii—Cd1—N3—C2 | −100.7 (5) | C6—C7—C7A—N1 | −178.1 (7) |
O1ii—Cd1—N3—C2 | −18.1 (6) | C6—C7—C7A—C3A | 2.7 (10) |
O1iii—Cd1—N3—C2 | −150.9 (5) | N3—C3A—C7A—N1 | 0.7 (7) |
C9ii—Cd1—N3—C2 | −22.9 (6) | C4—C3A—C7A—N1 | 177.6 (6) |
C9iii—Cd1—N3—C2 | −123.6 (5) | N3—C3A—C7A—C7 | −179.9 (6) |
N3i—Cd1—N3—C3A | −103.5 (5) | C4—C3A—C7A—C7 | −3.0 (10) |
O2ii—Cd1—N3—C3A | 133.5 (5) | C3A—N3—C2—N1 | 0.8 (7) |
O2iii—Cd1—N3—C3A | 55.2 (5) | Cd1—N3—C2—N1 | 160.1 (4) |
O1ii—Cd1—N3—C3A | 137.7 (5) | C3A—N3—C2—C10 | −179.1 (6) |
O1iii—Cd1—N3—C3A | 4.9 (6) | Cd1—N3—C2—C10 | −19.8 (9) |
C9ii—Cd1—N3—C3A | 133.0 (5) | C7A—N1—C2—N3 | −0.4 (7) |
C9iii—Cd1—N3—C3A | 32.2 (5) | C8—N1—C2—N3 | −179.2 (6) |
C7A—C7—C6—C5 | 0.4 (11) | C7A—N1—C2—C10 | 179.5 (6) |
C7—C6—C5—C4 | −3.3 (12) | C8—N1—C2—C10 | 0.7 (10) |
C6—C5—C4—C3A | 2.9 (11) | C2—N1—C8—C9 | −69.4 (9) |
C2—N3—C3A—C4 | −177.3 (7) | C7A—N1—C8—C9 | 112.0 (7) |
Cd1—N3—C3A—C4 | 22.8 (10) | Cd1iv—O1—C9—O2 | −11.4 (7) |
C2—N3—C3A—C7A | −0.9 (7) | Cd1iv—O1—C9—C8 | 169.1 (6) |
Cd1—N3—C3A—C7A | −160.8 (4) | Cd1iv—O2—C9—O1 | 12.0 (7) |
C5—C4—C3A—N3 | 176.2 (7) | Cd1iv—O2—C9—C8 | −168.4 (5) |
C5—C4—C3A—C7A | 0.2 (10) | N1—C8—C9—O1 | −13.9 (10) |
C2—N1—C7A—C7 | −179.5 (7) | N1—C8—C9—O2 | 166.5 (6) |
C8—N1—C7A—C7 | −0.7 (11) | N1—C8—C9—Cd1iv | 110 (2) |
Symmetry codes: (i) −x+2, y, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x+1/2, y−1/2, z; (iv) x−1/2, y+1/2, z. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | [Cd(C10H9N2O2)2] | [Cd(C10H9N2O2)2] |
Mr | 490.79 | 490.79 |
Crystal system, space group | Orthorhombic, Ibca | Monoclinic, C2/c |
Temperature (K) | 293 | 293 |
a, b, c (Å) | 14.7042 (4), 14.0074 (4), 37.9500 (9) | 11.476 (7), 11.641 (7), 14.064 (13) |
α, β, γ (°) | 90, 90, 90 | 90, 90.701 (14), 90 |
V (Å3) | 7816.5 (4) | 1879 (2) |
Z | 16 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.15 | 1.20 |
Crystal size (mm) | 0.38 × 0.34 × 0.3 | 0.20 × 0.20 × 0.20 |
Data collection | ||
Diffractometer | Rigaku SCXmini diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.652, 0.708 | 0.787, 0.787 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 29375, 4479, 3781 | 9836, 2421, 2168 |
Rint | 0.041 | 0.061 |
(sin θ/λ)max (Å−1) | 0.649 | 0.676 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.068, 1.14 | 0.066, 0.195, 1.23 |
No. of reflections | 4479 | 2421 |
No. of parameters | 265 | 133 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.37 | 0.90, −1.42 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).
Cd1—N1i | 2.254 (2) | Cd2—N3ii | 2.230 (2) |
Cd1—O1 | 2.471 (2) | Cd2—O3 | 2.2753 (19) |
Cd1—O2 | 2.3448 (19) | Cd2—O4 | 2.617 (2) |
N1i—Cd1—N1iii | 101.51 (10) | N3ii—Cd2—N3iv | 105.44 (10) |
O2—Cd1—O1 | 54.13 (6) | O3—Cd2—O4 | 52.90 (7) |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) −x+1/2, y+1/2, z; (iii) x−1/2, y, −z+1/2; (iv) x, y+1/2, −z. |
Cd1—N3 | 2.258 (5) | Cd1—O2i | 2.337 (5) |
Cd1—O1i | 2.467 (5) | ||
O2ii—Cd1—N3iii | 90.03 (19) | O2i—Cd1—O1ii | 82.7 (2) |
O2i—Cd1—N3iii | 154.3 (2) | N3—Cd1—O1i | 114.47 (19) |
N3—Cd1—N3iii | 104.7 (3) | N3iii—Cd1—O1i | 100.02 (19) |
O2ii—Cd1—O2i | 84.9 (3) | O2i—Cd1—O1i | 54.39 (18) |
N3iii—Cd1—O1ii | 114.47 (19) | O1ii—Cd1—O1i | 122.5 (2) |
Symmetry codes: (i) x+1/2, y−1/2, z; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+2, y, −z+1/2. |