research papers
The crystal structures of newly discovered Li4Ge2D and Li4Si2D ternary phases were solved by direct methods using neutron powder diffraction data. Both structures can be described using a Cmmm orthorhombic cell with all hydrogen atoms occupying Li6-octahedral interstices. The overall crystal structure and the geometry of these interstices are compared with those of other related phases, and the stabilization of this novel class of ternary hydrides is discussed.
Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768106046465/ws5053sup1.cif |
Computing details top
(LSD_phase_1) top
Crystal data top
D0.46Li2Si | c = 4.1754 (2) Å |
Mr = 42.90 | V = 187.11 (1) Å3 |
Orthorhombic, Cmmm | Z = 4 |
a = 11.9099 (7) Å | ? radiation, λ = 1.5403 Å |
b = 3.76253 (16) Å | ?, ? × ? × ? mm |
Refinement top
Least-squares matrix: full | 3300 data points |
Rp = 0.050 | Profile function: CW Profile function number 4 with 18 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 371.653 #2(GV) = -179.677 #3(GW) = 143.971 #4(GP) = 0.000 #5(LX) = 0.000 #6(ptec) = 0.00 #7(trns) = 0.00 #8(shft) = 0.0000 #9(sfec) = 0.00 #10(S/L) = 0.0177 #11(H/L) = 0.0282 #12(eta) = 0.9229 #13(S400 ) = 8.7E-03 #14(S040 ) = 1.1E-01 #15(S004 ) = 2.1E+00 #16(S220 ) = 7.8E-02 #17(S202 ) = 2.1E-01 #18(S022 ) = -4.3E-01 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 378.171 #2(GV) = -266.963 #3(GW) = 143.030 #4(LX) = 5.837 #5(LY) = 0.000 #6(trns) = 0.000 #7(asym) = 0.5841 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 1 with 6 terms Profile coefficients for Simpson's rule integration of Gaussian function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. Cooper & Sayer, J. Appl. Cryst., 8, 615-618 (1975). Thomas, J. Appl. Cryst., 10, 12-13(1977). #1(U) = 349.251 #2(V) = -172.368 #3(W) = 376.644 #4(asym) = 10.1992 #5(F1) = 0.000 #6(F2) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 1 with 6 terms Profile coefficients for Simpson's rule integration of Gaussian function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. Cooper & Sayer, J. Appl. Cryst., 8, 615-618 (1975). Thomas, J. Appl. Cryst., 10, 12-13(1977). #1(U) = 0.051 #2(V) = -191.490 #3(W) = 270.601 #4(asym) = 8.5358 #5(F1) = 0.000 #6(F2) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0 |
Rwp = 0.063 | 44 parameters |
Rexp = 0.045 | 0 restraints |
R(F2) = 0.26021 | (Δ/σ)max = 0.19 |
χ2 = 1.988 | Background function: GSAS Background function number 1 with 10 terms. Shifted Chebyshev function of 1st kind 1: 409.832 2: -33.5735 3: 77.8232 4: -8.86018 5: 41.9854 6: -3.54596 7: 11.5529 8: -8.19360 9: -0.792614 10: -0.317810 |
Crystal data top
D0.46Li2Si | c = 4.1754 (2) Å |
Mr = 42.90 | V = 187.11 (1) Å3 |
Orthorhombic, Cmmm | Z = 4 |
a = 11.9099 (7) Å | ? radiation, λ = 1.5403 Å |
b = 3.76253 (16) Å | ?, ? × ? × ? mm |
Refinement top
Rp = 0.050 | 3300 data points |
Rwp = 0.063 | 44 parameters |
Rexp = 0.045 | 0 restraints |
R(F2) = 0.26021 | (Δ/σ)max = 0.19 |
χ2 = 1.988 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Si1 | −0.6880 (3) | 0.0 | 0.0 | 0.01295 | |
Li1 | −0.1693 (5) | 0.0 | 0.5 | 0.01901 | |
Li2 | 0.5 | 0.0 | 0.5 | 0.01901 | |
D1 | 0.5 | 0.5 | 0.5 | 0.0205 | 0.927 (16) |
Li3 | 0.0 | 0.0 | 0.0 | 0.01901 |
Atomic displacement parameters (Å2) top
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.015 (2) | 0.0079 (19) | 0.016 (2) | 0.0 | 0.0 | 0.0 |
Li1 | 0.005 (3) | 0.023 (3) | 0.029 (4) | 0.0 | 0.0 | 0.0 |
Li2 | 0.005 (3) | 0.023 (3) | 0.029 (4) | 0.0 | 0.0 | 0.0 |
D1 | 0.027 (3) | 0.017 (2) | 0.017 (3) | 0.0 | 0.0 | 0.0 |
Li3 | 0.005 (3) | 0.023 (3) | 0.029 (4) | 0.0 | 0.0 | 0.0 |
Geometric parameters (Å, º) top
Si1—Si1i | 3.7625 (2) | Li2—Li1xxviii | 2.758 (4) |
Si1—Si1ii | 3.7625 (2) | Li2—Li2i | 3.7625 (2) |
Si1—Si1iii | 2.391 (4) | Li2—Li2ii | 3.7625 (2) |
Si1—Si1iv | 2.391 (4) | Li2—D1i | 1.8813 (1) |
Si1—Li1v | 2.692 (4) | Li2—D1 | 1.8813 (1) |
Si1—Li1vi | 2.692 (4) | Li2—Li3xvi | 2.8103 (1) |
Si1—Li1vii | 2.8191 (6) | Li2—Li3xvii | 2.8103 (1) |
Si1—Li1viii | 2.8191 (6) | Li2—Li3xviii | 2.8103 (1) |
Si1—Li1ix | 2.8191 (6) | Li2—Li3xix | 2.8103 (1) |
Si1—Li1x | 2.8191 (6) | D1—Si1xxiii | 3.593 (2) |
Si1—Li2xi | 3.062 (3) | D1—Si1xxiv | 3.593 (2) |
Si1—Li2xii | 3.062 (3) | D1—Si1xxix | 3.593 (2) |
Si1—D1xiii | 3.593 (2) | D1—Si1xxx | 3.593 (2) |
Si1—D1xiv | 3.593 (2) | D1—Si1xxv | 3.593 (2) |
Si1—D1xi | 3.593 (2) | D1—Si1xxvi | 3.593 (2) |
Si1—D1xii | 3.593 (2) | D1—Si1xxxi | 3.593 (2) |
Si1—Li3xii | 3.716 (3) | D1—Si1xxxii | 3.593 (2) |
Si1—Li3viii | 2.925 (3) | D1—Li1xviii | 2.016 (6) |
Si1—Li3x | 2.925 (3) | D1—Li1xxviii | 2.016 (6) |
Li1—Si1vi | 2.692 (4) | D1—Li2 | 1.8813 (1) |
Li1—Si1xv | 2.692 (4) | D1—Li2ii | 1.8813 (1) |
Li1—Si1xvi | 2.8191 (6) | D1—D1i | 3.7625 (2) |
Li1—Si1xvii | 2.8191 (6) | D1—D1ii | 3.7625 (2) |
Li1—Si1xviii | 2.8191 (6) | D1—Li3xviii | 2.0877 (1) |
Li1—Si1xix | 2.8191 (6) | D1—Li3xix | 2.0877 (1) |
Li1—Li1i | 3.7625 (2) | Li3—Si1xxiii | 3.716 (3) |
Li1—Li1ii | 3.7625 (2) | Li3—Si1vi | 3.716 (3) |
Li1—Li1xx | 2.690 (9) | Li3—Si1xvi | 2.925 (3) |
Li1—Li1xxi | 2.690 (9) | Li3—Si1xviii | 2.925 (3) |
Li1—Li2xii | 3.939 (6) | Li3—Si1xx | 2.925 (3) |
Li1—Li2viii | 2.758 (4) | Li3—Si1xxi | 2.925 (3) |
Li1—Li2x | 2.758 (4) | Li3—Li1xxxiii | 2.902 (4) |
Li1—D1viii | 2.016 (6) | Li3—Li1 | 2.902 (4) |
Li1—Li3 | 2.902 (4) | Li3—Li1xxxiv | 2.902 (4) |
Li1—Li3xxii | 2.902 (4) | Li3—Li1xxv | 2.902 (4) |
Li2—Si1xxiii | 3.062 (3) | Li3—Li2vii | 2.8103 (1) |
Li2—Si1xxiv | 3.062 (3) | Li3—Li2viii | 2.8103 (1) |
Li2—Si1xxv | 3.062 (3) | Li3—Li2ix | 2.8103 (1) |
Li2—Si1xxvi | 3.062 (3) | Li3—Li2x | 2.8103 (1) |
Li2—Li1xxiii | 3.939 (6) | Li3—D1vii | 2.0877 (1) |
Li2—Li1xxv | 3.939 (6) | Li3—D1viii | 2.0877 (1) |
Li2—Li1xvi | 2.758 (4) | Li3—Li3i | 3.7625 (2) |
Li2—Li1xviii | 2.758 (4) | Li3—Li3ii | 3.7625 (2) |
Li2—Li1xxvii | 2.758 (4) | ||
Si1iii—Si1—Si1iv | 103.8 (3) | Li1xvi—Li2—Li1xviii | 86.04 (17) |
Si1iii—Si1—Li1v | 67.06 (10) | Li1xvi—Li2—Li1xxvii | 93.96 (17) |
Si1iii—Si1—Li1vi | 67.06 (10) | Li1xvi—Li2—Li1xxviii | 179.9557 |
Si1iii—Si1—Li1vii | 61.57 (9) | Li1xvi—Li2—D1i | 46.98 (8) |
Si1iii—Si1—Li1viii | 61.57 (9) | Li1xvi—Li2—D1 | 133.02 (8) |
Si1iii—Si1—Li1ix | 125.02 (15) | Li1xvi—Li2—Li3xvi | 62.83 (5) |
Si1iii—Si1—Li1x | 125.02 (15) | Li1xvi—Li2—Li3xvii | 62.83 (5) |
Si1iv—Si1—Li1v | 67.06 (10) | Li1xvi—Li2—Li3xviii | 117.17 (5) |
Si1iv—Si1—Li1vi | 67.06 (10) | Li1xvi—Li2—Li3xix | 117.17 (5) |
Si1iv—Si1—Li1vii | 125.02 (15) | Li1xviii—Li2—Li1xxvii | 180.0 |
Si1iv—Si1—Li1viii | 125.02 (15) | Li1xviii—Li2—Li1xxviii | 93.96 (17) |
Si1iv—Si1—Li1ix | 61.57 (9) | Li1xviii—Li2—D1i | 133.02 (8) |
Si1iv—Si1—Li1x | 61.57 (9) | Li1xviii—Li2—D1 | 46.98 (8) |
Li1v—Si1—Li1vi | 101.7 (2) | Li1xviii—Li2—Li3xvi | 117.17 (5) |
Li1v—Si1—Li1vii | 58.38 (16) | Li1xviii—Li2—Li3xvii | 117.17 (5) |
Li1v—Si1—Li1viii | 128.63 (10) | Li1xviii—Li2—Li3xviii | 62.83 (5) |
Li1v—Si1—Li1ix | 58.38 (16) | Li1xviii—Li2—Li3xix | 62.83 (5) |
Li1v—Si1—Li1x | 128.63 (10) | Li1xxvii—Li2—Li1xxviii | 86.04 (17) |
Li1vi—Si1—Li1vii | 128.63 (10) | Li1xxvii—Li2—D1i | 46.98 (8) |
Li1vi—Si1—Li1viii | 58.38 (16) | Li1xxvii—Li2—D1 | 133.02 (8) |
Li1vi—Si1—Li1ix | 128.63 (10) | Li1xxvii—Li2—Li3xvi | 62.83 (5) |
Li1vi—Si1—Li1x | 58.38 (16) | Li1xxvii—Li2—Li3xvii | 62.83 (5) |
Li1vii—Si1—Li1viii | 95.56 (3) | Li1xxvii—Li2—Li3xviii | 117.17 (5) |
Li1vii—Si1—Li1ix | 83.72 (2) | Li1xxvii—Li2—Li3xix | 117.17 (5) |
Li1vii—Si1—Li1x | 170.9 (3) | Li1xxviii—Li2—D1i | 133.02 (8) |
Li1viii—Si1—Li1ix | 170.9 (3) | Li1xxviii—Li2—D1 | 46.98 (8) |
Li1viii—Si1—Li1x | 83.72 (2) | Li1xxviii—Li2—Li3xvi | 117.17 (5) |
Li1ix—Si1—Li1x | 95.56 (3) | Li1xxviii—Li2—Li3xvii | 117.17 (5) |
Si1vi—Li1—Si1xv | 101.7 (2) | Li1xxviii—Li2—Li3xviii | 62.83 (5) |
Si1vi—Li1—Si1xvi | 51.37 (10) | Li1xxviii—Li2—Li3xix | 62.83 (5) |
Si1vi—Li1—Si1xvii | 121.62 (16) | D1i—Li2—D1 | 180.0 |
Si1vi—Li1—Si1xviii | 51.37 (10) | D1i—Li2—Li3xvi | 47.9777 (19) |
Si1vi—Li1—Si1xix | 121.62 (16) | D1i—Li2—Li3xvii | 47.9777 (19) |
Si1vi—Li1—Li1xx | 63.18 (15) | D1i—Li2—Li3xviii | 132.0222 (19) |
Si1vi—Li1—Li1xxi | 63.18 (15) | D1i—Li2—Li3xix | 132.0222 (19) |
Si1vi—Li1—Li2viii | 117.49 (4) | D1—Li2—Li3xvi | 132.0222 (19) |
Si1vi—Li1—Li2x | 117.49 (4) | D1—Li2—Li3xvii | 132.0222 (19) |
Si1vi—Li1—D1viii | 129.15 (10) | D1—Li2—Li3xviii | 47.9777 (19) |
Si1vi—Li1—Li3 | 83.15 (6) | D1—Li2—Li3xix | 47.9777 (19) |
Si1vi—Li1—Li3xxii | 175.15 (18) | Li3xvi—Li2—Li3xvii | 95.955 (4) |
Si1xv—Li1—Si1xvi | 121.62 (16) | Li3xvi—Li2—Li3xviii | 84.045 (4) |
Si1xv—Li1—Si1xvii | 51.37 (10) | Li3xvi—Li2—Li3xix | 179.972 |
Si1xv—Li1—Si1xviii | 121.62 (16) | Li3xvii—Li2—Li3xviii | 179.9657 |
Si1xv—Li1—Si1xix | 51.37 (10) | Li3xvii—Li2—Li3xix | 84.045 (4) |
Si1xv—Li1—Li1xx | 63.18 (15) | Li3xviii—Li2—Li3xix | 95.955 (4) |
Si1xv—Li1—Li1xxi | 63.18 (15) | Li1xviii—D1—Li1xxviii | 180.0 |
Si1xv—Li1—Li2viii | 117.49 (4) | Li1xviii—D1—Li2 | 90.0 |
Si1xv—Li1—Li2x | 117.49 (4) | Li1xviii—D1—Li2ii | 90.0 |
Si1xv—Li1—D1viii | 129.15 (10) | Li1xviii—D1—Li3xviii | 90.0 |
Si1xv—Li1—Li3 | 175.15 (18) | Li1xviii—D1—Li3xix | 90.0 |
Si1xv—Li1—Li3xxii | 83.15 (6) | Li1xxviii—D1—Li2 | 90.0 |
Si1xvi—Li1—Si1xvii | 95.56 (3) | Li1xxviii—D1—Li2ii | 90.0 |
Si1xvi—Li1—Si1xviii | 83.72 (2) | Li1xxviii—D1—Li3xviii | 90.0 |
Si1xvi—Li1—Si1xix | 170.9 (3) | Li1xxviii—D1—Li3xix | 90.0 |
Si1xvi—Li1—Li1xx | 58.45 (6) | Li2—D1—Li2ii | 180.0 |
Si1xvi—Li1—Li1xxi | 114.2 (2) | Li2—D1—Li3xviii | 90.0 |
Si1xvi—Li1—Li2viii | 66.58 (8) | Li2—D1—Li3xix | 90.0 |
Si1xvi—Li1—Li2x | 120.87 (16) | Li2ii—D1—Li3xviii | 90.0 |
Si1xvi—Li1—D1viii | 94.54 (15) | Li2ii—D1—Li3xix | 90.0 |
Si1xvi—Li1—Li3 | 61.46 (8) | Li3xviii—D1—Li3xix | 180.0 |
Si1xvi—Li1—Li3xxii | 125.99 (16) | Li1xxxiii—Li3—Li1 | 92.00 (17) |
Si1xvii—Li1—Si1xviii | 170.9 (3) | Li1xxxiii—Li3—Li1xxxiv | 88.00 (17) |
Si1xvii—Li1—Si1xix | 83.72 (2) | Li1xxxiii—Li3—Li1xxv | 180.0 |
Si1xvii—Li1—Li1xx | 58.45 (6) | Li1xxxiii—Li3—Li2vii | 57.70 (5) |
Si1xvii—Li1—Li1xxi | 114.2 (2) | Li1xxxiii—Li3—Li2viii | 122.30 (5) |
Si1xvii—Li1—Li2viii | 66.58 (8) | Li1xxxiii—Li3—Li2ix | 57.70 (5) |
Si1xvii—Li1—Li2x | 120.87 (16) | Li1xxxiii—Li3—Li2x | 122.30 (5) |
Si1xvii—Li1—D1viii | 94.54 (15) | Li1xxxiii—Li3—D1vii | 44.00 (9) |
Si1xvii—Li1—Li3 | 125.99 (16) | Li1xxxiii—Li3—D1viii | 136.00 (9) |
Si1xvii—Li1—Li3xxii | 61.46 (8) | Li1—Li3—Li1xxxiv | 179.9802 |
Si1xviii—Li1—Si1xix | 95.56 (3) | Li1—Li3—Li1xxv | 88.00 (17) |
Si1xviii—Li1—Li1xx | 114.2 (2) | Li1—Li3—Li2vii | 122.30 (5) |
Si1xviii—Li1—Li1xxi | 58.45 (6) | Li1—Li3—Li2viii | 57.70 (5) |
Si1xviii—Li1—Li2viii | 120.87 (16) | Li1—Li3—Li2ix | 122.30 (5) |
Si1xviii—Li1—Li2x | 66.58 (8) | Li1—Li3—Li2x | 57.70 (5) |
Si1xviii—Li1—D1viii | 94.54 (15) | Li1—Li3—D1vii | 136.00 (9) |
Si1xviii—Li1—Li3 | 61.46 (8) | Li1—Li3—D1viii | 44.00 (9) |
Si1xviii—Li1—Li3xxii | 125.99 (16) | Li1xxxiv—Li3—Li1xxv | 92.00 (17) |
Si1xix—Li1—Li1xx | 114.2 (2) | Li1xxxiv—Li3—Li2vii | 57.70 (5) |
Si1xix—Li1—Li1xxi | 58.45 (6) | Li1xxxiv—Li3—Li2viii | 122.30 (5) |
Si1xix—Li1—Li2viii | 120.87 (16) | Li1xxxiv—Li3—Li2ix | 57.70 (5) |
Si1xix—Li1—Li2x | 66.58 (8) | Li1xxxiv—Li3—Li2x | 122.30 (5) |
Si1xix—Li1—D1viii | 94.54 (15) | Li1xxxiv—Li3—D1vii | 44.00 (9) |
Si1xix—Li1—Li3 | 125.99 (16) | Li1xxxiv—Li3—D1viii | 136.00 (9) |
Si1xix—Li1—Li3xxii | 61.46 (8) | Li1xxv—Li3—Li2vii | 122.30 (5) |
Li1xx—Li1—Li1xxi | 88.8 (4) | Li1xxv—Li3—Li2viii | 57.70 (5) |
Li1xx—Li1—Li2viii | 92.61 (9) | Li1xxv—Li3—Li2ix | 122.30 (5) |
Li1xx—Li1—Li2x | 178.6 (3) | Li1xxv—Li3—Li2x | 57.70 (5) |
Li1xx—Li1—D1viii | 135.62 (18) | Li1xxv—Li3—D1vii | 136.00 (9) |
Li1xx—Li1—Li3 | 119.77 (5) | Li1xxv—Li3—D1viii | 44.00 (9) |
Li1xx—Li1—Li3xxii | 119.77 (5) | Li2vii—Li3—Li2viii | 95.955 (4) |
Li1xxi—Li1—Li2viii | 178.6 (3) | Li2vii—Li3—Li2ix | 84.045 (4) |
Li1xxi—Li1—Li2x | 92.61 (9) | Li2vii—Li3—Li2x | 179.972 |
Li1xxi—Li1—D1viii | 135.62 (18) | Li2vii—Li3—D1vii | 42.0223 (19) |
Li1xxi—Li1—Li3 | 119.77 (5) | Li2vii—Li3—D1viii | 137.9777 (19) |
Li1xxi—Li1—Li3xxii | 119.77 (5) | Li2viii—Li3—Li2ix | 179.9657 |
Li2viii—Li1—Li2x | 86.04 (17) | Li2viii—Li3—Li2x | 84.045 (4) |
Li2viii—Li1—D1viii | 43.02 (8) | Li2viii—Li3—D1vii | 137.9777 (19) |
Li2viii—Li1—Li3 | 59.48 (10) | Li2viii—Li3—D1viii | 42.0223 (19) |
Li2viii—Li1—Li3xxii | 59.48 (10) | Li2ix—Li3—Li2x | 95.955 (4) |
Li2x—Li1—D1viii | 43.02 (8) | Li2ix—Li3—D1vii | 42.0223 (19) |
Li2x—Li1—Li3 | 59.48 (10) | Li2ix—Li3—D1viii | 137.9777 (19) |
Li2x—Li1—Li3xxii | 59.48 (10) | Li2x—Li3—D1vii | 137.9777 (19) |
D1viii—Li1—Li3 | 46.00 (9) | Li2x—Li3—D1viii | 42.0223 (19) |
D1viii—Li1—Li3xxii | 46.00 (9) | D1vii—Li3—D1viii | 180.0 |
Li3—Li1—Li3xxii | 92.00 (17) |
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) −x−3/2, y−1/2, z; (iv) −x−3/2, y+1/2, z; (v) −x−1, y, z−1; (vi) −x−1, y, z; (vii) x−1/2, y−1/2, z−1; (viii) x−1/2, y−1/2, z; (ix) x−1/2, y+1/2, z−1; (x) x−1/2, y+1/2, z; (xi) x−1, y, z−1; (xii) x−1, y, z; (xiii) x−1, y−1, z−1; (xiv) x−1, y−1, z; (xv) −x−1, y, z+1; (xvi) x+1/2, y−1/2, z; (xvii) x+1/2, y−1/2, z+1; (xviii) x+1/2, y+1/2, z; (xix) x+1/2, y+1/2, z+1; (xx) −x−1/2, y−1/2, z; (xxi) −x−1/2, y+1/2, z; (xxii) x, y, z+1; (xxiii) x+1, y, z; (xxiv) x+1, y, z+1; (xxv) −x, y, z; (xxvi) −x, y, z+1; (xxvii) −x+1/2, y−1/2, z; (xxviii) −x+1/2, y+1/2, z; (xxix) x+1, y+1, z; (xxx) x+1, y+1, z+1; (xxxi) −x, y+1, z; (xxxii) −x, y+1, z+1; (xxxiii) x, y, z−1; (xxxiv) −x, y, z−1. |
(LSD_phase_2) top
Crystal data top
Si | V = 159.85 (1) Å3 |
Mr = 28.09 | Z = 8 |
Cubic, Fd3m | ? radiation, λ = 1.5403 Å |
a = 5.42712 (9) Å | ?, ? × ? × ? mm |
Refinement top
Least-squares matrix: full | 3300 data points |
Rp = 0.050 | Profile function: CW Profile function number 4 with 18 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 371.653 #2(GV) = -179.677 #3(GW) = 143.971 #4(GP) = 0.000 #5(LX) = 0.000 #6(ptec) = 0.00 #7(trns) = 0.00 #8(shft) = 0.0000 #9(sfec) = 0.00 #10(S/L) = 0.0177 #11(H/L) = 0.0282 #12(eta) = 0.9229 #13(S400 ) = 8.7E-03 #14(S040 ) = 1.1E-01 #15(S004 ) = 2.1E+00 #16(S220 ) = 7.8E-02 #17(S202 ) = 2.1E-01 #18(S022 ) = -4.3E-01 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 378.171 #2(GV) = -266.963 #3(GW) = 143.030 #4(LX) = 5.837 #5(LY) = 0.000 #6(trns) = 0.000 #7(asym) = 0.5841 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 1 with 6 terms Profile coefficients for Simpson's rule integration of Gaussian function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. Cooper & Sayer, J. Appl. Cryst., 8, 615-618 (1975). Thomas, J. Appl. Cryst., 10, 12-13(1977). #1(U) = 349.251 #2(V) = -172.368 #3(W) = 376.644 #4(asym) = 10.1992 #5(F1) = 0.000 #6(F2) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 1 with 6 terms Profile coefficients for Simpson's rule integration of Gaussian function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. Cooper & Sayer, J. Appl. Cryst., 8, 615-618 (1975). Thomas, J. Appl. Cryst., 10, 12-13(1977). #1(U) = 0.051 #2(V) = -191.490 #3(W) = 270.601 #4(asym) = 8.5358 #5(F1) = 0.000 #6(F2) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0 |
Rwp = 0.063 | 44 parameters |
Rexp = 0.045 | 0 restraints |
R(F2) = 0.26021 | (Δ/σ)max = 0.19 |
χ2 = 1.988 | Background function: GSAS Background function number 1 with 10 terms. Shifted Chebyshev function of 1st kind 1: 409.832 2: -33.5735 3: 77.8232 4: -8.86018 5: 41.9854 6: -3.54596 7: 11.5529 8: -8.19360 9: -0.792614 10: -0.317810 |
Crystal data top
Si | V = 159.85 (1) Å3 |
Mr = 28.09 | Z = 8 |
Cubic, Fd3m | ? radiation, λ = 1.5403 Å |
a = 5.42712 (9) Å | ?, ? × ? × ? mm |
Refinement top
Rp = 0.050 | 3300 data points |
Rwp = 0.063 | 44 parameters |
Rexp = 0.045 | 0 restraints |
R(F2) = 0.26021 | (Δ/σ)max = 0.19 |
χ2 = 1.988 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x | y | z | Uiso*/Ueq | ||
Si | 0.125 | 0.125 | 0.125 | 0.0072 (4)* |
Geometric parameters (Å, º) top
Si—Sii | 2.3500 (1) | Si—Siiii | 2.3500 (1) |
Si—Siii | 2.3500 (1) | Si—Siiv | 2.3500 (1) |
Sii—Si—Siii | 109.4712 (6) | Siii—Si—Siiii | 109.4712 (12) |
Sii—Si—Siiii | 109.4712 (6) | Siii—Si—Siiv | 109.4712 (6) |
Sii—Si—Siiv | 109.4712 (12) | Siiii—Si—Siiv | 109.4712 (6) |
Symmetry codes: (i) x+1/4, y+1/4, −z; (ii) −z, x+1/4, y+1/4; (iii) y+1/4, −z, x+1/4; (iv) −x, −y, −z. |
(LSD_phase_3) top
Crystal data top
DLi | V = 67.59 (5) Å3 |
Mr = 8.95 | Z = 4 |
Cubic, Fm3m | ? radiation, λ = 1.5403 Å |
a = 4.0735 (10) Å | ?, ? × ? × ? mm |
Refinement top
Least-squares matrix: full | 3300 data points |
Rp = 0.050 | Profile function: CW Profile function number 4 with 18 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 371.653 #2(GV) = -179.677 #3(GW) = 143.971 #4(GP) = 0.000 #5(LX) = 0.000 #6(ptec) = 0.00 #7(trns) = 0.00 #8(shft) = 0.0000 #9(sfec) = 0.00 #10(S/L) = 0.0177 #11(H/L) = 0.0282 #12(eta) = 0.9229 #13(S400 ) = 8.7E-03 #14(S040 ) = 1.1E-01 #15(S004 ) = 2.1E+00 #16(S220 ) = 7.8E-02 #17(S202 ) = 2.1E-01 #18(S022 ) = -4.3E-01 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 378.171 #2(GV) = -266.963 #3(GW) = 143.030 #4(LX) = 5.837 #5(LY) = 0.000 #6(trns) = 0.000 #7(asym) = 0.5841 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 1 with 6 terms Profile coefficients for Simpson's rule integration of Gaussian function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. Cooper & Sayer, J. Appl. Cryst., 8, 615-618 (1975). Thomas, J. Appl. Cryst., 10, 12-13(1977). #1(U) = 349.251 #2(V) = -172.368 #3(W) = 376.644 #4(asym) = 10.1992 #5(F1) = 0.000 #6(F2) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 1 with 6 terms Profile coefficients for Simpson's rule integration of Gaussian function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. Cooper & Sayer, J. Appl. Cryst., 8, 615-618 (1975). Thomas, J. Appl. Cryst., 10, 12-13(1977). #1(U) = 0.051 #2(V) = -191.490 #3(W) = 270.601 #4(asym) = 8.5358 #5(F1) = 0.000 #6(F2) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0 |
Rwp = 0.063 | 44 parameters |
Rexp = 0.045 | 0 restraints |
R(F2) = 0.26021 | (Δ/σ)max = 0.19 |
χ2 = 1.988 | Background function: GSAS Background function number 1 with 10 terms. Shifted Chebyshev function of 1st kind 1: 409.832 2: -33.5735 3: 77.8232 4: -8.86018 5: 41.9854 6: -3.54596 7: 11.5529 8: -8.19360 9: -0.792614 10: -0.317810 |
Crystal data top
DLi | V = 67.59 (5) Å3 |
Mr = 8.95 | Z = 4 |
Cubic, Fm3m | ? radiation, λ = 1.5403 Å |
a = 4.0735 (10) Å | ?, ? × ? × ? mm |
Refinement top
Rp = 0.050 | 3300 data points |
Rwp = 0.063 | 44 parameters |
Rexp = 0.045 | 0 restraints |
R(F2) = 0.26021 | (Δ/σ)max = 0.19 |
χ2 = 1.988 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x | y | z | Uiso*/Ueq | ||
Li | 0.0 | 0.0 | 0.0 | 0.01004* | |
D | 0.5 | 0.5 | 0.5 | 0.2827* |
Geometric parameters (Å, º) top
Li—Lii | 2.8804 (5) | Li—Dxiii | 2.0367 (5) |
Li—Liii | 2.8804 (5) | Li—Di | 2.0367 (5) |
Li—Liiii | 2.8804 (5) | Li—Dxiv | 2.0367 (5) |
Li—Liiv | 2.8804 (5) | Li—Dv | 2.0367 (5) |
Li—Liv | 2.8804 (5) | Li—Dxv | 2.0367 (5) |
Li—Livi | 2.8804 (5) | Li—Dix | 2.0367 (5) |
Li—Livii | 2.8804 (5) | D—Liiv | 2.0367 (5) |
Li—Liviii | 2.8804 (5) | D—Lixvi | 2.0367 (5) |
Li—Liix | 2.8804 (7) | D—Liviii | 2.0367 (5) |
Li—Lix | 2.8804 (7) | D—Lixvii | 2.0367 (5) |
Li—Lixi | 2.8804 (7) | D—Lixii | 2.0367 (5) |
Li—Lixii | 2.8804 (7) | D—Lixviii | 2.0367 (5) |
Lii—Li—Liii | 90.00 (2) | Livi—Li—Dv | 90.0 |
Lii—Li—Liiii | 90.00 (2) | Livi—Li—Dxv | 135.000 (10) |
Lii—Li—Liiv | 180.0 | Livi—Li—Dix | 45.000 (10) |
Lii—Li—Liv | 60.000 (12) | Livii—Li—Liviii | 90.00 (2) |
Lii—Li—Livi | 120.000 (12) | Livii—Li—Liix | 120.000 (6) |
Lii—Li—Livii | 60.000 (12) | Livii—Li—Lix | 120.000 (6) |
Lii—Li—Liviii | 120.000 (12) | Livii—Li—Lixi | 60.000 (6) |
Lii—Li—Liix | 60.000 (6) | Livii—Li—Lixii | 60.000 (6) |
Lii—Li—Lix | 120.000 (6) | Livii—Li—Dxiii | 135.000 (10) |
Lii—Li—Lixi | 60.000 (6) | Livii—Li—Di | 45.000 (10) |
Lii—Li—Lixii | 120.000 (6) | Livii—Li—Dxiv | 90.0 |
Lii—Li—Dxiii | 90.0 | Livii—Li—Dv | 90.0 |
Lii—Li—Di | 90.0 | Livii—Li—Dxv | 45.000 (10) |
Lii—Li—Dxiv | 45.000 (10) | Livii—Li—Dix | 135.000 (10) |
Lii—Li—Dv | 135.000 (10) | Liviii—Li—Liix | 120.000 (6) |
Lii—Li—Dxv | 45.000 (10) | Liviii—Li—Lix | 120.000 (6) |
Lii—Li—Dix | 135.000 (10) | Liviii—Li—Lixi | 60.000 (6) |
Liii—Li—Liiii | 180.0 | Liviii—Li—Lixii | 60.000 (6) |
Liii—Li—Liiv | 90.00 (2) | Liviii—Li—Dxiii | 135.000 (10) |
Liii—Li—Liv | 120.000 (12) | Liviii—Li—Di | 45.000 (10) |
Liii—Li—Livi | 60.000 (12) | Liviii—Li—Dxiv | 90.0 |
Liii—Li—Livii | 120.000 (12) | Liviii—Li—Dv | 90.0 |
Liii—Li—Liviii | 60.000 (12) | Liviii—Li—Dxv | 135.000 (10) |
Liii—Li—Liix | 60.000 (6) | Liviii—Li—Dix | 45.000 (10) |
Liii—Li—Lix | 120.000 (6) | Liix—Li—Lix | 90.0 |
Liii—Li—Lixi | 60.000 (6) | Liix—Li—Lixi | 90.0 |
Liii—Li—Lixii | 120.000 (6) | Liix—Li—Lixii | 180.0 |
Liii—Li—Dxiii | 90.0 | Liix—Li—Dxiii | 45.0 |
Liii—Li—Di | 90.0 | Liix—Li—Di | 135.0 |
Liii—Li—Dxiv | 45.000 (10) | Liix—Li—Dxiv | 45.0 |
Liii—Li—Dv | 135.000 (10) | Liix—Li—Dv | 135.0 |
Liii—Li—Dxv | 135.000 (10) | Liix—Li—Dxv | 90.0 |
Liii—Li—Dix | 45.000 (10) | Liix—Li—Dix | 90.0 |
Liiii—Li—Liiv | 90.00 (2) | Lix—Li—Lixi | 180.0 |
Liiii—Li—Liv | 60.000 (12) | Lix—Li—Lixii | 90.0 |
Liiii—Li—Livi | 120.000 (12) | Lix—Li—Dxiii | 45.0 |
Liiii—Li—Livii | 60.000 (12) | Lix—Li—Di | 135.0 |
Liiii—Li—Liviii | 120.000 (12) | Lix—Li—Dxiv | 135.0 |
Liiii—Li—Liix | 120.000 (6) | Lix—Li—Dv | 45.0 |
Liiii—Li—Lix | 60.000 (6) | Lix—Li—Dxv | 90.0 |
Liiii—Li—Lixi | 120.000 (6) | Lix—Li—Dix | 90.0 |
Liiii—Li—Lixii | 60.000 (6) | Lixi—Li—Lixii | 90.0 |
Liiii—Li—Dxiii | 90.0 | Lixi—Li—Dxiii | 135.0 |
Liiii—Li—Di | 90.0 | Lixi—Li—Di | 45.0 |
Liiii—Li—Dxiv | 135.000 (10) | Lixi—Li—Dxiv | 45.0 |
Liiii—Li—Dv | 45.000 (10) | Lixi—Li—Dv | 135.0 |
Liiii—Li—Dxv | 45.000 (10) | Lixi—Li—Dxv | 90.0 |
Liiii—Li—Dix | 135.000 (10) | Lixi—Li—Dix | 90.0 |
Liiv—Li—Liv | 120.000 (12) | Lixii—Li—Dxiii | 135.0 |
Liiv—Li—Livi | 60.000 (12) | Lixii—Li—Di | 45.0 |
Liiv—Li—Livii | 120.000 (12) | Lixii—Li—Dxiv | 135.0 |
Liiv—Li—Liviii | 60.000 (12) | Lixii—Li—Dv | 45.0 |
Liiv—Li—Liix | 120.000 (6) | Lixii—Li—Dxv | 90.0 |
Liiv—Li—Lix | 60.000 (6) | Lixii—Li—Dix | 90.0 |
Liiv—Li—Lixi | 120.000 (6) | Dxiii—Li—Di | 180.0 |
Liiv—Li—Lixii | 60.000 (6) | Dxiii—Li—Dxiv | 90.0 |
Liiv—Li—Dxiii | 90.0 | Dxiii—Li—Dv | 90.0 |
Liiv—Li—Di | 90.0 | Dxiii—Li—Dxv | 90.0 |
Liiv—Li—Dxiv | 135.000 (10) | Dxiii—Li—Dix | 90.0 |
Liiv—Li—Dv | 45.000 (10) | Di—Li—Dxiv | 90.0 |
Liiv—Li—Dxv | 135.000 (10) | Di—Li—Dv | 90.0 |
Liiv—Li—Dix | 45.000 (10) | Di—Li—Dxv | 90.0 |
Liv—Li—Livi | 90.00 (2) | Di—Li—Dix | 90.0 |
Liv—Li—Livii | 90.00 (2) | Dxiv—Li—Dv | 180.0 |
Liv—Li—Liviii | 180.0 | Dxiv—Li—Dxv | 90.0 |
Liv—Li—Liix | 60.000 (6) | Dxiv—Li—Dix | 90.0 |
Liv—Li—Lix | 60.000 (6) | Dv—Li—Dxv | 90.0 |
Liv—Li—Lixi | 120.000 (6) | Dv—Li—Dix | 90.0 |
Liv—Li—Lixii | 120.000 (6) | Dxv—Li—Dix | 180.0 |
Liv—Li—Dxiii | 45.000 (10) | Liiv—D—Lixvi | 180.0 |
Liv—Li—Di | 135.000 (10) | Liiv—D—Liviii | 90.0 |
Liv—Li—Dxiv | 90.0 | Liiv—D—Lixvii | 90.0 |
Liv—Li—Dv | 90.0 | Liiv—D—Lixii | 90.0 |
Liv—Li—Dxv | 45.000 (10) | Liiv—D—Lixviii | 90.0 |
Liv—Li—Dix | 135.000 (10) | Lixvi—D—Liviii | 90.0 |
Livi—Li—Livii | 180.0 | Lixvi—D—Lixvii | 90.0 |
Livi—Li—Liviii | 90.00 (2) | Lixvi—D—Lixii | 90.0 |
Livi—Li—Liix | 60.000 (6) | Lixvi—D—Lixviii | 90.0 |
Livi—Li—Lix | 60.000 (6) | Liviii—D—Lixvii | 180.0 |
Livi—Li—Lixi | 120.000 (6) | Liviii—D—Lixii | 90.0 |
Livi—Li—Lixii | 120.000 (6) | Liviii—D—Lixviii | 90.0 |
Livi—Li—Dxiii | 45.000 (10) | Lixvii—D—Lixii | 90.0 |
Livi—Li—Di | 135.000 (10) | Lixvii—D—Lixviii | 90.0 |
Livi—Li—Dxiv | 90.0 | Lixii—D—Lixviii | 180.0 |
Symmetry codes: (i) x, y−1/2, z−1/2; (ii) x, y−1/2, z+1/2; (iii) x, y+1/2, z−1/2; (iv) x, y+1/2, z+1/2; (v) x−1/2, y, z−1/2; (vi) x−1/2, y, z+1/2; (vii) x+1/2, y, z−1/2; (viii) x+1/2, y, z+1/2; (ix) x−1/2, y−1/2, z; (x) x−1/2, y+1/2, z; (xi) x+1/2, y−1/2, z; (xii) x+1/2, y+1/2, z; (xiii) x−1, y−1/2, z−1/2; (xiv) x−1/2, y−1, z−1/2; (xv) x−1/2, y−1/2, z−1; (xvi) x+1, y+1/2, z+1/2; (xvii) x+1/2, y+1, z+1/2; (xviii) x+1/2, y+1/2, z+1. |
(LSD_phase_4) top
Crystal data top
Li12Si7 | c = 14.31890 (7) Å |
Mr = 279.89 | V = 2433.90 (3) Å3 |
Orthorhombic, Pnma | Z = 8 |
a = 8.59576 (4) Å | ? radiation, λ = 1.5403 Å |
b = 19.77464 (11) Å | ?, ? × ? × ? mm |
Refinement top
Least-squares matrix: full | 3300 data points |
Rp = 0.050 | Profile function: CW Profile function number 4 with 18 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 371.653 #2(GV) = -179.677 #3(GW) = 143.971 #4(GP) = 0.000 #5(LX) = 0.000 #6(ptec) = 0.00 #7(trns) = 0.00 #8(shft) = 0.0000 #9(sfec) = 0.00 #10(S/L) = 0.0177 #11(H/L) = 0.0282 #12(eta) = 0.9229 #13(S400 ) = 8.7E-03 #14(S040 ) = 1.1E-01 #15(S004 ) = 2.1E+00 #16(S220 ) = 7.8E-02 #17(S202 ) = 2.1E-01 #18(S022 ) = -4.3E-01 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 378.171 #2(GV) = -266.963 #3(GW) = 143.030 #4(LX) = 5.837 #5(LY) = 0.000 #6(trns) = 0.000 #7(asym) = 0.5841 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 1 with 6 terms Profile coefficients for Simpson's rule integration of Gaussian function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. Cooper & Sayer, J. Appl. Cryst., 8, 615-618 (1975). Thomas, J. Appl. Cryst., 10, 12-13(1977). #1(U) = 349.251 #2(V) = -172.368 #3(W) = 376.644 #4(asym) = 10.1992 #5(F1) = 0.000 #6(F2) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 1 with 6 terms Profile coefficients for Simpson's rule integration of Gaussian function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. Cooper & Sayer, J. Appl. Cryst., 8, 615-618 (1975). Thomas, J. Appl. Cryst., 10, 12-13(1977). #1(U) = 0.051 #2(V) = -191.490 #3(W) = 270.601 #4(asym) = 8.5358 #5(F1) = 0.000 #6(F2) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0 |
Rwp = 0.063 | 44 parameters |
Rexp = 0.045 | 0 restraints |
R(F2) = 0.26021 | (Δ/σ)max = 0.19 |
χ2 = 1.988 | Background function: GSAS Background function number 1 with 10 terms. Shifted Chebyshev function of 1st kind 1: 409.832 2: -33.5735 3: 77.8232 4: -8.86018 5: 41.9854 6: -3.54596 7: 11.5529 8: -8.19360 9: -0.792614 10: -0.317810 |
Crystal data top
Li12Si7 | c = 14.31890 (7) Å |
Mr = 279.89 | V = 2433.90 (3) Å3 |
Orthorhombic, Pnma | Z = 8 |
a = 8.59576 (4) Å | ? radiation, λ = 1.5403 Å |
b = 19.77464 (11) Å | ?, ? × ? × ? mm |
Refinement top
Rp = 0.050 | 3300 data points |
Rwp = 0.063 | 44 parameters |
Rexp = 0.045 | 0 restraints |
R(F2) = 0.26021 | (Δ/σ)max = 0.19 |
χ2 = 1.988 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x | y | z | Uiso*/Ueq | ||
Li1 | 0.34 | 0.25 | 0.167 | 0.0535* | |
Li2 | 0.3851 | 0.25 | 0.3684 | 0.0285* | |
Si1 | 0.3683 | 0.25 | 0.56946 | 0.0148* | |
Si2 | 0.3725 | 0.25 | 0.73428 | 0.0131* | |
Si3 | 0.1265 | 0.25 | 0.48891 | 0.0131* | |
Si4 | 0.6139 | 0.25 | 0.49135 | 0.0123* | |
Li3 | 0.1213 | 0.1652 | 0.3414 | 0.0275* | |
Li4 | 0.6286 | 0.9723 | 0.0652 | 0.0243* | |
Li5 | 0.3712 | 0.1132 | 0.7365 | 0.0242* | |
Li6 | 0.632 | 0.9945 | 0.4335 | 0.0225* | |
Li7 | 0.6255 | 0.1465 | 0.3606 | 0.025* | |
Li8 | 0.1279 | 0.0314 | 0.2557 | 0.0245* | |
Li9 | 0.863 | 0.3275 | 0.5231 | 0.047* | |
Li10 | 0.1379 | 0.3108 | 0.8383 | 0.0312* | |
Li11 | 0.3894 | 0.8126 | 0.1584 | 0.0269* | |
Li12 | 0.1614 | 0.1126 | 0.5068 | 0.0303* | |
Li13 | 0.5096 | 0.1253 | 0.5275 | 0.0374* | |
Si5 | 0.87491 | 0.36853 | 0.24849 | 0.0123* | |
Si6 | 0.88939 | 0.43586 | 0.38484 | 0.0132* | |
Si7 | 0.88097 | 0.55033 | 0.333 | 0.0128* | |
Si8 | 0.87928 | 0.55246 | 0.16873 | 0.0128* | |
Si9 | 0.86944 | 0.43935 | 0.11499 | 0.0122* |
Geometric parameters (Å, º) top
Li1—Li2 | 2.9098 (1) | Li8—Li3 | 2.9171 (1) |
Li1—Si4i | 2.9864 (1) | Li8—Li4xxviii | 2.8183 (1) |
Li1—Li3ii | 2.9450 (1) | Li8—Li5xxix | 2.8726 (1) |
Li1—Li3iii | 2.9450 (1) | Li8—Li6xxviii | 2.8059 (1) |
Li1—Li7i | 2.7829 (1) | Li8—Li7iv | 2.8203 (1) |
Li1—Li7iv | 2.7829 (1) | Li8—Si5xiii | 2.9420 (1) |
Li1—Li9i | 3.1300 (1) | Li8—Si5i | 2.9030 (1) |
Li1—Li9iv | 3.1300 (1) | Li8—Si6xiii | 2.8358 (1) |
Li1—Si5i | 2.6548 (1) | Li8—Si6i | 3.0856 (1) |
Li1—Si5iv | 2.6548 (1) | Li8—Si7xiii | 2.8883 (1) |
Li2—Li1 | 2.9098 (1) | Li8—Si7i | 2.9929 (1) |
Li2—Si1 | 2.8826 (1) | Li8—Si8xiii | 2.9779 (1) |
Li2—Si3 | 2.8140 (1) | Li8—Si8i | 2.9309 (1) |
Li2—Si4 | 2.6396 (1) | Li8—Si9xiii | 3.0545 (1) |
Li2—Li3 | 2.8466 (1) | Li8—Si9i | 2.8414 (1) |
Li2—Li3v | 2.8466 (1) | Li9—Li1ii | 3.1300 (1) |
Li2—Li7 | 2.9106 (1) | Li9—Si3xxx | 2.7782 (1) |
Li2—Li7v | 2.9106 (1) | Li9—Si4 | 2.6721 (1) |
Li2—Si5i | 2.8815 (1) | Li9—Li3xxxi | 3.4234 (1) |
Li2—Si5iv | 2.8815 (1) | Li9—Li4xxii | 2.9270 (1) |
Si1—Li2 | 2.8826 (1) | Li9—Li7v | 3.1379 (1) |
Si1—Si2 | 2.3603 (1) | Li9—Li9v | 3.0651 (1) |
Si1—Si3 | 2.3770 (1) | Li9—Li10vii | 2.7913 (1) |
Si1—Si4 | 2.3891 (1) | Li9—Li11xxii | 2.8931 (1) |
Si1—Li10vi | 2.9258 (1) | Li9—Li12xxxi | 2.8349 (1) |
Si1—Li10vii | 2.9258 (1) | Li9—Li13v | 3.1785 (1) |
Si1—Li11viii | 2.8392 (1) | Li9—Si6 | 2.9261 (1) |
Si1—Li11ix | 2.8392 (1) | Li10—Si1xxxii | 2.9258 (1) |
Si1—Li13 | 2.8137 (1) | Li10—Si2 | 2.7804 (1) |
Si1—Li13v | 2.8137 (1) | Li10—Si2xxxii | 2.7803 (1) |
Si2—Si1 | 2.3603 (1) | Li10—Si4xxxii | 2.7273 (1) |
Si2—Li5 | 2.7054 (1) | Li10—Li5v | 2.8991 (1) |
Si2—Li5v | 2.7054 (1) | Li10—Li5xxxii | 2.9430 (1) |
Si2—Li10 | 2.7804 (1) | Li10—Li9xxxiii | 2.7913 (1) |
Si2—Li10v | 2.7804 (1) | Li10—Li10v | 2.4046 (1) |
Si2—Li10vi | 2.7803 (1) | Li10—Li11viii | 2.5869 (1) |
Si2—Li10vii | 2.7803 (1) | Li10—Li13xxxii | 2.5506 (1) |
Si2—Li11viii | 2.7894 (1) | Li10—Si8x | 2.7099 (1) |
Si2—Li11ix | 2.7894 (1) | Li11—Si1xxxiv | 2.8392 (1) |
Si2—Li11x | 2.8430 (1) | Li11—Si2xxxiv | 2.7894 (1) |
Si2—Li11xi | 2.8430 (1) | Li11—Si2x | 2.8430 (1) |
Si3—Li2 | 2.8140 (1) | Li11—Si3xxxiv | 2.7278 (1) |
Si3—Si1 | 2.3770 (1) | Li11—Li5xviii | 2.9020 (1) |
Si3—Li3 | 2.6973 (1) | Li11—Li5x | 2.9415 (1) |
Si3—Li3v | 2.6973 (1) | Li11—Li9xvii | 2.8931 (1) |
Si3—Li9xii | 2.7782 (1) | Li11—Li10xxxiv | 2.5869 (1) |
Si3—Li9xiii | 2.7782 (1) | Li11—Li11xx | 2.4758 (1) |
Si3—Li11viii | 2.7278 (1) | Li11—Li12xviii | 2.6628 (1) |
Si3—Li11ix | 2.7278 (1) | Li11—Si7xix | 2.7143 (1) |
Si3—Li12 | 2.7455 (1) | Li12—Si3 | 2.7455 (1) |
Si3—Li12v | 2.7455 (1) | Li12—Li3 | 2.6096 (1) |
Si4—Li1ii | 2.9864 (1) | Li12—Li4ix | 3.1196 (1) |
Si4—Li2 | 2.6396 (1) | Li12—Li4xxviii | 2.9731 (1) |
Si4—Si1 | 2.3891 (1) | Li12—Li6x | 2.8931 (1) |
Si4—Li7 | 2.7756 (1) | Li12—Li9xiii | 2.8349 (1) |
Si4—Li7v | 2.7756 (1) | Li12—Li11ix | 2.6628 (1) |
Si4—Li9 | 2.6721 (1) | Li12—Li13 | 3.0182 (1) |
Si4—Li9v | 2.6721 (1) | Li12—Si6xiii | 3.0716 (1) |
Si4—Li10vi | 2.7273 (1) | Li12—Si7xi | 2.6289 (1) |
Si4—Li10vii | 2.7273 (1) | Li12—Si9i | 2.7008 (1) |
Si4—Li13 | 2.6744 (1) | Li13—Si1 | 2.8137 (1) |
Si4—Li13v | 2.6744 (1) | Li13—Si4 | 2.6744 (1) |
Li3—Li1i | 2.9450 (1) | Li13—Li5 | 3.2293 (1) |
Li3—Li2 | 2.8466 (1) | Li13—Li6xxvii | 3.0998 (1) |
Li3—Si3 | 2.6973 (1) | Li13—Li6x | 2.7213 (1) |
Li3—Li3v | 3.3538 (1) | Li13—Li7 | 2.6229 (1) |
Li3—Li7iv | 2.9162 (1) | Li13—Li9v | 3.1785 (1) |
Li3—Li8 | 2.9171 (1) | Li13—Li10vi | 2.5506 (1) |
Li3—Li9xiii | 3.4234 (1) | Li13—Li12 | 3.0182 (1) |
Li3—Li12 | 2.6096 (1) | Li13—Si8xxii | 2.6602 (1) |
Li3—Si5xiii | 2.5885 (1) | Li13—Si9i | 2.6923 (1) |
Li3—Si5i | 2.6180 (1) | Si5—Li1ii | 2.6548 (1) |
Li3—Si6xiii | 2.8904 (1) | Si5—Li2ii | 2.8815 (1) |
Li3—Si9i | 3.0354 (1) | Si5—Li3xxxi | 2.5885 (1) |
Li4—Li4xiv | 3.0942 (1) | Si5—Li3ii | 2.6180 (1) |
Li4—Li5x | 3.3047 (1) | Si5—Li7v | 2.6947 (1) |
Li4—Li6xv | 2.8674 (1) | Si5—Li7ii | 2.6773 (1) |
Li4—Li8xvi | 2.8183 (1) | Si5—Li8xxxi | 2.9420 (1) |
Li4—Li9xvii | 2.9270 (1) | Si5—Li8ii | 2.9030 (1) |
Li4—Li12xviii | 3.1196 (1) | Si5—Si6 | 2.3664 (1) |
Li4—Li12xvi | 2.9731 (1) | Si5—Si9 | 2.3701 (1) |
Li4—Si6xvii | 2.6857 (1) | Si6—Li3xxxi | 2.8904 (1) |
Li4—Si6xix | 2.8351 (1) | Si6—Li4xxii | 2.6857 (1) |
Li4—Si7xix | 2.6184 (1) | Si6—Li4xxxv | 2.8351 (1) |
Li4—Si8xx | 2.6609 (1) | Si6—Li6xx | 2.6976 (1) |
Li4—Si9xx | 2.8011 (1) | Si6—Li7v | 2.8139 (1) |
Li5—Si2 | 2.7054 (1) | Si6—Li8xxxi | 2.8358 (1) |
Li5—Li4x | 3.3047 (1) | Si6—Li8ii | 3.0856 (1) |
Li5—Li6x | 3.2345 (1) | Si6—Li9 | 2.9261 (1) |
Li5—Li8xxi | 2.8726 (1) | Si6—Li12xxxi | 3.0716 (1) |
Li5—Li10v | 2.8991 (1) | Si6—Si5 | 2.3664 (1) |
Li5—Li10vi | 2.9430 (1) | Si6—Si7 | 2.3833 (1) |
Li5—Li11ix | 2.9020 (1) | Si7—Li4xxxv | 2.6184 (1) |
Li5—Li11x | 2.9415 (1) | Si7—Li5xvii | 2.8272 (1) |
Li5—Li13 | 3.2293 (1) | Si7—Li5xxxvi | 2.6897 (1) |
Li5—Si7xxii | 2.8272 (1) | Si7—Li6xx | 2.7270 (1) |
Li5—Si7xi | 2.6897 (1) | Si7—Li8xxxi | 2.8883 (1) |
Li5—Si8xxii | 2.6428 (1) | Si7—Li8ii | 2.9929 (1) |
Li5—Si8xi | 2.8142 (1) | Si7—Li11xxxv | 2.7143 (1) |
Li6—Li4xxiii | 2.8674 (1) | Si7—Li12xxxvi | 2.6289 (1) |
Li6—Li5x | 3.2345 (1) | Si7—Si6 | 2.3833 (1) |
Li6—Li6xxiv | 2.9705 (1) | Si7—Si8 | 2.3526 (1) |
Li6—Li7xxv | 3.1823 (1) | Si8—Li4xx | 2.6609 (1) |
Li6—Li8xvi | 2.8059 (1) | Si8—Li5xvii | 2.6428 (1) |
Li6—Li12x | 2.8931 (1) | Si8—Li5xxxvi | 2.8142 (1) |
Li6—Li13xxv | 3.0998 (1) | Si8—Li6xxxv | 2.7792 (1) |
Li6—Li13x | 2.7213 (1) | Si8—Li8xxxi | 2.9779 (1) |
Li6—Si6xx | 2.6976 (1) | Si8—Li8ii | 2.9309 (1) |
Li6—Si7xx | 2.7270 (1) | Si8—Li10x | 2.7099 (1) |
Li6—Si8xix | 2.7792 (1) | Si8—Li13xvii | 2.6602 (1) |
Li6—Si9xxvi | 2.8183 (1) | Si8—Si7 | 2.3526 (1) |
Li6—Si9xix | 2.6994 (1) | Si8—Si9 | 2.3669 (1) |
Li7—Li1ii | 2.7829 (1) | Si9—Li3ii | 3.0354 (1) |
Li7—Li2 | 2.9106 (1) | Si9—Li4xx | 2.8011 (1) |
Li7—Si4 | 2.7756 (1) | Si9—Li6xxxvii | 2.8183 (1) |
Li7—Li3iii | 2.9162 (1) | Si9—Li6xxxv | 2.6994 (1) |
Li7—Li6xxvii | 3.1823 (1) | Si9—Li7ii | 2.8016 (1) |
Li7—Li8iii | 2.8203 (1) | Si9—Li8xxxi | 3.0545 (1) |
Li7—Li9v | 3.1379 (1) | Si9—Li8ii | 2.8414 (1) |
Li7—Li13 | 2.6229 (1) | Si9—Li12ii | 2.7008 (1) |
Li7—Si5v | 2.6947 (1) | Si9—Li13ii | 2.6923 (1) |
Li7—Si5i | 2.6773 (1) | Si9—Si5 | 2.3701 (1) |
Li7—Si6v | 2.8139 (1) | Si9—Si8 | 2.3669 (1) |
Li7—Si9i | 2.8016 (1) | ||
Li2—Li1—Li3xxxviii | 86.0486 (1) | Li1xxxviii—Li7—Si5ii | 122.1289 (2) |
Li2—Li1—Li3xxxix | 86.0486 (1) | Li1xxxviii—Li7—Si6v | 84.7844 (4) |
Li2—Li1—Li7ii | 103.239 | Li1xxxviii—Li7—Si9ii | 169.7022 |
Li2—Li1—Li7xl | 103.239 | Li2—Li7—Si4 | 55.2564 (2) |
Li2—Li1—Si5ii | 62.1732 (2) | Li2—Li7—Li3xxxix | 86.5661 (1) |
Li2—Li1—Si5xl | 62.1732 (2) | Li2—Li7—Li8xxxix | 126.5371 (2) |
Li3xxxviii—Li1—Li3xxxix | 69.4168 (4) | Li2—Li7—Li13 | 78.9165 (1) |
Li3xxxviii—Li1—Li7ii | 96.8582 (4) | Li2—Li7—Si5v | 131.7021 (2) |
Li3xxxviii—Li1—Li7xl | 163.124 | Li2—Li7—Si5ii | 61.9172 (2) |
Li3xxxviii—Li1—Si5ii | 115.3737 (2) | Li2—Li7—Si6v | 167.0493 |
Li3xxxviii—Li1—Si5xl | 54.7675 (2) | Li2—Li7—Si9ii | 82.1567 (4) |
Li3xxxix—Li1—Li7ii | 163.124 | Si4—Li7—Li3xxxix | 125.1049 (3) |
Li3xxxix—Li1—Li7xl | 96.8582 (4) | Si4—Li7—Li8xxxix | 173.5309 |
Li3xxxix—Li1—Si5ii | 54.7675 (2) | Si4—Li7—Li13 | 59.3114 (3) |
Li3xxxix—Li1—Si5xl | 115.3737 (2) | Si4—Li7—Si5v | 120.7795 (2) |
Li7ii—Li1—Li7xl | 94.6892 (4) | Si4—Li7—Si5ii | 116.5190 (2) |
Li7ii—Li1—Si5ii | 142.0846 (2) | Si4—Li7—Si6v | 111.8722 (2) |
Li7ii—Li1—Si5xl | 59.3570 (3) | Si4—Li7—Si9ii | 109.5392 (2) |
Li7xl—Li1—Si5ii | 59.3570 (3) | Li3xxxix—Li7—Li8xxxix | 61.1036 (3) |
Li7xl—Li1—Si5xl | 142.0846 (2) | Li3xxxix—Li7—Li13 | 156.8216 (1) |
Si5ii—Li1—Si5xl | 123.9819 (3) | Li3xxxix—Li7—Si5v | 55.4567 (2) |
Li1—Li2—Si3 | 120.1653 (2) | Li3xxxix—Li7—Si5ii | 54.9309 (2) |
Li1—Li2—Si4 | 139.4897 (1) | Li3xxxix—Li7—Si6v | 101.8712 |
Li1—Li2—Li3 | 76.0703 | Li3xxxix—Li7—Si9ii | 101.0028 |
Li1—Li2—Li3v | 76.0703 | Li8xxxix—Li7—Li13 | 114.3172 (3) |
Li1—Li2—Li7 | 93.2423 (1) | Li8xxxix—Li7—Si5v | 63.4754 (2) |
Li1—Li2—Li7v | 93.2423 (1) | Li8xxxix—Li7—Si5ii | 64.6464 (2) |
Si3—Li2—Si4 | 100.3450 (4) | Li8xxxix—Li7—Si6v | 66.4123 (2) |
Si3—Li2—Li3 | 56.9100 (2) | Li8xxxix—Li7—Si9ii | 65.8190 (2) |
Si3—Li2—Li3v | 56.9100 (2) | Li13—Li7—Si5v | 145.8268 (1) |
Si3—Li2—Li7 | 125.7573 (2) | Li13—Li7—Si5ii | 102.0206 (3) |
Si3—Li2—Li7v | 125.7573 (2) | Li13—Li7—Si6v | 95.8134 (2) |
Si4—Li2—Li3 | 133.1652 (2) | Li13—Li7—Si9ii | 59.4068 (1) |
Si4—Li2—Li3v | 133.1652 (2) | Si5v—Li7—Si5ii | 106.2763 (4) |
Si4—Li2—Li7 | 59.7751 (2) | Si5v—Li7—Si6v | 50.8258 (2) |
Si4—Li2—Li7v | 59.7751 (2) | Si5v—Li7—Si9ii | 129.2373 (2) |
Li3—Li2—Li3v | 72.1836 (4) | Si5ii—Li7—Si6v | 131.0149 (2) |
Li3—Li2—Li7 | 98.4011 (4) | Si5ii—Li7—Si9ii | 51.2032 (2) |
Li3—Li2—Li7v | 167.0507 | Si6v—Li7—Si9ii | 105.4980 (4) |
Li3v—Li2—Li7 | 167.0507 | Li3—Li8—Li4xlv | 89.6202 (3) |
Li3v—Li2—Li7v | 98.4011 (4) | Li3—Li8—Li5xxix | 160.5880 (1) |
Li7—Li2—Li7v | 89.3663 (4) | Li3—Li8—Li6xlv | 129.9615 (1) |
Si2—Si1—Si3 | 119.9034 (2) | Li3—Li8—Li7xl | 61.0703 (4) |
Si2—Si1—Si4 | 117.0378 (2) | Li3—Li8—Si6xiii | 60.3014 (1) |
Si2—Si1—Li11viii | 64.1151 (1) | Li3—Li8—Si9ii | 63.6057 (1) |
Si2—Si1—Li11ix | 64.1151 (1) | Li4xlv—Li8—Li5xxix | 70.9923 (2) |
Si2—Si1—Li13 | 101.9412 (1) | Li4xlv—Li8—Li6xlv | 140.4182 (3) |
Si2—Si1—Li13v | 101.9412 (1) | Li4xlv—Li8—Li7xl | 150.6894 |
Si3—Si1—Si4 | 123.0588 (3) | Li4xlv—Li8—Si6xiii | 60.1886 (2) |
Si3—Si1—Li11viii | 62.3189 (3) | Li4xlv—Li8—Si9ii | 59.3284 (2) |
Si3—Si1—Li11ix | 62.3189 (3) | Li5xxix—Li8—Li6xlv | 69.4333 (1) |
Si3—Si1—Li13 | 105.8926 (2) | Li5xxix—Li8—Li7xl | 138.3167 (2) |
Si3—Si1—Li13v | 105.8926 (2) | Li5xxix—Li8—Si6xiii | 106.9543 (1) |
Si4—Si1—Li11viii | 154.0803 (1) | Li5xxix—Li8—Si9ii | 105.2497 (1) |
Si4—Si1—Li11ix | 154.0803 (1) | Li6xlv—Li8—Li7xl | 68.8912 (3) |
Si4—Si1—Li13 | 61.2225 (2) | Li6xlv—Li8—Si6xiii | 134.2697 (2) |
Si4—Si1—Li13v | 61.2225 (2) | Li6xlv—Li8—Si9ii | 132.2934 (2) |
Li11viii—Si1—Li11ix | 51.6981 (3) | Li7xl—Li8—Si6xiii | 101.2734 (2) |
Li11viii—Si1—Li13 | 144.5553 | Li7xl—Li8—Si9ii | 103.0519 (2) |
Li11viii—Si1—Li13v | 92.8923 (3) | Si6xiii—Li8—Si9ii | 93.2607 (4) |
Li11ix—Si1—Li13 | 92.8923 (3) | Si3xxx—Li9—Si4 | 107.8744 (4) |
Li11ix—Si1—Li13v | 144.5553 | Si3xxx—Li9—Li4xxii | 123.7664 (2) |
Li13—Si1—Li13v | 122.4206 (3) | Si3xxx—Li9—Li9v | 56.5214 (2) |
Si1—Si2—Li5 | 90.6695 | Si3xxx—Li9—Li10xlii | 128.6934 (2) |
Si1—Si2—Li5v | 90.6695 | Si3xxx—Li9—Li11xxii | 57.4569 (2) |
Si1—Si2—Li10 | 121.6376 (2) | Si3xxx—Li9—Li12xxxi | 58.5560 (3) |
Si1—Si2—Li10v | 121.6376 (2) | Si4—Li9—Li4xxii | 128.0149 (2) |
Si1—Si2—Li10xli | 68.8258 (1) | Si4—Li9—Li9v | 55.0031 (2) |
Si1—Si2—Li10xlii | 68.8258 (1) | Si4—Li9—Li10xlii | 59.8445 (2) |
Si1—Si2—Li11viii | 66.3086 (1) | Si4—Li9—Li11xxii | 130.1672 (2) |
Si1—Si2—Li11ix | 66.3086 (1) | Si4—Li9—Li12xxxi | 161.9257 (1) |
Si1—Si2—Li11x | 123.4680 (2) | Li4xxii—Li9—Li9v | 168.0285 (1) |
Si1—Si2—Li11xliii | 123.4680 (2) | Li4xxii—Li9—Li10xlii | 89.2211 (1) |
Li5—Si2—Li5v | 178.5729 | Li4xxii—Li9—Li11xxii | 86.7649 (1) |
Li5—Si2—Li10 | 115.0303 (1) | Li4xxii—Li9—Li12xxxi | 65.5370 (1) |
Li5—Si2—Li10v | 63.7890 (1) | Li9v—Li9—Li10xlii | 83.2055 |
Li5—Si2—Li10xli | 64.8733 (2) | Li9v—Li9—Li11xxii | 84.1546 |
Li5—Si2—Li10xlii | 116.1157 (1) | Li9v—Li9—Li12xxxi | 114.6976 (2) |
Li5—Si2—Li11viii | 116.4226 (2) | Li10xlii—Li9—Li11xxii | 91.2482 (4) |
Li5—Si2—Li11ix | 63.7364 (1) | Li10xlii—Li9—Li12xxxi | 137.3200 (2) |
Li5—Si2—Li11x | 63.9750 (1) | Li11xxii—Li9—Li12xxxi | 55.3941 (2) |
Li5—Si2—Li11xliii | 115.5950 (1) | Si2—Li10—Si2vi | 101.9981 (3) |
Li5v—Si2—Li10 | 63.7890 (1) | Si2—Li10—Si4vi | 110.0815 (2) |
Li5v—Si2—Li10v | 115.0303 (1) | Si2—Li10—Li5v | 56.8470 (3) |
Li5v—Si2—Li10xli | 116.1157 (1) | Si2—Li10—Li5vi | 126.2159 (3) |
Li5v—Si2—Li10xlii | 64.8733 (2) | Si2—Li10—Li9xlvi | 85.9447 (3) |
Li5v—Si2—Li11viii | 63.7364 (1) | Si2—Li10—Li10v | 64.3786 (1) |
Li5v—Si2—Li11ix | 116.4226 (2) | Si2—Li10—Li11viii | 62.5033 (2) |
Li5v—Si2—Li11x | 115.5950 (1) | Si2—Li10—Li13vi | 158.6582 |
Li5v—Si2—Li11xliii | 63.9750 (1) | Si2—Li10—Si8x | 116.8146 (1) |
Li10—Si2—Li10v | 51.2427 (3) | Si2vi—Li10—Si4vi | 94.6814 (2) |
Li10—Si2—Li10xli | 169.2215 | Si2vi—Li10—Li5v | 127.1429 (3) |
Li10—Si2—Li10xlii | 127.4715 (3) | Si2vi—Li10—Li5vi | 56.3325 (3) |
Li10—Si2—Li11viii | 55.3485 (3) | Si2vi—Li10—Li9xlvi | 152.3384 (1) |
Li10—Si2—Li11ix | 79.3515 (3) | Si2vi—Li10—Li10v | 64.3777 (1) |
Li10—Si2—Li11x | 114.8884 (3) | Si2vi—Li10—Li11viii | 63.8512 (1) |
Li10—Si2—Li11xliii | 92.5380 (3) | Si2vi—Li10—Li13vi | 98.1096 (3) |
Li10v—Si2—Li10xli | 127.4715 (3) | Si2vi—Li10—Si8x | 111.8943 (2) |
Li10v—Si2—Li10xlii | 169.2215 | Si4vi—Li10—Li5v | 136.9321 (1) |
Li10v—Si2—Li11viii | 79.3515 (3) | Si4vi—Li10—Li5vi | 119.4521 (2) |
Li10v—Si2—Li11ix | 55.3485 (3) | Si4vi—Li10—Li9xlvi | 57.9061 (2) |
Li10v—Si2—Li11x | 92.5380 (3) | Si4vi—Li10—Li10v | 63.8421 (2) |
Li10v—Si2—Li11xliii | 114.8884 (3) | Si4vi—Li10—Li11viii | 152.8508 (2) |
Li10xli—Si2—Li10xlii | 51.2446 (3) | Si4vi—Li10—Li13vi | 60.7820 (3) |
Li10xli—Si2—Li11viii | 135.1149 (2) | Si4vi—Li10—Si8x | 117.9686 (2) |
Li10xli—Si2—Li11ix | 108.9480 (3) | Li5v—Li10—Li5vi | 95.2282 (3) |
Li10xli—Si2—Li11x | 54.7644 (3) | Li5v—Li10—Li9xlvi | 79.4357 (3) |
Li10xli—Si2—Li11xliii | 78.4421 (3) | Li5v—Li10—Li10v | 121.2240 (2) |
Li10xlii—Si2—Li11viii | 108.9480 (3) | Li5v—Li10—Li11viii | 63.5731 (2) |
Li10xlii—Si2—Li11ix | 135.1149 (2) | Li5v—Li10—Li13vi | 114.9024 (3) |
Li10xlii—Si2—Li11x | 78.4421 (3) | Li5v—Li10—Si8x | 60.1164 (2) |
Li10xlii—Si2—Li11xliii | 54.7644 (3) | Li5vi—Li10—Li9xlvi | 137.5866 (2) |
Li11viii—Si2—Li11ix | 52.6906 (3) | Li5vi—Li10—Li10v | 120.7077 (2) |
Li11viii—Si2—Li11x | 169.9856 | Li5vi—Li10—Li11viii | 63.8907 (1) |
Li11viii—Si2—Li11xliii | 126.7485 (3) | Li5vi—Li10—Li13vi | 71.6020 (3) |
Li11ix—Si2—Li11x | 126.7485 (3) | Li5vi—Li10—Si8x | 55.5619 (1) |
Li11ix—Si2—Li11xliii | 169.9856 | Li9xlvi—Li10—Li10v | 96.7944 |
Li11x—Si2—Li11xliii | 51.6239 (3) | Li9xlvi—Li10—Li11viii | 140.2857 (2) |
Li2—Si3—Si1 | 66.8486 (3) | Li9xlvi—Li10—Li13vi | 72.8699 (3) |
Li2—Si3—Li3 | 62.1539 (2) | Li9xlvi—Li10—Si8x | 86.9123 (1) |
Li2—Si3—Li3v | 62.1539 (2) | Li10v—Li10—Li11viii | 90.7884 |
Li2—Si3—Li9xii | 138.7686 (2) | Li10v—Li10—Li13vi | 119.6972 (2) |
Li2—Si3—Li9xiii | 138.7686 (2) | Li10v—Li10—Si8x | 176.2184 |
Li2—Si3—Li11viii | 125.8129 (2) | Li11viii—Li10—Li13vi | 134.7632 (2) |
Li2—Si3—Li11ix | 125.8129 (2) | Li11viii—Li10—Si8x | 86.8091 |
Li2—Si3—Li12 | 88.3326 (1) | Li13vi—Li10—Si8x | 60.6650 (2) |
Li2—Si3—Li12v | 88.3326 (1) | Si1xxxiv—Li11—Si2xxxiv | 49.5764 (3) |
Si1—Si3—Li3 | 113.2322 (2) | Si1xxxiv—Li11—Si2x | 127.8986 (3) |
Si1—Si3—Li3v | 113.2322 (2) | Si1xxxiv—Li11—Si3xxxiv | 50.5042 (1) |
Si1—Si3—Li9xii | 128.8554 (2) | Si1xxxiv—Li11—Li5xviii | 77.9399 (3) |
Si1—Si3—Li9xiii | 128.8554 (2) | Si1xxxiv—Li11—Li5x | 173.1153 |
Si1—Si3—Li11viii | 67.1769 (2) | Si1xxxiv—Li11—Li9xvii | 108.5413 (3) |
Si1—Si3—Li11ix | 67.1769 (2) | Si1xxxiv—Li11—Li10xxxiv | 111.7086 (2) |
Si1—Si3—Li12 | 81.9051 (1) | Si1xxxiv—Li11—Li11xx | 64.1510 (1) |
Si1—Si3—Li12v | 81.9051 (1) | Si1xxxiv—Li11—Li12xviii | 75.4390 (3) |
Li3—Si3—Li3v | 76.8806 (4) | Si1xxxiv—Li11—Si7xxxv | 115.7801 (2) |
Li3—Si3—Li9xii | 117.8673 (2) | Si2xxxiv—Li11—Si2x | 100.2081 (3) |
Li3—Si3—Li9xiii | 77.3811 (2) | Si2xxxiv—Li11—Si3xxxiv | 96.0110 (2) |
Li3—Si3—Li11viii | 167.9594 | Si2xxxiv—Li11—Li5xviii | 56.7223 (3) |
Li3—Si3—Li11ix | 114.4400 (4) | Si2xxxiv—Li11—Li5x | 125.9226 (3) |
Li3—Si3—Li12 | 57.2909 (2) | Si2xxxiv—Li11—Li9xvii | 154.1255 (1) |
Li3—Si3—Li12v | 133.6398 (2) | Si2xxxiv—Li11—Li10xxxiv | 62.1482 (1) |
Li3v—Si3—Li9xii | 77.3811 (2) | Si2xxxiv—Li11—Li11xx | 63.6547 (2) |
Li3v—Si3—Li9xiii | 117.8673 (2) | Si2xxxiv—Li11—Li12xviii | 115.5752 (2) |
Li3v—Si3—Li11viii | 114.4400 (4) | Si2xxxiv—Li11—Si7xxxv | 113.8251 (2) |
Li3v—Si3—Li11ix | 167.9594 | Si2x—Li11—Si3xxxiv | 108.6250 (3) |
Li3v—Si3—Li12 | 133.6398 (2) | Si2x—Li11—Li5xviii | 124.5796 (3) |
Li3v—Si3—Li12v | 57.2909 (2) | Si2x—Li11—Li5x | 55.7384 (3) |
Li9xii—Si3—Li9xiii | 66.9572 (4) | Si2x—Li11—Li9xvii | 82.9181 (3) |
Li9xii—Si3—Li11viii | 63.3875 (1) | Si2x—Li11—Li10xxxiv | 61.3844 (2) |
Li9xii—Si3—Li11ix | 93.0212 (2) | Si2x—Li11—Li11xx | 64.1880 (1) |
Li9xii—Si3—Li12 | 128.2097 (1) | Si2x—Li11—Li12xviii | 143.1829 (1) |
Li9xii—Si3—Li12v | 61.7537 (2) | Si2x—Li11—Si7xxxv | 115.4365 (1) |
Li9xiii—Si3—Li11viii | 93.0212 (2) | Si3xxxiv—Li11—Li5xviii | 122.2510 (2) |
Li9xiii—Si3—Li11ix | 63.3875 (1) | Si3xxxiv—Li11—Li5x | 135.7747 (1) |
Li9xiii—Si3—Li12 | 61.7537 (2) | Si3xxxiv—Li11—Li9xvii | 59.1557 (2) |
Li9xiii—Si3—Li12v | 128.2097 (1) | Si3xxxiv—Li11—Li10xxxiv | 151.0626 (2) |
Li11viii—Si3—Li11ix | 53.9761 (3) | Si3xxxiv—Li11—Li11xx | 63.0120 (2) |
Li11viii—Si3—Li12 | 111.8118 (2) | Si3xxxiv—Li11—Li12xviii | 61.2221 (4) |
Li11viii—Si3—Li12v | 58.2218 (1) | Si3xxxiv—Li11—Si7xxxv | 119.4854 (2) |
Li11ix—Si3—Li12 | 58.2218 (1) | Li5xviii—Li11—Li5x | 95.2009 (3) |
Li11ix—Si3—Li12v | 111.8118 (2) | Li5xviii—Li11—Li9xvii | 140.7533 (2) |
Li12—Si3—Li12v | 163.4781 (1) | Li5xviii—Li11—Li10xxxiv | 63.4613 (1) |
Li2—Si4—Si1 | 69.7476 (3) | Li5xviii—Li11—Li11xx | 120.3723 (2) |
Li2—Si4—Li7 | 64.9685 (2) | Li5xviii—Li11—Li12xviii | 84.6470 (3) |
Li2—Si4—Li7v | 64.9685 (2) | Li5xviii—Li11—Si7xxxv | 57.1115 (2) |
Li2—Si4—Li9 | 135.2780 (2) | Li5x—Li11—Li9xvii | 77.1233 (3) |
Li2—Si4—Li9v | 135.2780 (2) | Li5x—Li11—Li10xxxiv | 63.9513 (2) |
Li2—Si4—Li10xli | 130.7598 (2) | Li5x—Li11—Li11xx | 119.9221 (2) |
Li2—Si4—Li10xlii | 130.7598 (2) | Li5x—Li11—Li12xviii | 104.7564 (3) |
Li2—Si4—Li13 | 83.0684 (1) | Li5x—Li11—Si7xxxv | 59.8235 (2) |
Li2—Si4—Li13v | 83.0684 (1) | Li9xvii—Li11—Li10xxxiv | 137.3040 (2) |
Si1—Si4—Li7 | 110.3357 (1) | Li9xvii—Li11—Li11xx | 95.8454 |
Si1—Si4—Li7v | 110.3357 (1) | Li9xvii—Li11—Li12xviii | 61.1946 (2) |
Si1—Si4—Li9 | 128.9348 (2) | Li9xvii—Li11—Si7xxxv | 87.0375 (1) |
Si1—Si4—Li9v | 128.9348 (2) | Li10xxxiv—Li11—Li11xx | 89.2116 |
Si1—Si4—Li10xli | 69.3986 (2) | Li10xxxiv—Li11—Li12xviii | 143.5650 (2) |
Si1—Si4—Li10xlii | 69.3986 (2) | Li10xxxiv—Li11—Si7xxxv | 88.0597 |
Si1—Si4—Li13 | 67.2422 (1) | Li11xx—Li11—Li12xviii | 123.7436 (2) |
Si1—Si4—Li13v | 67.2422 (1) | Li11xx—Li11—Si7xxxv | 176.9826 |
Li7—Si4—Li7v | 95.0177 (4) | Li12xviii—Li11—Si7xxxv | 58.5267 (2) |
Li7—Si4—Li9 | 120.5898 (2) | Si3—Li12—Li3 | 60.4247 (1) |
Li7—Si4—Li9v | 70.3096 (2) | Si3—Li12—Li4ix | 118.0529 (2) |
Li7—Si4—Li10xli | 105.9915 (4) | Si3—Li12—Li4xlv | 151.7331 (2) |
Li7—Si4—Li10xlii | 157.7648 | Si3—Li12—Li6x | 144.9940 (1) |
Li7—Si4—Li13 | 57.5000 (3) | Si3—Li12—Li9xiii | 59.6902 (1) |
Li7—Si4—Li13v | 145.3351 (1) | Si3—Li12—Li11ix | 60.5561 (2) |
Li7v—Si4—Li9 | 70.3096 (2) | Si3—Li12—Li13 | 92.0157 (1) |
Li7v—Si4—Li9v | 120.5897 (2) | Si3—Li12—Si7xliii | 121.9935 (1) |
Li7v—Si4—Li10xli | 157.7648 | Si3—Li12—Si9ii | 112.8624 (1) |
Li7v—Si4—Li10xlii | 105.9915 (4) | Li3—Li12—Li4ix | 110.6245 (2) |
Li7v—Si4—Li13 | 145.3351 (1) | Li3—Li12—Li4xlv | 92.5627 (3) |
Li7v—Si4—Li13v | 57.5000 (3) | Li3—Li12—Li6x | 129.8690 (1) |
Li9—Si4—Li9v | 69.9939 (4) | Li3—Li12—Li9xiii | 77.7995 (1) |
Li9—Si4—Li10xli | 92.2956 (2) | Li3—Li12—Li11ix | 119.7873 (3) |
Li9—Si4—Li10xlii | 62.2494 (1) | Li3—Li12—Li13 | 100.7749 |
Li9—Si4—Li13 | 139.8641 (1) | Li3—Li12—Si7xliii | 163.8076 (1) |
Li9—Si4—Li13v | 72.9549 (3) | Li3—Li12—Si9ii | 69.6996 (3) |
Li9v—Si4—Li10xli | 62.2494 (1) | Li4ix—Li12—Li4xlv | 60.9863 (2) |
Li9v—Si4—Li10xlii | 92.2956 (2) | Li4ix—Li12—Li6x | 90.9931 (4) |
Li9v—Si4—Li13 | 72.9549 (3) | Li4ix—Li12—Li9xiii | 58.6546 (3) |
Li9v—Si4—Li13v | 139.8640 (1) | Li4ix—Li12—Li11ix | 87.0988 (2) |
Li10xli—Si4—Li10xlii | 52.3158 (3) | Li4ix—Li12—Li13 | 144.1822 (2) |
Li10xli—Si4—Li13 | 56.3424 (1) | Li4ix—Li12—Si7xliii | 53.3669 (1) |
Li10xli—Si4—Li13v | 104.9945 (2) | Li4ix—Li12—Si9ii | 119.8323 (3) |
Li10xlii—Si4—Li13 | 104.9946 (2) | Li4xlv—Li12—Li6x | 58.5040 (3) |
Li10xlii—Si4—Li13v | 56.3424 (1) | Li4xlv—Li12—Li9xiii | 109.4294 (2) |
Li13—Si4—Li13v | 134.4525 (3) | Li4xlv—Li12—Li11ix | 141.7642 (1) |
Li1vi—Li3—Li2 | 108.9142 (4) | Li4xlv—Li12—Li13 | 101.8729 |
Li1ii—Li3—Si3 | 72.0367 (2) | Li4xlv—Li12—Si7xliii | 81.5089 (3) |
Li1ii—Li3—Li7xl | 92.3990 (1) | Li4xlv—Li12—Si9ii | 58.9325 (1) |
Li1ii—Li3—Li8 | 121.0133 (2) | Li6x—Li12—Li9xiii | 146.8183 (1) |
Li1ii—Li3—Li12 | 111.8683 (1) | Li6x—Li12—Li11ix | 105.4515 (3) |
Li1ii—Li3—Si5xiii | 56.9037 (3) | Li6x—Li12—Li13 | 54.7715 (2) |
Li1ii—Li3—Si5ii | 143.9658 (2) | Li6x—Li12—Si7xliii | 58.9569 (2) |
Li2—Li3—Si3 | 60.9361 (2) | Li6x—Li12—Si9ii | 60.3901 (3) |
Li2—Li3—Li7xl | 101.5103 | Li9xiii—Li12—Li11ix | 63.4113 (1) |
Li2—Li3—Li8 | 125.1655 (2) | Li9xiii—Li12—Li13 | 148.6944 (2) |
Li2—Li3—Li12 | 90.3623 (2) | Li9xiii—Li12—Si7xliii | 89.9154 (1) |
Li2—Li3—Si5xiii | 150.8511 (1) | Li9xiii—Li12—Si9ii | 144.2099 (1) |
Li2—Li3—Si5ii | 63.4840 (3) | Li11ix—Li12—Li13 | 92.0827 (1) |
Si3—Li3—Li7xl | 148.7960 (2) | Li11ix—Li12—Si7xliii | 61.7148 (4) |
Si3—Li3—Li8 | 153.2499 | Li11ix—Li12—Si9ii | 147.8042 (1) |
Si3—Li3—Li12 | 62.2844 (4) | Li13—Li12—Si7xliii | 95.2022 (1) |
Si3—Li3—Si5xiii | 125.1855 (2) | Li13—Li12—Si9ii | 55.8369 (2) |
Si3—Li3—Si5ii | 121.9781 (2) | Si7xliii—Li12—Si9ii | 118.4888 (3) |
Li7xl—Li3—Li8 | 57.8261 (1) | Si1—Li13—Si4 | 51.5353 (3) |
Li7xl—Li3—Li12 | 147.9940 (2) | Si1—Li13—Li6xxvii | 166.0518 (1) |
Li7xl—Li3—Si5xiii | 57.8382 (2) | Si1—Li13—Li6x | 121.7385 (3) |
Li7xl—Li3—Si5ii | 57.9773 (1) | Si1—Li13—Li7 | 102.6177 (2) |
Li8—Li3—Li12 | 91.0135 (3) | Si1—Li13—Li10xli | 65.8951 (2) |
Li8—Li3—Si5xiii | 64.2779 (1) | Si1—Li13—Li12 | 70.4771 (2) |
Li8—Li3—Si5ii | 62.9932 (1) | Si1—Li13—Si8xxii | 117.8526 (3) |
Li12—Li3—Si5xiii | 118.1521 (2) | Si1—Li13—Si9ii | 112.6314 (2) |
Li12—Li3—Si5ii | 103.5718 (2) | Si4—Li13—Li6xxvii | 124.8579 (3) |
Si5xiii—Li3—Si5ii | 111.2829 (3) | Si4—Li13—Li6x | 172.8989 |
Li4xiv—Li4—Li6xv | 91.9967 (3) | Si4—Li13—Li7 | 63.1887 (1) |
Li4xiv—Li4—Li8xliv | 113.6260 (2) | Si4—Li13—Li10xli | 62.8756 (2) |
Li4xiv—Li4—Li9xvii | 103.8686 (2) | Si4—Li13—Li12 | 112.9642 (1) |
Li4xiv—Li4—Li12xviii | 57.1696 (3) | Si4—Li13—Si8xxii | 121.7368 (2) |
Li4xiv—Li4—Li12xliv | 61.8440 (1) | Si4—Li13—Si9ii | 116.1777 (2) |
Li4xiv—Li4—Si6xvii | 58.2362 (2) | Li6xxvii—Li13—Li6x | 60.9562 (3) |
Li4xiv—Li4—Si6xxxv | 53.6492 (2) | Li6xxvii—Li13—Li7 | 66.9717 (2) |
Li4xiv—Li4—Si7xxxv | 79.3742 (3) | Li6xxvii—Li13—Li10xli | 126.4244 (2) |
Li4xiv—Li4—Si8xx | 168.5011 | Li6xxvii—Li13—Li12 | 102.9746 (1) |
Li4xiv—Li4—Si9xx | 117.4400 (3) | Li6xxvii—Li13—Si8xxii | 75.9016 (3) |
Li6xv—Li4—Li8xliv | 120.3343 (2) | Li6xxvii—Li13—Si9ii | 55.0133 (2) |
Li6xv—Li4—Li9xvii | 94.0616 (1) | Li6x—Li13—Li7 | 119.7359 (1) |
Li6xv—Li4—Li12xviii | 121.3587 (3) | Li6x—Li13—Li10xli | 118.0388 (2) |
Li6xv—Li4—Li12xliv | 59.3519 (1) | Li6x—Li13—Li12 | 60.2752 (1) |
Li6xv—Li4—Si6xvii | 58.0169 (2) | Li6x—Li13—Si8xxii | 62.1754 (2) |
Li6xv—Li4—Si6xxxv | 122.6682 (2) | Li6x—Li13—Si9ii | 62.7417 (2) |
Li6xv—Li4—Si7xxxv | 171.3706 | Li7—Li13—Li10xli | 116.2977 (3) |
Li6xv—Li4—Si8xx | 80.0592 (3) | Li7—Li13—Li12 | 107.4870 (2) |
Li6xv—Li4—Si9xx | 59.6146 (2) | Li7—Li13—Si8xxii | 130.0016 (2) |
Li8xliv—Li4—Li9xvii | 126.3790 (1) | Li7—Li13—Si9ii | 63.6012 (3) |
Li8xliv—Li4—Li12xviii | 117.7352 (1) | Li10xli—Li13—Li12 | 122.9564 (1) |
Li8xliv—Li4—Li12xliv | 85.9159 (3) | Li10xli—Li13—Si8xxii | 62.6303 (3) |
Li8xliv—Li4—Si6xvii | 170.4603 (1) | Li10xli—Li13—Si9ii | 178.5156 |
Li8xliv—Li4—Si6xxxv | 60.2122 (1) | Li12—Li13—Si8xxii | 112.6855 (1) |
Li8xliv—Li4—Si7xxxv | 64.0589 (2) | Li12—Li13—Si9ii | 56.1034 (1) |
Li8xliv—Li4—Si8xx | 64.6007 (2) | Si8xxii—Li13—Si9ii | 118.6628 (3) |
Li8xliv—Li4—Si9xx | 60.7471 (1) | Li1xxxviii—Si5—Li3xxxi | 68.3288 (2) |
Li9xvii—Li4—Li12xviii | 55.8084 (2) | Li1xxxviii—Si5—Li3xxxviii | 84.5511 (2) |
Li9xvii—Li4—Li12xliv | 147.0451 (2) | Li1xxxviii—Si5—Li7v | 62.6881 (1) |
Li9xvii—Li4—Si6xvii | 62.671 | Li1xxxviii—Si5—Li7xxxviii | 105.0025 (2) |
Li9xvii—Li4—Si6xxxv | 134.1468 (2) | Li1xxxviii—Si5—Si6 | 97.2745 (4) |
Li9xvii—Li4—Si7xxxv | 88.1386 (1) | Li1xxxviii—Si5—Si9 | 152.5033 |
Li9xvii—Li4—Si8xx | 85.1101 (1) | Li3xxxi—Si5—Li3xxxviii | 150.2665 (2) |
Li9xvii—Li4—Si9xx | 130.1155 (2) | Li3xxxi—Si5—Li7v | 108.4426 (3) |
Li12xviii—Li4—Li12xliv | 119.0136 (2) | Li3xxxi—Si5—Li7xxxviii | 67.2309 (3) |
Li12xviii—Li4—Si6xvii | 63.3735 (1) | Li3xxxi—Si5—Si6 | 71.2108 (2) |
Li12xviii—Li4—Si6xxxv | 80.3774 (4) | Li3xxxi—Si5—Si9 | 125.6619 (2) |
Li12xviii—Li4—Si7xxxv | 53.6764 (2) | Li3xxxviii—Si5—Li7v | 66.5661 (3) |
Li12xviii—Li4—Si8xx | 134.2184 (2) | Li3xxxviii—Si5—Li7xxxviii | 110.7813 (3) |
Li12xviii—Li4—Si9xx | 173.9601 | Li3xxxviii—Si5—Si6 | 126.3536 (1) |
Li12xliv—Li4—Si6xvii | 85.5486 (2) | Li3xxxviii—Si5—Si9 | 74.7812 (2) |
Li12xliv—Li4—Si6xxxv | 63.8017 (3) | Li7v—Si5—Li7xxxviii | 167.2640 (1) |
Li12xliv—Li4—Si7xxxv | 115.4431 (1) | Li7v—Si5—Si6 | 67.1955 (2) |
Li12xliv—Li4—Si8xx | 106.7440 (1) | Li7v—Si5—Si9 | 121.9952 (2) |
Li12xliv—Li4—Si9xx | 55.6781 (2) | Li7xxxviii—Si5—Si6 | 120.0990 (2) |
Si6xvii—Li4—Si6xxxv | 111.8854 (1) | Li7xxxviii—Si5—Si9 | 67.1076 (2) |
Si6xvii—Li4—Si7xxxv | 116.2744 (2) | Si6—Si5—Si9 | 109.5124 (4) |
Si6xvii—Li4—Si8xx | 122.2074 (2) | Li4xxii—Si6—Li4xlvii | 68.1146 (1) |
Si6xvii—Li4—Si9xx | 117.0423 (1) | Li4xxii—Si6—Li6xx | 64.3691 (1) |
Si6xxxv—Li4—Si7xxxv | 51.6414 (2) | Li4xxii—Si6—Li7v | 103.1492 (1) |
Si6xxxv—Li4—Si8xx | 124.3746 (2) | Li4xxii—Si6—Li8xxxi | 127.4026 (2) |
Si6xxxv—Li4—Si9xx | 94.1436 (4) | Li4xxii—Si6—Si5 | 160.2696 (1) |
Si7xxxv—Li4—Si8xx | 108.4642 (3) | Li4xxii—Si6—Si7 | 92.4596 (2) |
Si7xxxv—Li4—Si9xx | 124.4518 (2) | Li4xlvii—Si6—Li6xx | 101.6918 (4) |
Si8xx—Li4—Si9xx | 51.2800 (2) | Li4xlvii—Si6—Li7v | 170.5763 |
Si2—Li5—Li8xxi | 175.1656 | Li4xlvii—Si6—Li8xxxi | 59.5992 (2) |
Si2—Li5—Li10v | 59.3641 (2) | Li4xlvii—Si6—Si5 | 127.3534 (1) |
Si2—Li5—Li10xli | 58.7942 (2) | Li4xlvii—Si6—Si7 | 59.4834 (2) |
Si2—Li5—Li11ix | 59.5413 (2) | Li6xx—Si6—Li7v | 70.4993 (4) |
Si2—Li5—Li11x | 60.2866 (2) | Li6xx—Si6—Li8xxxi | 130.1528 (2) |
Si2—Li5—Si7xxii | 116.2531 (1) | Li6xx—Si6—Si5 | 117.2055 (2) |
Si2—Li5—Si7xliii | 117.4624 (2) | Li6xx—Si6—Si7 | 64.5756 (2) |
Si2—Li5—Si8xxii | 116.5371 (2) | Li7v—Si6—Li8xxxi | 129.3822 (2) |
Si2—Li5—Si8xliii | 115.8231 (1) | Li7v—Si6—Si5 | 61.9787 (1) |
Li8xxi—Li5—Li10v | 118.0179 (2) | Li7v—Si6—Si7 | 119.1311 (2) |
Li8xxi—Li5—Li10xli | 122.7548 (2) | Li8xxxi—Si6—Si5 | 68.1915 (3) |
Li8xxi—Li5—Li11ix | 122.8372 (2) | Li8xxxi—Si6—Si7 | 66.5484 (1) |
Li8xxi—Li5—Li11x | 116.4670 (2) | Si5—Si6—Si7 | 106.0106 (3) |
Li8xxi—Li5—Si7xxii | 60.8876 (1) | Li4xlvii—Si7—Li5xvii | 74.6150 (3) |
Li8xxi—Li5—Si7xliii | 65.0064 (2) | Li4xlvii—Si7—Li5xlviii | 160.0704 (1) |
Li8xxi—Li5—Si8xxii | 65.2010 (2) | Li4xlvii—Si7—Li6xx | 106.7762 (3) |
Li8xxi—Li5—Si8xliii | 62.0352 (1) | Li4xlvii—Si7—Li11xlvii | 97.1064 (1) |
Li10v—Li5—Li10xli | 117.1992 (3) | Li4xlvii—Si7—Li12xlviii | 72.9567 (2) |
Li10v—Li5—Li11ix | 52.9657 (3) | Li4xlvii—Si7—Si6 | 68.8751 (1) |
Li10v—Li5—Li11x | 88.1718 (3) | Li4xlvii—Si7—Si8 | 124.3806 (2) |
Li10v—Li5—Si7xxii | 120.2271 (3) | Li5xvii—Si7—Li5xlviii | 102.8940 (3) |
Li10v—Li5—Si7xliii | 82.4257 (3) | Li5xvii—Si7—Li6xx | 172.8294 |
Li10v—Li5—Si8xxii | 168.9864 | Li5xvii—Si7—Li11xlvii | 64.0827 (1) |
Li10v—Li5—Si8xliii | 56.6050 (3) | Li5xvii—Si7—Li12xlviii | 108.9585 (2) |
Li10xli—Li5—Li11ix | 101.7034 (3) | Li5xvii—Si7—Si6 | 123.1610 (1) |
Li10xli—Li5—Li11x | 52.1580 (3) | Li5xvii—Si7—Si8 | 60.5361 (1) |
Li10xli—Li5—Si7xxii | 79.3669 (3) | Li5xlviii—Si7—Li6xx | 73.3255 (3) |
Li10xli—Li5—Si7xliii | 136.8145 (2) | Li5xlviii—Si7—Li11xlvii | 64.9582 (2) |
Li10xli—Li5—Si8xxii | 57.7430 (3) | Li5xlviii—Si7—Li12xlviii | 89.6959 (2) |
Li10xli—Li5—Si8xliii | 171.648 | Li5xlviii—Si7—Si6 | 125.3602 (1) |
Li11ix—Li5—Li11x | 119.0102 (3) | Li5xlviii—Si7—Si8 | 67.4693 (1) |
Li11ix—Li5—Si7xxii | 172.893 | Li6xx—Si7—Li11xlvii | 108.7619 (1) |
Li11ix—Li5—Si7xliii | 57.9304 (3) | Li6xx—Si7—Li12xlviii | 65.3600 (2) |
Li11ix—Li5—Si8xxii | 135.6225 (2) | Li6xx—Si7—Si6 | 63.3029 (1) |
Li11ix—Li5—Si8xliii | 79.1087 (3) | Li6xx—Si7—Si8 | 121.9094 (2) |
Li11x—Li5—Si7xxii | 56.0938 (3) | Li11xlvii—Si7—Li12xlviii | 59.7585 (2) |
Li11x—Li5—Si7xliii | 169.6254 | Li11xlvii—Si7—Si6 | 158.9899 (1) |
Li11x—Li5—Si8xxii | 81.1878 (3) | Li11xlvii—Si7—Si8 | 91.5842 |
Li11x—Li5—Si8xliii | 120.0947 (3) | Li12xlviii—Si7—Si6 | 100.2135 (3) |
Si7xxii—Li5—Si7xliii | 125.7895 (3) | Li12xlviii—Si7—Si8 | 149.6761 (2) |
Si7xxii—Li5—Si8xxii | 50.8092 (3) | Si6—Si7—Si8 | 109.1833 (1) |
Si7xxii—Li5—Si8xliii | 98.8081 (3) | Li4xx—Si8—Li5xvii | 160.9760 (1) |
Si7xliii—Li5—Si8xxii | 107.9450 (3) | Li4xx—Si8—Li5xlviii | 74.1944 (3) |
Si7xliii—Li5—Si8xliii | 50.5483 (3) | Li4xx—Si8—Li6xlvii | 106.1434 (3) |
Si8xxii—Li5—Si8xliii | 127.1553 (3) | Li4xx—Si8—Li10x | 96.8217 (1) |
Li4xxiii—Li6—Li6xxiv | 96.3066 (4) | Li4xx—Si8—Li13xvii | 88.1018 (3) |
Li4xxiii—Li6—Li8xliv | 125.7650 (2) | Li4xx—Si8—Si7 | 123.9675 (2) |
Li4xxiii—Li6—Li12x | 62.1440 (3) | Li4xx—Si8—Si9 | 67.4216 (1) |
Li4xxiii—Li6—Li13xxv | 76.5244 (2) | Li5xvii—Si8—Li5xlviii | 104.4700 (3) |
Li4xxiii—Li6—Li13x | 112.6654 (2) | Li5xvii—Si8—Li6xlvii | 73.1965 (3) |
Li4xxiii—Li6—Si6xx | 57.6140 (3) | Li5xvii—Si8—Li10x | 66.6951 (2) |
Li4xxiii—Li6—Si7xx | 81.8527 (3) | Li5xvii—Si8—Li13xvii | 75.0277 (3) |
Li4xxiii—Li6—Si8xxxv | 169.6879 | Li5xvii—Si8—Si7 | 68.6547 (1) |
Li4xxiii—Li6—Si9xxvi | 59.0239 (2) | Li5xvii—Si8—Si9 | 125.3000 (1) |
Li4xxiii—Li6—Si9xxxv | 131.1652 (2) | Li5xlviii—Si8—Li6xlvii | 174.0308 |
Li6xxiv—Li6—Li8xliv | 126.1829 (2) | Li5xlviii—Si8—Li10x | 63.2786 (1) |
Li6xxiv—Li6—Li12x | 109.4577 (2) | Li5xlviii—Si8—Li13xvii | 114.2155 (3) |
Li6xxiv—Li6—Li13xxv | 53.2175 (1) | Li5xlviii—Si8—Si7 | 61.9824 (2) |
Li6xxiv—Li6—Li13x | 65.8263 (2) | Li5xlviii—Si8—Si9 | 122.1917 (1) |
Li6xxiv—Li6—Si6xx | 139.0056 (2) | Li6xlvii—Si8—Li10x | 110.8811 (1) |
Li6xxiv—Li6—Si7xx | 164.0784 (1) | Li6xlvii—Si8—Li13xvii | 59.9914 (2) |
Li6xxiv—Li6—Si8xxxv | 76.4097 (3) | Li6xlvii—Si8—Si7 | 121.0508 (2) |
Li6xxiv—Li6—Si9xxvi | 55.5156 (2) | Li6xlvii—Si8—Si9 | 62.6738 (1) |
Li6xxiv—Li6—Si9xxxv | 59.3830 (3) | Li10x—Si8—Li13xvii | 56.7048 (2) |
Li8xliv—Li6—Li12x | 118.9056 (1) | Li10x—Si8—Si7 | 93.1724 |
Li8xliv—Li6—Li13xxv | 101.4191 (3) | Li10x—Si8—Si9 | 158.2671 (1) |
Li8xliv—Li6—Li13x | 114.7652 | Li13xvii—Si8—Si7 | 140.1332 (2) |
Li8xliv—Li6—Si6xx | 68.1710 (1) | Li13xvii—Si8—Si9 | 106.1030 (3) |
Li8xliv—Li6—Si7xx | 65.4741 (2) | Si7—Si8—Si9 | 107.9600 (1) |
Li8xliv—Li6—Si8xxxv | 64.4395 (2) | Li4xx—Si9—Li6xxxvii | 61.3615 (1) |
Li8xliv—Li6—Si9xxvi | 172.2479 | Li4xx—Si9—Li6xlvii | 104.4894 (3) |
Li8xliv—Li6—Si9xxxv | 67.3648 (1) | Li4xx—Si9—Li7xxxviii | 172.0291 |
Li12x—Li6—Li13xxv | 133.6998 (2) | Li4xx—Si9—Li8xxxviii | 59.9244 (2) |
Li12x—Li6—Li13x | 64.9532 (3) | Li4xx—Si9—Li12xxxviii | 65.3893 (3) |
Li12x—Li6—Si6xx | 86.9375 (3) | Li4xx—Si9—Li13xxxviii | 115.7218 (3) |
Li12x—Li6—Si7xx | 55.6830 (2) | Li4xx—Si9—Si5 | 126.0482 (1) |
Li12x—Li6—Si8xxxv | 113.0059 (3) | Li4xx—Si9—Si8 | 61.2984 (2) |
Li12x—Li6—Si9xxvi | 56.4248 (1) | Li6xxxvii—Si9—Li6xlvii | 65.1013 (1) |
Li12x—Li6—Si9xxxv | 160.7268 | Li6xxxvii—Si9—Li7xxxviii | 110.6693 (1) |
Li13xxv—Li6—Li13x | 119.0438 (3) | Li6xxxvii—Si9—Li8xxxviii | 121.2578 (2) |
Li13xxv—Li6—Si6xx | 87.9692 (3) | Li6xxxvii—Si9—Li12xxxviii | 63.1851 (3) |
Li13xxv—Li6—Si7xx | 140.0627 (1) | Li6xxxvii—Si9—Li13xxxviii | 59.1318 (3) |
Li13xxv—Li6—Si8xxxv | 104.0168 (2) | Li6xxxvii—Si9—Si5 | 166.5106 (1) |
Li13xxv—Li6—Si9xxvi | 85.4695 (3) | Li6xxxvii—Si9—Si8 | 86.2307 (3) |
Li13xxv—Li6—Si9xxxv | 54.7996 (2) | Li6xlvii—Si9—Li7xxxviii | 70.6630 (4) |
Li13x—Li6—Si6xx | 149.7972 | Li6xlvii—Si9—Li8xxxviii | 132.8347 (2) |
Li13x—Li6—Si7xx | 100.1543 (3) | Li6xlvii—Si9—Li12xxxviii | 124.8771 (3) |
Li13x—Li6—Si8xxxv | 57.8331 (2) | Li6xlvii—Si9—Li13xxxviii | 70.1871 (2) |
Li13x—Li6—Si9xxvi | 58.1264 (1) | Li6xlvii—Si9—Si5 | 118.5019 (1) |
Li13x—Li6—Si9xxxv | 95.7784 (3) | Li6xlvii—Si9—Si8 | 66.1597 (2) |
Si6xx—Li6—Si7xx | 52.1215 (3) | Li7xxxviii—Si9—Li8xxxviii | 128.0338 (2) |
Si6xx—Li6—Si8xxxv | 132.5005 (2) | Li7xxxviii—Si9—Li12xxxviii | 111.7316 (3) |
Si6xx—Li6—Si9xxvi | 116.0599 (1) | Li7xxxviii—Si9—Li13xxxviii | 56.9920 (2) |
Si6xx—Li6—Si9xxxv | 111.8331 (3) | Li7xxxviii—Si9—Si5 | 61.6891 (2) |
Si7xx—Li6—Si8xxxv | 103.1111 (3) | Li7xxxviii—Si9—Si8 | 120.2652 (2) |
Si7xx—Li6—Si9xxvi | 111.3607 (2) | Li8xxxviii—Si9—Li12xxxviii | 90.8238 (3) |
Si7xx—Li6—Si9xxxv | 132.6813 (2) | Li8xxxviii—Si9—Li13xxxviii | 156.5578 (1) |
Si8xxxv—Li6—Si9xxvi | 110.6671 (2) | Li8xxxviii—Si9—Si5 | 66.9964 (2) |
Si8xxxv—Li6—Si9xxxv | 51.1664 (3) | Li8xxxviii—Si9—Si8 | 67.7833 (1) |
Si9xxvi—Li6—Si9xxxv | 114.8987 (1) | Li12xxxviii—Si9—Li13xxxviii | 68.0597 (3) |
Li1xli—Li7—Li2 | 87.6318 (4) | Li12xxxviii—Si9—Si5 | 108.0084 (3) |
Li1xxxviii—Li7—Si4 | 64.9940 (3) | Li12xxxviii—Si9—Si8 | 126.3721 (1) |
Li1xxxviii—Li7—Li3xxxix | 76.9437 | Li13xxxviii—Si9—Si5 | 108.7689 (4) |
Li1xxxviii—Li7—Li8xxxix | 120.3198 (3) | Li13xxxviii—Si9—Si8 | 132.7738 (1) |
Li1xxxviii—Li7—Li13 | 119.9068 (1) | Si5—Si9—Si8 | 107.1847 (3) |
Li1xxxviii—Li7—Si5v | 57.9549 (2) |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1/2; (ii) x+1/2, −y+1/2, −z+1/2; (iii) x+1/2, y, −z+1/2; (iv) x−1/2, y, −z+1/2; (v) x, −y+1/2, z; (vi) x+1/2, −y+1/2, −z+3/2; (vii) x+1/2, y, −z+3/2; (viii) −x+1/2, y−1/2, z+1/2; (ix) −x+1/2, −y+1, z+1/2; (x) −x+1, −y+1, −z+1; (xi) −x+1, y−1/2, −z+1; (xii) x−1, y, z; (xiii) x−1, −y+1/2, z; (xiv) −x+1, −y+2, −z; (xv) −x+3/2, −y+2, z−1/2; (xvi) x+1/2, y+1, −z+1/2; (xvii) −x+3/2, y+1/2, z−1/2; (xviii) −x+1/2, −y+1, z−1/2; (xix) x−1/2, −y+3/2, −z+1/2; (xx) x, −y+3/2, z; (xxi) −x+1/2, −y, z+1/2; (xxii) −x+3/2, y−1/2, z+1/2; (xxiii) −x+3/2, −y+2, z+1/2; (xxiv) −x+1, −y+2, −z+1; (xxv) x, y+1, z; (xxvi) −x+3/2, y+1/2, z+1/2; (xxvii) x, y−1, z; (xxviii) x−1/2, y−1, −z+1/2; (xxix) −x+1/2, −y, z−1/2; (xxx) x+1, y, z; (xxxi) x+1, −y+1/2, z; (xxxii) x−1/2, −y+1/2, −z+3/2; (xxxiii) x−1/2, y, −z+3/2; (xxxiv) −x+1/2, y+1/2, z−1/2; (xxxv) x+1/2, −y+3/2, −z+1/2; (xxxvi) −x+1, y+1/2, −z+1; (xxxvii) −x+3/2, y−1/2, z−1/2; (xxxviii) x+3/2, −y+1/2, −z+1/2; (xxxix) x+3/2, y−1, −z+1/2; (xl) x+1/2, y−1, −z+1/2; (xli) x+3/2, −y+1/2, −z+3/2; (xlii) x+3/2, y−1, −z+3/2; (xliii) −x+1, y−1/2, −z; (xliv) x+3/2, y, −z+1/2; (xlv) x+1/2, y−2, −z+1/2; (xlvi) x+1/2, y−1, −z+3/2; (xlvii) x+3/2, −y+3/2, −z+1/2; (xlviii) −x+1, y+1/2, −z. |
Experimental details
(LSD_phase_1) | (LSD_phase_2) | (LSD_phase_3) | (LSD_phase_4) | |
Crystal data | ||||
Chemical formula | D0.46Li2Si | Si | DLi | Li12Si7 |
Mr | 42.90 | 28.09 | 8.95 | 279.89 |
Crystal system, space group | Orthorhombic, Cmmm | Cubic, Fd3m | Cubic, Fm3m | Orthorhombic, Pnma |
Temperature (K) | ? | ? | ? | ? |
a, b, c (Å) | 11.9099 (7), 3.76253 (16), 4.1754 (2) | 5.42712 (9), 5.42712, 5.42712 | 4.0735 (10), 4.0735, 4.0735 | 8.59576 (4), 19.77464 (11), 14.31890 (7) |
α, β, γ (°) | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 |
V (Å3) | 187.11 (1) | 159.85 (1) | 67.59 (5) | 2433.90 (3) |
Z | 4 | 8 | 4 | 8 |
Radiation type | ?, λ = 1.5403 Å | ?, λ = 1.5403 Å | ?, λ = 1.5403 Å | ?, λ = 1.5403 Å |
Specimen shape, size (mm) | ?, ? × ? × ? | ?, ? × ? × ? | ?, ? × ? × ? | ?, ? × ? × ? |
Data collection | ||||
Diffractometer | ? | ? | ? | ? |
Specimen mounting | ? | ? | ? | ? |
Data collection mode | ? | ? | ? | ? |
Scan method | ? | ? | ? | ? |
2θ values (°) | 2θmin = 3.087 2θmax = 168.037 2θstep = 0.05 | 2θmin = 3.087 2θmax = 168.037 2θstep = 0.05 | 2θmin = 3.087 2θmax = 168.037 2θstep = 0.05 | 2θmin = 3.087 2θmax = 168.037 2θstep = 0.05 |
Refinement | ||||
R factors and goodness of fit | Rp = 0.050, Rwp = 0.063, Rexp = 0.045, R(F2) = 0.26021, χ2 = 1.988 | Rp = 0.050, Rwp = 0.063, Rexp = 0.045, R(F2) = 0.26021, χ2 = 1.988 | Rp = 0.050, Rwp = 0.063, Rexp = 0.045, R(F2) = 0.26021, χ2 = 1.988 | Rp = 0.050, Rwp = 0.063, Rexp = 0.045, R(F2) = 0.26021, χ2 = 1.988 |
No. of data points | 3300 | 3300 | 3300 | 3300 |
No. of parameters | 44 | 44 | 44 | 44 |
(Δ/σ)max | 0.19 | 0.19 | 0.19 | 0.19 |
Computer programs: GSAS.