Download citation
Download citation
link to html
The phases of 1,2,3,4-tetrahydro-2,3-naphthalenediol (or 2,3-tetralindiol) and of 1,2-cyclohexanediol have been investigated. The structure of a very stable 1:1 compound (or co-crystal) of the cis and trans isomers of 2,3-tetralindiol, the existence of which has been known for nearly a century, has finally been determined. No evidence of any analogous compound between the cis and trans isomers of 1,2-cyclohexanediol has been found. The formation of solid-state compounds of stereoisomers is rare; it probably occurs only if the crystal packing of at least one of the isomers is unfavorable, e.g. if at least one of the melting points is lower than expected. Compound formation is usually unlikely because of the difficulty of simultaneously optimizing the translational spacings for both isomers, but that packing problem is avoided in the cis/trans compound of 2,3-tetralindiol because the two isomers are in very similar environments. In the structures of the individual 2,3-tetralindiol isomers there are clear conflicts between the competing packing requirements of the 1,2-diol moiety and the aromatic ring system; these conflicts are resolved better in the co-crystal than in the structures of the individual isomers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768107010579/ws5054sup1.cif
Contains datablocks 1:1cis/trans-2,3-TD, cis-1,2-CHD, S,S-2,3-TD, k99104, k99103, k99096, trans-1,2-CHD_1, k99093, trans-1,2-CHD_2, k99095, R,R-1,2-CHD, k99094

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768107010579/ws5054sup2.pdf
Ellipsoid plots and information on Rietveld refinements

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107010579/ws5054x05146sup3.hkl
Contains datablock x05146

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107010579/ws5054x06002csup4.hkl
Contains datablock x06002c

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107010579/ws5054k99104sup5.hkl
Contains datablock k99104

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107010579/ws5054k99103sup6.hkl
Contains datablock k99103

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107010579/ws5054k99102sup7.hkl
Contains datablock k99102

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107010579/ws5054k99096sup8.hkl
Contains datablock k99096

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107010579/ws5054k99100sup9.hkl
Contains datablock k99100

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107010579/ws5054k99093sup10.hkl
Contains datablock k99093

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107010579/ws5054k99101sup11.hkl
Contains datablock k99101

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107010579/ws5054k99095sup12.hkl
Contains datablock k99095

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107010579/ws5054k99099sup13.hkl
Contains datablock k99099

CCDC references: 650637; 650638; 650639; 650640; 650641; 650642; 650643; 650644; 650645; 650646; 650647; 650648

Computing details top

Data collection: APEX2 (Bruker-Nonius, 2004) for 1:1cis/trans-2,3-TD, S,S-2,3-TD; COLLECT (Nonius, 1999) for k99104, k99103, cis-1,2-CHD, k99096, trans-1,2-CHD_1, k99093, trans-1,2-CHD_2, k99095, R,R-1,2-CHD, k99094. Cell refinement: Saintplus in APEX2 (Bruker-Nonius,2004) for 1:1cis/trans-2,3-TD, S,S-2,3-TD; SCALEPACK (Otwinowski & Minor, 1997) for k99104, k99103, cis-1,2-CHD, k99096, trans-1,2-CHD_1, k99093, trans-1,2-CHD_2, k99095, R,R-1,2-CHD, k99094. Data reduction: Saintplus in APEX2 (Bruker-Nonius,2004) for 1:1cis/trans-2,3-TD, S,S-2,3-TD; DENZO-SMN (Otwinowski & Minor, 1997) for k99104, k99103, cis-1,2-CHD, k99096, trans-1,2-CHD_1, k99093, trans-1,2-CHD_2, k99095, R,R-1,2-CHD, k99094. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for 1:1cis/trans-2,3-TD, S,S-2,3-TD; SHELXS97 (Sheldrick, 1997a) for k99104, k99103, cis-1,2-CHD, k99096, trans-1,2-CHD_1, k99093, trans-1,2-CHD_2, k99095, R,R-1,2-CHD, k99094. Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for 1:1cis/trans-2,3-TD, S,S-2,3-TD; SHELXL97 (Sheldrick, 1997b) for k99104, k99103, cis-1,2-CHD, k99096, trans-1,2-CHD_1, k99093, trans-1,2-CHD_2, k99095, R,R-1,2-CHD, k99094. Molecular graphics: XP in SHELXTL (Sheldrick, 1994), Mercury (Macrae et al., 2006) for 1:1cis/trans-2,3-TD; Mercury (Macrae et al., 2006) for S,S-2,3-TD, k99104, k99103, cis-1,2-CHD, k99096, trans-1,2-CHD_1, k99093, trans-1,2-CHD_2, k99095, R,R-1,2-CHD; # XP in Siemens SHELXTL (Sheldrick, 1994); Mercury (Macrae et al., 2006) for k99094. Software used to prepare material for publication: SHELX97-2 (Sheldrick, 1997) and local procedures for 1:1cis/trans-2,3-TD, S,S-2,3-TD; SHELXL97 (Sheldrick, 1997) and local procedures for k99104, k99103, cis-1,2-CHD, k99096, trans-1,2-CHD_1, k99093, trans-1,2-CHD_2, k99095, R,R-1,2-CHD, k99094.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
(1:1cis/trans-2,3-TD) cis-1,2,3,4-tetrahydro-2,3-naphthalenediol trans-1,2,3,4-tetrahydro-2,3-naphthalenediol top
Crystal data top
(C10H12O2)·(C10H12O2)F(000) = 696
Mr = 328.40Dx = 1.311 Mg m3
Monoclinic, C2Melting point = 413–415 K
a = 23.2312 (13) ÅCu Kα radiation, λ = 1.54178 Å
b = 4.9750 (4) ŵ = 0.73 mm1
c = 15.484 (2) ÅT = 90 K
β = 112.53 (1)°Thin blade. Largest faces {001}; elongated along [010]., colorless
V = 1653.1 (3) Å30.30 × 0.05 × 0.02 mm
Z = 4
Data collection top
Bruker-Nonius X8 Proteum
diffractometer
2316 independent reflections
Radiation source: fine-focus rotating anode2226 reflections with I > 2σ(I)
Graded multi-layer optics monochromatorRint = 0.116
Detector resolution: 18 pixels mm-1θmax = 66.4°, θmin = 3.1°
ω and ϕ scansh = 027
Absorption correction: multi-scan
SADABS in APEX2 (Bruker-Nonius, 2004)
k = 50
Tmin = 0.810, Tmax = 0.986l = 1716
10614 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.111P)2 + 7.930P]
where P = (Fo2 + 2Fc2)/3
2316 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.44 e Å3
1 restraintΔρmin = 0.48 e Å3
Crystal data top
(C10H12O2)·(C10H12O2)V = 1653.1 (3) Å3
Mr = 328.40Z = 4
Monoclinic, C2Cu Kα radiation
a = 23.2312 (13) ŵ = 0.73 mm1
b = 4.9750 (4) ÅT = 90 K
c = 15.484 (2) Å0.30 × 0.05 × 0.02 mm
β = 112.53 (1)°
Data collection top
Bruker-Nonius X8 Proteum
diffractometer
2316 independent reflections
Absorption correction: multi-scan
SADABS in APEX2 (Bruker-Nonius, 2004)
2226 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.986Rint = 0.116
10614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0791 restraint
wR(F2) = 0.229H-atom parameters constrained
S = 1.18Δρmax = 0.44 e Å3
2316 reflectionsΔρmin = 0.48 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.17420 (18)0.7387 (10)0.5500 (2)0.0164 (10)
H01A0.18010.58080.57080.025*
O2A0.0596 (3)0.4990 (18)0.4429 (5)0.019 (2)0.609 (10)
O3A0.0565 (4)0.959 (3)0.4347 (7)0.019 (3)0.391 (10)
C1A0.1755 (2)0.9758 (16)0.4188 (4)0.0183 (15)
H1EA0.22070.94990.43480.022*
H1AA0.17061.13210.45490.022*
C2A0.1505 (2)0.7326 (15)0.4485 (4)0.0171 (13)
H2AA0.16680.56860.42830.020*
C3A0.0802 (2)0.7225 (16)0.4084 (4)0.0174 (13)
H3AA0.06320.88310.42360.021*0.609 (10)
H3EA0.06650.56530.43070.021*0.391 (10)
C4A0.0570 (2)0.7117 (14)0.3013 (4)0.0124 (12)
H4AA0.06560.53070.28240.015*
H4EA0.01130.73810.27460.015*
C5A0.0867 (2)0.9202 (14)0.2602 (4)0.0150 (14)
C6A0.0592 (2)0.9971 (15)0.1684 (4)0.0153 (14)
H6A0.02000.92060.13110.018*
C7A0.0856 (2)1.1801 (16)0.1278 (4)0.0188 (16)
H7A0.06521.22670.06370.023*
C8A0.1431 (3)1.2966 (15)0.1825 (4)0.0212 (16)
H8A0.16231.42310.15610.025*
C9A0.1713 (2)1.2234 (16)0.2761 (4)0.0169 (14)
H9A0.21011.30250.31360.020*
C10A0.1448 (2)1.0400 (13)0.3159 (4)0.0112 (13)
O1B0.18485 (19)0.2357 (11)0.6342 (3)0.0196 (10)
H01B0.18290.08100.61160.029*
O2B0.0681 (3)0.4622 (16)0.6250 (5)0.018 (2)0.609 (10)
O3B0.0685 (4)0.006 (2)0.6159 (7)0.011 (3)0.391 (10)
C1B0.1927 (2)0.4779 (15)0.7708 (4)0.0179 (14)
H1EB0.23830.45620.80320.021*
H1AB0.18510.63480.72860.021*
C2B0.1658 (2)0.2256 (16)0.7120 (4)0.0139 (13)
H2AB0.18290.06050.75000.017*
C3B0.0942 (2)0.2286 (16)0.6782 (4)0.0160 (13)
H3EB0.08010.06840.64150.019*0.609 (10)
H3AB0.07750.39060.64430.019*0.391 (10)
C4B0.0760 (2)0.2073 (16)0.7615 (4)0.0183 (14)
H4AB0.08690.02610.78940.022*
H4EB0.03030.22940.74060.022*
C5B0.1085 (2)0.4190 (13)0.8357 (4)0.0141 (14)
C6B0.0831 (3)0.4967 (15)0.8996 (4)0.0179 (14)
H6B0.04430.42150.89440.021*
C7B0.1121 (3)0.6809 (15)0.9709 (4)0.0192 (15)
H7B0.09430.72801.01470.023*
C8B0.1673 (3)0.7916 (14)0.9758 (4)0.0173 (16)
H8B0.18790.91711.02400.021*
C9B0.1936 (3)0.7258 (17)0.9126 (4)0.0205 (14)
H9B0.23110.81020.91630.025*
C10B0.1649 (2)0.5337 (14)0.8427 (4)0.0146 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0268 (19)0.012 (2)0.0096 (18)0.006 (2)0.0065 (16)0.001 (2)
O2A0.031 (4)0.013 (5)0.018 (4)0.001 (4)0.014 (3)0.005 (4)
O3A0.016 (5)0.036 (9)0.006 (5)0.012 (6)0.004 (4)0.000 (5)
C1A0.020 (3)0.023 (4)0.010 (3)0.003 (3)0.002 (2)0.000 (3)
C2A0.027 (3)0.012 (4)0.011 (3)0.003 (3)0.004 (2)0.002 (3)
C3A0.019 (3)0.010 (4)0.023 (3)0.003 (3)0.009 (2)0.005 (3)
C4A0.012 (2)0.008 (3)0.015 (3)0.001 (3)0.002 (2)0.003 (3)
C5A0.015 (2)0.016 (4)0.015 (3)0.004 (3)0.007 (2)0.000 (3)
C6A0.013 (2)0.019 (4)0.011 (3)0.001 (3)0.001 (2)0.007 (3)
C7A0.019 (3)0.022 (5)0.013 (3)0.007 (3)0.004 (2)0.004 (3)
C8A0.027 (3)0.021 (4)0.026 (3)0.002 (3)0.020 (3)0.004 (3)
C9A0.020 (3)0.018 (4)0.015 (3)0.003 (3)0.009 (2)0.003 (3)
C10A0.013 (2)0.009 (3)0.011 (3)0.004 (2)0.005 (2)0.002 (2)
O1B0.031 (2)0.015 (3)0.018 (2)0.002 (2)0.0146 (17)0.003 (2)
O2B0.024 (3)0.012 (4)0.014 (4)0.000 (3)0.001 (3)0.000 (3)
O3B0.018 (5)0.008 (6)0.010 (5)0.003 (5)0.009 (4)0.002 (5)
C1B0.024 (3)0.017 (4)0.017 (3)0.009 (3)0.012 (2)0.003 (3)
C2B0.022 (3)0.010 (4)0.013 (3)0.000 (3)0.011 (2)0.000 (3)
C3B0.020 (3)0.011 (3)0.014 (3)0.001 (3)0.003 (2)0.000 (3)
C4B0.022 (3)0.011 (4)0.025 (3)0.000 (3)0.012 (2)0.002 (3)
C5B0.022 (3)0.004 (4)0.017 (3)0.002 (3)0.009 (2)0.002 (3)
C6B0.022 (3)0.018 (4)0.018 (3)0.002 (3)0.012 (2)0.000 (3)
C7B0.028 (3)0.015 (4)0.015 (3)0.002 (3)0.009 (2)0.003 (3)
C8B0.029 (3)0.011 (4)0.006 (3)0.006 (3)0.000 (2)0.004 (3)
C9B0.024 (3)0.018 (4)0.016 (3)0.004 (3)0.003 (2)0.001 (3)
C10B0.016 (2)0.016 (4)0.011 (3)0.003 (3)0.005 (2)0.005 (3)
Geometric parameters (Å, º) top
O1A—C2A1.453 (6)O1B—C2B1.434 (6)
O1A—H01A0.8400O1B—H01B0.8400
O2A—C3A1.396 (11)O2B—C3B1.419 (10)
O2A—H3EA0.4391O2B—H3AB0.4624
O3A—C3A1.423 (14)O3B—C3B1.440 (13)
O3A—H3AA0.4661O3B—H3EB0.4957
C1A—C2A1.490 (10)C1B—C10B1.511 (7)
C1A—C10A1.509 (7)C1B—C2B1.536 (10)
C1A—H1EA0.9900C1B—H1EB0.9900
C1A—H1AA0.9900C1B—H1AB0.9900
C2A—C3A1.508 (7)C2B—C3B1.541 (7)
C2A—H2AA1.0000C2B—H2AB1.0000
C3A—C4A1.536 (8)C3B—C4B1.507 (8)
C3A—H3AA0.9596C3B—H3EB0.9600
C3A—H3EA0.9582C3B—H3AB0.9587
C4A—C5A1.515 (8)C4B—C5B1.529 (9)
C4A—H4AA0.9900C4B—H4AB0.9900
C4A—H4EA0.9900C4B—H4EB0.9900
C5A—C6A1.371 (8)C5B—C6B1.388 (8)
C5A—C10A1.423 (8)C5B—C10B1.393 (8)
C6A—C7A1.378 (9)C6B—C7B1.395 (9)
C6A—H6A0.9500C6B—H6B0.9500
C7A—C8A1.404 (9)C7B—C8B1.370 (9)
C7A—H7A0.9500C7B—H7B0.9500
C8A—C9A1.392 (8)C8B—C9B1.376 (8)
C8A—H8A0.9500C8B—H8B0.9500
C9A—C10A1.373 (9)C9B—C10B1.406 (9)
C9A—H9A0.9500C9B—H9B0.9500
C2A—O1A—H01A109.5C2B—O1B—H01B109.5
C3A—O2A—H3EA4.1C3B—O2B—H3AB4.7
C3A—O3A—H3AA4.5C3B—O3B—H3EB11.6
C2A—C1A—C10A114.5 (5)C10B—C1B—C2B113.3 (5)
C2A—C1A—H1EA108.6C10B—C1B—H1EB108.9
C10A—C1A—H1EA108.6C2B—C1B—H1EB108.9
C2A—C1A—H1AA108.6C10B—C1B—H1AB108.9
C10A—C1A—H1AA108.6C2B—C1B—H1AB108.9
H1EA—C1A—H1AA107.6H1EB—C1B—H1AB107.7
O1A—C2A—C1A106.6 (5)O1B—C2B—C1B106.5 (5)
O1A—C2A—C3A110.4 (5)O1B—C2B—C3B110.8 (4)
C1A—C2A—C3A112.9 (5)C1B—C2B—C3B109.5 (5)
O1A—C2A—H2AA108.9O1B—C2B—H2AB110.0
C1A—C2A—H2AA108.9C1B—C2B—H2AB110.0
C3A—C2A—H2AA108.9C3B—C2B—H2AB110.0
O2A—C3A—O3A108.7 (6)O2B—C3B—O3B105.5 (5)
O2A—C3A—C2A110.2 (6)O2B—C3B—C4B110.9 (6)
O3A—C3A—C2A109.4 (7)O3B—C3B—C4B109.8 (6)
O2A—C3A—C4A110.8 (6)O2B—C3B—C2B111.7 (6)
O3A—C3A—C4A108.9 (6)O3B—C3B—C2B109.6 (6)
C2A—C3A—C4A108.8 (4)C4B—C3B—C2B109.2 (4)
O2A—C3A—H3AA109.6O2B—C3B—H3EB111.4
O3A—C3A—H3AA2.2O3B—C3B—H3EB6.0
C2A—C3A—H3AA110.6C4B—C3B—H3EB107.7
C4A—C3A—H3AA106.7C2B—C3B—H3EB105.8
O2A—C3A—H3EA1.9O2B—C3B—H3AB2.2
O3A—C3A—H3EA110.5O3B—C3B—H3AB107.7
C2A—C3A—H3EA109.7C4B—C3B—H3AB109.9
C4A—C3A—H3EA109.5C2B—C3B—H3AB110.5
H3AA—C3A—H3EA111.4H3EB—C3B—H3AB113.6
C5A—C4A—C3A113.7 (5)C3B—C4B—C5B112.0 (5)
C5A—C4A—H4AA108.8C3B—C4B—H4AB109.2
C3A—C4A—H4AA108.8C5B—C4B—H4AB109.2
C5A—C4A—H4EA108.8C3B—C4B—H4EB109.2
C3A—C4A—H4EA108.8C5B—C4B—H4EB109.2
H4AA—C4A—H4EA107.7H4AB—C4B—H4EB107.9
C6A—C5A—C10A118.0 (6)C6B—C5B—C10B118.4 (6)
C6A—C5A—C4A121.3 (5)C6B—C5B—C4B120.3 (5)
C10A—C5A—C4A120.7 (5)C10B—C5B—C4B121.3 (5)
C5A—C6A—C7A123.0 (5)C5B—C6B—C7B122.6 (6)
C5A—C6A—H6A118.5C5B—C6B—H6B118.7
C7A—C6A—H6A118.5C7B—C6B—H6B118.7
C6A—C7A—C8A119.0 (5)C8B—C7B—C6B117.8 (5)
C6A—C7A—H7A120.5C8B—C7B—H7B121.1
C8A—C7A—H7A120.5C6B—C7B—H7B121.1
C9A—C8A—C7A118.7 (6)C7B—C8B—C9B121.7 (6)
C9A—C8A—H8A120.6C7B—C8B—H8B119.1
C7A—C8A—H8A120.6C9B—C8B—H8B119.1
C10A—C9A—C8A121.8 (5)C8B—C9B—C10B120.1 (6)
C10A—C9A—H9A119.1C8B—C9B—H9B120.0
C8A—C9A—H9A119.1C10B—C9B—H9B120.0
C9A—C10A—C5A119.4 (5)C5B—C10B—C9B119.5 (5)
C9A—C10A—C1A120.1 (5)C5B—C10B—C1B121.4 (5)
C5A—C10A—C1A120.4 (5)C9B—C10B—C1B118.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H01A···O1B0.841.962.788 (7)169
O1B—H01B···O1Ai0.841.922.762 (7)175
Symmetry code: (i) x, y1, z.
(S,S-2,3-TD) 1,2,3,4-tetrahydro-(S,S)-2,3-naphthalenediol top
Crystal data top
C10H12O2F(000) = 352
Mr = 164.20Dx = 1.327 Mg m3
Monoclinic, P21Melting point: 425 K
a = 5.8751 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 27.9972 (8) ŵ = 0.74 mm1
c = 5.0132 (2) ÅT = 90 K
β = 94.528 (1)°Block, colorless
V = 822.03 (5) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker-Nonius X8 Proteum
diffractometer
2869 independent reflections
Radiation source: fine-focus rotating anode2859 reflections with I > 2σ(I)
Graded multi-layer optics monochromatorRint = 0.029
Detector resolution: 18 pixels mm-1θmax = 68.0°, θmin = 3.2°
ω and ϕ scansh = 77
Absorption correction: multi-scan
SADABS in APEX2 (Bruker-Nonius, 2004)
k = 3333
Tmin = 0.916, Tmax = 0.943l = 55
9460 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.1143P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.28 e Å3
2869 reflectionsΔρmin = 0.30 e Å3
222 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.052 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (13)
Crystal data top
C10H12O2V = 822.03 (5) Å3
Mr = 164.20Z = 4
Monoclinic, P21Cu Kα radiation
a = 5.8751 (2) ŵ = 0.74 mm1
b = 27.9972 (8) ÅT = 90 K
c = 5.0132 (2) Å0.12 × 0.10 × 0.08 mm
β = 94.528 (1)°
Data collection top
Bruker-Nonius X8 Proteum
diffractometer
2869 independent reflections
Absorption correction: multi-scan
SADABS in APEX2 (Bruker-Nonius, 2004)
2859 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.943Rint = 0.029
9460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.28 e Å3
S = 1.12Δρmin = 0.30 e Å3
2869 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
222 parametersAbsolute structure parameter: 0.00 (13)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.05563 (16)0.29675 (4)0.4484 (2)0.0177 (2)
H01A0.01100.28440.59610.026*
O2A0.28553 (18)0.35953 (4)0.2766 (2)0.0226 (3)
H02A0.32550.33070.28800.034*
C1A0.2002 (3)0.35989 (5)0.7237 (3)0.0174 (3)
H1EA0.36040.34900.69270.021*
1AA0.12930.34220.87990.021*
C2A0.0734 (2)0.34795 (5)0.4790 (3)0.0161 (3)
H2AA0.16350.36090.31750.019*
C3A0.1601 (2)0.37157 (5)0.4985 (3)0.0179 (3)
H3AA0.24780.36130.66780.021*
C4A0.1326 (2)0.42554 (5)0.4999 (3)0.0180 (3)
H4EA0.28350.44030.54760.022*
H4AA0.08020.43630.31710.022*
C5A0.0346 (3)0.44322 (5)0.6931 (3)0.0178 (3)
C6A0.0313 (3)0.49104 (6)0.7738 (3)0.0218 (3)
H6A0.08080.51190.71270.026*
C7A0.1884 (3)0.50847 (5)0.9412 (3)0.0226 (3)
H7A0.18340.54100.99430.027*
C8A0.3537 (3)0.47814 (6)1.0314 (3)0.0213 (3)
H8A0.46340.49011.14400.026*
C9A0.3577 (3)0.43053 (5)0.9564 (3)0.0191 (3)
H9A0.46940.40981.01990.023*
C10A0.1986 (2)0.41264 (5)0.7878 (3)0.0167 (3)
O1B0.09603 (17)0.26199 (4)0.0450 (2)0.0199 (2)
H01B0.06630.27370.10250.030*
O2B0.49760 (18)0.26772 (4)0.2940 (2)0.0204 (3)
H02B0.63410.27190.35240.031*
C1B0.2238 (2)0.19204 (5)0.2535 (3)0.0182 (3)
H1EB0.06720.17890.28040.022*
H1AB0.24840.21300.40770.022*
C2B0.2431 (2)0.22175 (5)0.0007 (3)0.0161 (3)
H2AB0.19040.20240.15150.019*
C3B0.4897 (2)0.23656 (5)0.0671 (3)0.0175 (3)
H3AB0.54690.25390.08880.021*
C4B0.6351 (2)0.19207 (5)0.1281 (3)0.0186 (3)
H4EB0.79830.20120.13550.022*
H4AB0.60380.17980.30680.022*
C5B0.5925 (2)0.15246 (5)0.0748 (3)0.0177 (3)
C6B0.7499 (3)0.11531 (6)0.0879 (3)0.0221 (3)
H6B0.88460.11560.03010.026*
C7B0.7146 (3)0.07815 (6)0.2680 (3)0.0236 (3)
H7B0.82550.05360.27570.028*
C8B0.5157 (3)0.07698 (6)0.4379 (3)0.0222 (3)
H8B0.48950.05150.56140.027*
C9B0.3559 (3)0.11320 (6)0.4265 (3)0.0203 (3)
H9B0.21950.11210.54150.024*
C10B0.3927 (2)0.15139 (5)0.2476 (3)0.0177 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0186 (5)0.0184 (5)0.0158 (5)0.0019 (4)0.0004 (4)0.0009 (4)
O2A0.0229 (5)0.0232 (5)0.0231 (6)0.0013 (4)0.0107 (4)0.0005 (4)
C1A0.0170 (7)0.0197 (7)0.0156 (7)0.0010 (5)0.0026 (5)0.0003 (6)
C2A0.0173 (7)0.0162 (7)0.0145 (7)0.0021 (5)0.0004 (5)0.0001 (5)
C3A0.0160 (7)0.0223 (8)0.0157 (7)0.0006 (5)0.0031 (5)0.0003 (5)
C4A0.0162 (7)0.0208 (7)0.0171 (7)0.0025 (5)0.0015 (5)0.0013 (6)
C5A0.0172 (7)0.0224 (7)0.0133 (7)0.0011 (5)0.0025 (5)0.0012 (5)
C6A0.0228 (7)0.0199 (7)0.0220 (8)0.0014 (6)0.0022 (6)0.0019 (6)
C7A0.0275 (8)0.0190 (7)0.0206 (8)0.0016 (6)0.0024 (6)0.0019 (6)
C8A0.0216 (7)0.0238 (8)0.0185 (7)0.0049 (6)0.0010 (6)0.0030 (6)
C9A0.0189 (7)0.0238 (8)0.0145 (7)0.0000 (6)0.0005 (5)0.0006 (6)
C10A0.0165 (7)0.0199 (7)0.0132 (7)0.0021 (5)0.0014 (5)0.0001 (5)
O1B0.0212 (5)0.0217 (5)0.0166 (5)0.0059 (4)0.0002 (4)0.0021 (4)
O2B0.0165 (5)0.0235 (6)0.0209 (6)0.0003 (4)0.0000 (4)0.0068 (4)
C1B0.0192 (7)0.0201 (7)0.0151 (7)0.0002 (6)0.0005 (5)0.0010 (6)
C2B0.0165 (7)0.0178 (7)0.0142 (7)0.0002 (5)0.0014 (5)0.0006 (6)
C3B0.0168 (7)0.0197 (7)0.0161 (8)0.0008 (5)0.0026 (5)0.0024 (5)
C4B0.0152 (6)0.0229 (7)0.0173 (7)0.0003 (6)0.0004 (5)0.0025 (6)
C5B0.0168 (7)0.0214 (7)0.0153 (8)0.0020 (6)0.0041 (5)0.0008 (5)
C6B0.0201 (8)0.0233 (7)0.0225 (8)0.0006 (6)0.0003 (6)0.0006 (6)
C7B0.0256 (8)0.0207 (7)0.0252 (8)0.0036 (6)0.0053 (6)0.0010 (6)
C8B0.0295 (8)0.0184 (7)0.0188 (8)0.0016 (6)0.0026 (6)0.0031 (6)
C9B0.0219 (7)0.0208 (7)0.0180 (7)0.0029 (6)0.0001 (6)0.0002 (6)
C10B0.0190 (7)0.0190 (7)0.0153 (7)0.0026 (6)0.0033 (5)0.0011 (5)
Geometric parameters (Å, º) top
O1A—C2A1.4464 (17)O1B—C2B1.4273 (17)
O1A—H01A0.8400O1B—H01B0.8400
O2A—C3A1.4223 (18)O2B—C3B1.4311 (18)
O2A—H02A0.8400O2B—H02B0.8400
C1A—C10A1.511 (2)C1B—C10B1.509 (2)
C1A—C2A1.522 (2)C1B—C2B1.518 (2)
C1A—H1EA0.9900C1B—H1EB0.9900
C1A—1AA0.9900C1B—H1AB0.9900
C2A—C3A1.5193 (19)C2B—C3B1.5183 (19)
C2A—H2AA1.0000C2B—H2AB1.0000
C3A—C4A1.520 (2)C3B—C4B1.528 (2)
C3A—H3AA1.0000C3B—H3AB1.0000
C4A—C5A1.516 (2)C4B—C5B1.512 (2)
C4A—H4EA0.9900C4B—H4EB0.9900
C4A—H4AA0.9900C4B—H4AB0.9900
C5A—C6A1.398 (2)C5B—C6B1.397 (2)
C5A—C10A1.399 (2)C5B—C10B1.403 (2)
C6A—C7A1.384 (2)C6B—C7B1.382 (2)
C6A—H6A0.9500C6B—H6B0.9500
C7A—C8A1.392 (2)C7B—C8B1.391 (2)
C7A—H7A0.9500C7B—H7B0.9500
C8A—C9A1.385 (2)C8B—C9B1.386 (2)
C8A—H8A0.9500C8B—H8B0.9500
C9A—C10A1.402 (2)C9B—C10B1.401 (2)
C9A—H9A0.9500C9B—H9B0.9500
C2A—O1A—H01A109.5C2B—O1B—H01B109.5
C3A—O2A—H02A109.5C3B—O2B—H02B109.5
C10A—C1A—C2A112.99 (12)C10B—C1B—C2B113.03 (12)
C10A—C1A—H1EA109.0C10B—C1B—H1EB109.0
C2A—C1A—H1EA109.0C2B—C1B—H1EB109.0
C10A—C1A—1AA109.0C10B—C1B—H1AB109.0
C2A—C1A—1AA109.0C2B—C1B—H1AB109.0
H1EA—C1A—1AA107.8H1EB—C1B—H1AB107.8
O1A—C2A—C3A111.44 (11)O1B—C2B—C1B107.07 (11)
O1A—C2A—C1A110.34 (11)O1B—C2B—C3B112.02 (11)
C3A—C2A—C1A110.47 (12)C1B—C2B—C3B109.92 (11)
O1A—C2A—H2AA108.2O1B—C2B—H2AB109.3
C3A—C2A—H2AA108.2C1B—C2B—H2AB109.3
C1A—C2A—H2AA108.2C3B—C2B—H2AB109.3
O2A—C3A—C2A111.57 (12)O2B—C3B—C2B108.13 (11)
O2A—C3A—C4A107.52 (12)O2B—C3B—C4B110.82 (12)
C2A—C3A—C4A109.70 (11)C2B—C3B—C4B109.28 (12)
O2A—C3A—H3AA109.3O2B—C3B—H3AB109.5
C2A—C3A—H3AA109.3C2B—C3B—H3AB109.5
C4A—C3A—H3AA109.3C4B—C3B—H3AB109.5
C5A—C4A—C3A113.72 (12)C5B—C4B—C3B113.76 (12)
C5A—C4A—H4EA108.8C5B—C4B—H4EB108.8
C3A—C4A—H4EA108.8C3B—C4B—H4EB108.8
C5A—C4A—H4AA108.8C5B—C4B—H4AB108.8
C3A—C4A—H4AA108.8C3B—C4B—H4AB108.8
H4EA—C4A—H4AA107.7H4EB—C4B—H4AB107.7
C6A—C5A—C10A118.80 (14)C6B—C5B—C10B118.67 (14)
C6A—C5A—C4A120.18 (13)C6B—C5B—C4B120.17 (13)
C10A—C5A—C4A120.99 (13)C10B—C5B—C4B121.13 (13)
C7A—C6A—C5A121.22 (14)C7B—C6B—C5B121.70 (14)
C7A—C6A—H6A119.4C7B—C6B—H6B119.1
C5A—C6A—H6A119.4C5B—C6B—H6B119.1
C6A—C7A—C8A119.84 (14)C6B—C7B—C8B119.53 (14)
C6A—C7A—H7A120.1C6B—C7B—H7B120.2
C8A—C7A—H7A120.1C8B—C7B—H7B120.2
C9A—C8A—C7A119.75 (14)C9B—C8B—C7B119.78 (14)
C9A—C8A—H8A120.1C9B—C8B—H8B120.1
C7A—C8A—H8A120.1C7B—C8B—H8B120.1
C8A—C9A—C10A120.67 (14)C8B—C9B—C10B120.91 (14)
C8A—C9A—H9A119.7C8B—C9B—H9B119.5
C10A—C9A—H9A119.7C10B—C9B—H9B119.5
C5A—C10A—C9A119.72 (13)C9B—C10B—C5B119.39 (14)
C5A—C10A—C1A121.26 (13)C9B—C10B—C1B119.67 (13)
C9A—C10A—C1A118.94 (13)C5B—C10B—C1B120.85 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H01A···O1Bi0.841.962.7992 (15)174
O2A—H02A···O2B0.842.032.8549 (15)166
O1B—H01B···O1A0.842.032.8645 (15)171
O2B—H02B···O1Aii0.841.972.7980 (14)166
C9A—H9A···O2Aiii0.952.453.3843 (18)168
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y, z+1.
(k99104) 1,2,3,4-tetrahydro-(S,S)-2,3-naphthalenediol top
Crystal data top
C10H12O2F(000) = 352
Mr = 164.20Dx = 1.324 Mg m3
Monoclinic, P21Melting point: 425 K
a = 5.877 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 28.029 (4) ŵ = 0.09 mm1
c = 5.015 (1) ÅT = 110 K
β = 94.51 (1)°Block, colorless
V = 823.5 (2) Å30.30 × 0.20 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1462 independent reflections
Radiation source: fine-focus sealed tube1258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 1.5°
ϕ and ω scans with 1.0° stepsh = 66
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
k = 3333
Tmin = 0.97, Tmax = 1.00l = 55
2839 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.033P)2 + 0.0P]
where P = (Fo2 + 2Fc2)/3
1462 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C10H12O2V = 823.5 (2) Å3
Mr = 164.20Z = 4
Monoclinic, P21Mo Kα radiation
a = 5.877 (1) ŵ = 0.09 mm1
b = 28.029 (4) ÅT = 110 K
c = 5.015 (1) Å0.30 × 0.20 × 0.05 mm
β = 94.51 (1)°
Data collection top
Nonius KappaCCD
diffractometer
1462 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
1258 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 1.00Rint = 0.031
2839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.071H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
1462 reflectionsΔρmin = 0.19 e Å3
221 parameters
Special details top

Experimental. The crystal-to-detector distance was 36 mm. Each frame was measured for 30 s. The number of scan sets measured was 4; the total number of frames measured was 463.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.0558 (3)0.29672 (6)0.4475 (3)0.0185 (4)
H01A0.00900.28440.59440.028*
O2A0.2850 (3)0.35946 (7)0.2762 (3)0.0246 (5)
H02A0.33990.33190.29840.037*
C1A0.1992 (4)0.36014 (10)0.7235 (5)0.0184 (6)
H1EA0.35920.34910.69340.022*
1AA0.12750.34260.87950.022*
C2A0.0735 (4)0.34816 (9)0.4788 (5)0.0173 (6)
H2AA0.16370.36120.31770.021*
C3A0.1588 (4)0.37159 (10)0.4980 (5)0.0185 (6)
H3AA0.24630.36130.66740.022*
C4A0.1317 (4)0.42535 (10)0.4988 (5)0.0193 (6)
H4EA0.28280.44010.54500.023*
H4AA0.07840.43600.31610.023*
C5A0.0340 (4)0.44319 (9)0.6926 (5)0.0174 (6)
C6A0.0312 (5)0.49076 (10)0.7722 (5)0.0215 (6)
H6A0.08080.51170.71090.026*
C7A0.1889 (4)0.50823 (11)0.9396 (5)0.0239 (7)
H7A0.18450.54080.99210.029*
C8A0.3533 (5)0.47794 (10)1.0300 (5)0.0230 (7)
H8A0.46280.48991.14270.028*
C9A0.3576 (4)0.43047 (9)0.9561 (5)0.0196 (7)
H9A0.46930.40981.02000.024*
C10A0.1982 (4)0.41255 (10)0.7870 (5)0.0166 (6)
O1B0.0964 (3)0.26193 (6)0.0456 (3)0.0214 (5)
H01B0.07560.27510.10110.032*
O2B0.4973 (3)0.26763 (6)0.2933 (3)0.0212 (5)
H02B0.63370.27390.34320.032*
C1B0.2245 (4)0.19222 (9)0.2528 (5)0.0182 (6)
H1EB0.06780.17920.27930.022*
H1AB0.24930.21300.40740.022*
C2B0.2440 (4)0.22202 (9)0.0002 (5)0.0163 (6)
H2AB0.19110.20270.15060.020*
C3B0.4900 (4)0.23649 (9)0.0667 (5)0.0178 (6)
H3AB0.54780.25370.08890.021*
C4B0.6349 (4)0.19201 (9)0.1281 (5)0.0185 (6)
H4EB0.79810.20100.13550.022*
H4AB0.60330.17980.30670.022*
C5B0.5916 (4)0.15266 (9)0.0744 (5)0.0176 (6)
C6B0.7493 (5)0.11548 (10)0.0879 (5)0.0222 (7)
H6B0.88420.11590.02960.027*
C7B0.7145 (5)0.07830 (10)0.2668 (5)0.0253 (7)
H7B0.82520.05370.27400.030*
C8B0.5153 (5)0.07716 (10)0.4371 (5)0.0232 (7)
H8B0.48890.05170.56050.028*
C9B0.3566 (5)0.11327 (10)0.4254 (5)0.0210 (7)
H9B0.22030.11220.54050.025*
C10B0.3928 (4)0.15141 (9)0.2470 (5)0.0177 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0207 (11)0.0185 (11)0.0162 (9)0.0016 (9)0.0006 (8)0.0012 (8)
O2A0.0260 (11)0.0247 (11)0.0249 (10)0.0022 (9)0.0136 (8)0.0003 (9)
C1A0.0167 (15)0.0213 (15)0.0176 (14)0.0005 (12)0.0039 (11)0.0004 (13)
C2A0.0196 (15)0.0139 (15)0.0183 (14)0.0032 (12)0.0005 (11)0.0005 (12)
C3A0.0170 (15)0.0230 (16)0.0161 (13)0.0017 (12)0.0051 (11)0.0003 (11)
C4A0.0191 (15)0.0204 (17)0.0181 (14)0.0009 (13)0.0000 (12)0.0029 (12)
C5A0.0191 (15)0.0176 (16)0.0148 (13)0.0003 (12)0.0035 (11)0.0018 (12)
C6A0.0243 (16)0.0179 (15)0.0216 (15)0.0002 (13)0.0016 (12)0.0011 (13)
C7A0.0301 (17)0.0190 (16)0.0221 (15)0.0035 (14)0.0013 (13)0.0020 (13)
C8A0.0220 (16)0.0246 (18)0.0224 (14)0.0064 (13)0.0025 (12)0.0037 (13)
C9A0.0167 (16)0.0233 (17)0.0190 (14)0.0001 (13)0.0018 (11)0.0003 (12)
C10A0.0170 (15)0.0173 (15)0.0149 (14)0.0024 (13)0.0029 (11)0.0014 (12)
O1B0.0236 (10)0.0217 (11)0.0185 (10)0.0073 (9)0.0002 (8)0.0030 (9)
O2B0.0177 (10)0.0244 (12)0.0213 (11)0.0004 (9)0.0001 (8)0.0081 (9)
C1B0.0179 (15)0.0230 (17)0.0133 (14)0.0010 (13)0.0008 (11)0.0003 (12)
C2B0.0178 (14)0.0168 (15)0.0144 (14)0.0022 (13)0.0023 (11)0.0019 (12)
C3B0.0201 (14)0.0191 (15)0.0144 (14)0.0020 (13)0.0034 (11)0.0044 (12)
C4B0.0149 (14)0.0212 (16)0.0194 (15)0.0002 (13)0.0015 (11)0.0020 (12)
C5B0.0171 (15)0.0201 (16)0.0161 (15)0.0017 (13)0.0048 (11)0.0023 (11)
C6B0.0182 (16)0.0252 (16)0.0230 (15)0.0002 (14)0.0012 (12)0.0003 (13)
C7B0.0286 (18)0.0199 (16)0.0281 (17)0.0021 (14)0.0075 (13)0.0031 (14)
C8B0.0310 (17)0.0174 (15)0.0215 (16)0.0030 (14)0.0038 (13)0.0028 (13)
C9B0.0268 (17)0.0189 (16)0.0169 (15)0.0055 (14)0.0005 (12)0.0021 (14)
C10B0.0211 (16)0.0172 (15)0.0155 (14)0.0045 (13)0.0054 (11)0.0032 (12)
Geometric parameters (Å, º) top
O1A—C2A1.455 (3)O1B—C2B1.423 (3)
O1A—H01A0.8400O1B—H01B0.8400
O2A—C3A1.426 (3)O2B—C3B1.431 (3)
O2A—H02A0.8400O2B—H02B0.8400
C1A—C10A1.503 (4)C1B—C10B1.511 (4)
C1A—C2A1.519 (3)C1B—C2B1.514 (3)
C1A—H1EA0.9900C1B—H1EB0.9900
C1A—1AA0.9900C1B—H1AB0.9900
C2A—C3A1.511 (3)C2B—C3B1.514 (3)
C2A—H2AA1.0000C2B—H2AB1.0000
C3A—C4A1.515 (4)C3B—C4B1.527 (4)
C3A—H3AA1.0000C3B—H3AB1.0000
C4A—C5A1.514 (3)C4B—C5B1.507 (3)
C4A—H4EA0.9900C4B—H4EB0.9900
C4A—H4AA0.9900C4B—H4AB0.9900
C5A—C6A1.391 (4)C5B—C6B1.400 (4)
C5A—C10A1.401 (4)C5B—C10B1.399 (4)
C6A—C7A1.388 (4)C6B—C7B1.380 (4)
C6A—H6A0.9500C6B—H6B0.9500
C7A—C8A1.389 (4)C7B—C8B1.394 (4)
C7A—H7A0.9500C7B—H7B0.9500
C8A—C9A1.381 (4)C8B—C9B1.381 (4)
C8A—H8A0.9500C8B—H8B0.9500
C9A—C10A1.405 (4)C9B—C10B1.400 (4)
C9A—H9A0.9500C9B—H9B0.9500
C2A—O1A—H01A109.5C2B—O1B—H01B109.5
C3A—O2A—H02A109.5C3B—O2B—H02B109.5
C10A—C1A—C2A113.2 (2)C10B—C1B—C2B113.3 (2)
C10A—C1A—H1EA108.9C10B—C1B—H1EB108.9
C2A—C1A—H1EA108.9C2B—C1B—H1EB108.9
C10A—C1A—1AA108.9C10B—C1B—H1AB108.9
C2A—C1A—1AA108.9C2B—C1B—H1AB108.9
H1EA—C1A—1AA107.8H1EB—C1B—H1AB107.7
O1A—C2A—C3A111.4 (2)O1B—C2B—C3B112.6 (2)
O1A—C2A—C1A110.5 (2)O1B—C2B—C1B107.16 (19)
C3A—C2A—C1A110.3 (2)C3B—C2B—C1B109.97 (19)
O1A—C2A—H2AA108.2O1B—C2B—H2AB109.0
C3A—C2A—H2AA108.2C3B—C2B—H2AB109.0
C1A—C2A—H2AA108.2C1B—C2B—H2AB109.0
O2A—C3A—C2A111.7 (2)O2B—C3B—C2B107.94 (19)
O2A—C3A—C4A107.5 (2)O2B—C3B—C4B110.89 (19)
C2A—C3A—C4A109.7 (2)C2B—C3B—C4B109.5 (2)
O2A—C3A—H3AA109.3O2B—C3B—H3AB109.5
C2A—C3A—H3AA109.3C2B—C3B—H3AB109.5
C4A—C3A—H3AA109.3C4B—C3B—H3AB109.5
C5A—C4A—C3A113.8 (2)C5B—C4B—C3B113.6 (2)
C5A—C4A—H4EA108.8C5B—C4B—H4EB108.9
C3A—C4A—H4EA108.8C3B—C4B—H4EB108.9
C5A—C4A—H4AA108.8C5B—C4B—H4AB108.9
C3A—C4A—H4AA108.8C3B—C4B—H4AB108.9
H4EA—C4A—H4AA107.7H4EB—C4B—H4AB107.7
C6A—C5A—C10A118.9 (2)C6B—C5B—C10B118.4 (2)
C6A—C5A—C4A120.4 (2)C6B—C5B—C4B120.0 (2)
C10A—C5A—C4A120.6 (2)C10B—C5B—C4B121.6 (2)
C7A—C6A—C5A121.2 (3)C7B—C6B—C5B121.9 (2)
C7A—C6A—H6A119.4C7B—C6B—H6B119.0
C5A—C6A—H6A119.4C5B—C6B—H6B119.0
C6A—C7A—C8A119.8 (3)C6B—C7B—C8B119.3 (3)
C6A—C7A—H7A120.1C6B—C7B—H7B120.3
C8A—C7A—H7A120.1C8B—C7B—H7B120.3
C9A—C8A—C7A120.0 (3)C9B—C8B—C7B119.7 (3)
C9A—C8A—H8A120.0C9B—C8B—H8B120.2
C7A—C8A—H8A120.0C7B—C8B—H8B120.2
C8A—C9A—C10A120.5 (3)C8B—C9B—C10B121.2 (2)
C8A—C9A—H9A119.8C8B—C9B—H9B119.4
C10A—C9A—H9A119.8C10B—C9B—H9B119.4
C5A—C10A—C9A119.6 (3)C9B—C10B—C5B119.5 (2)
C5A—C10A—C1A121.2 (2)C9B—C10B—C1B120.0 (2)
C9A—C10A—C1A119.1 (2)C5B—C10B—C1B120.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H01A···O1Bi0.841.972.803 (2)174
O2A—H02A···O2B0.842.032.859 (3)170
O1B—H01B···O1A0.842.052.866 (2)164
O2B—H02B···O1Aii0.841.972.801 (2)173
C9A—H9A···O2Aiii0.952.453.388 (3)168
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y, z+1.
(k99103) 1,2,3,4-tetrahydro-(S,S)-2,3-naphthalenediol top
Crystal data top
C10H12O2F(000) = 352
Mr = 164.20Dx = 1.315 Mg m3
Monoclinic, P21Melting point: 425 K
a = 5.886 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 28.108 (4) ŵ = 0.09 mm1
c = 5.029 (1) ÅT = 173 K
β = 94.35 (1)°Block, colorless
V = 829.6 (2) Å30.30 × 0.20 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1471 independent reflections
Radiation source: fine-focus sealed tube1223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 3.5°
ϕ and ω scans with 1.0° stepsh = 66
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
k = 2833
Tmin = 0.97, Tmax = 1.00l = 55
4563 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.039P)2 + 0.0P]
where P = (Fo2 + 2Fc2)/3
1471 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C10H12O2V = 829.6 (2) Å3
Mr = 164.20Z = 4
Monoclinic, P21Mo Kα radiation
a = 5.886 (1) ŵ = 0.09 mm1
b = 28.108 (4) ÅT = 173 K
c = 5.029 (1) Å0.30 × 0.20 × 0.05 mm
β = 94.35 (1)°
Data collection top
Nonius KappaCCD
diffractometer
1471 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
1223 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 1.00Rint = 0.040
4563 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.078H-atom parameters constrained
S = 1.06Δρmax = 0.15 e Å3
1471 reflectionsΔρmin = 0.21 e Å3
221 parameters
Special details top

Experimental. The crystal-to-detector distance was 36 mm. Each frame was measured for 30 s. The number of scan sets measured was 5; the total number of frames measured was 437.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.0557 (3)0.29689 (7)0.4468 (3)0.0255 (5)
H01A0.00240.28480.59100.038*
O2A0.2849 (4)0.35920 (8)0.2743 (4)0.0352 (6)
H02A0.33500.33130.29300.053*
C1A0.1993 (5)0.35999 (11)0.7200 (5)0.0247 (7)
H1EA0.35920.34920.68820.030*
1AA0.12970.34230.87570.030*
C2A0.0718 (5)0.34813 (10)0.4775 (5)0.0228 (7)
H2AA0.16090.36110.31640.027*
C3A0.1591 (5)0.37136 (11)0.4971 (5)0.0245 (7)
H3AA0.24620.36120.66600.029*
C4A0.1318 (5)0.42491 (11)0.4963 (5)0.0261 (7)
H4EA0.28230.43970.54260.031*
H4AA0.07920.43540.31400.031*
C5A0.0351 (5)0.44263 (11)0.6895 (5)0.0248 (7)
C6A0.0309 (5)0.49021 (11)0.7682 (6)0.0316 (8)
H6A0.08150.51090.70710.038*
C7A0.1887 (5)0.50762 (12)0.9343 (5)0.0332 (8)
H7A0.18450.54020.98570.040*
C8A0.3523 (6)0.47770 (12)1.0256 (6)0.0341 (8)
H8A0.46170.48971.13790.041*
C9A0.3558 (5)0.43031 (11)0.9526 (5)0.0285 (8)
H9A0.46690.40971.01740.034*
C10A0.1975 (5)0.41232 (11)0.7843 (5)0.0224 (7)
O1B0.0990 (3)0.26219 (7)0.0478 (4)0.0313 (5)
H01B0.07980.27570.09790.047*
O2B0.4981 (3)0.26787 (7)0.2903 (4)0.0300 (5)
H02B0.63410.27490.33640.045*
C1B0.2267 (5)0.19234 (11)0.2520 (5)0.0277 (7)
H1EB0.07000.17940.27810.033*
H1AB0.25210.21290.40660.033*
C2B0.2461 (5)0.22217 (10)0.0014 (5)0.0229 (7)
H2AB0.19260.20300.14940.028*
C3B0.4909 (5)0.23657 (11)0.0653 (5)0.0251 (7)
H3AB0.54940.25360.09030.030*
C4B0.6343 (5)0.19231 (11)0.1276 (5)0.0276 (7)
H4EB0.79740.20120.13520.033*
H4AB0.60190.18030.30600.033*
C5B0.5920 (5)0.15278 (11)0.0730 (5)0.0241 (7)
C6B0.7487 (5)0.11552 (12)0.0852 (6)0.0326 (8)
H6B0.88300.11570.03220.039*
C7B0.7128 (6)0.07863 (12)0.2633 (6)0.0368 (8)
H7B0.82300.05410.27070.044*
C8B0.5153 (6)0.07742 (12)0.4321 (6)0.0350 (8)
H8B0.48860.05180.55400.042*
C9B0.3579 (5)0.11358 (11)0.4217 (5)0.0305 (8)
H9B0.22240.11260.53690.037*
C10B0.3936 (5)0.15165 (10)0.2454 (5)0.0232 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0277 (12)0.0238 (12)0.0247 (10)0.0042 (10)0.0006 (9)0.0036 (9)
O2A0.0361 (14)0.0358 (14)0.0361 (12)0.0015 (11)0.0186 (10)0.0007 (10)
C1A0.0247 (17)0.0256 (18)0.0243 (14)0.0019 (14)0.0043 (12)0.0003 (13)
C2A0.0261 (17)0.0209 (17)0.0208 (15)0.0037 (14)0.0006 (12)0.0001 (12)
C3A0.0223 (17)0.0308 (19)0.0212 (14)0.0002 (14)0.0064 (11)0.0004 (12)
C4A0.0226 (17)0.030 (2)0.0260 (15)0.0037 (15)0.0037 (13)0.0010 (13)
C5A0.0245 (17)0.0287 (19)0.0204 (13)0.0024 (15)0.0033 (12)0.0009 (13)
C6A0.037 (2)0.0257 (19)0.0321 (17)0.0020 (16)0.0005 (15)0.0042 (14)
C7A0.041 (2)0.0240 (19)0.0337 (18)0.0042 (17)0.0014 (15)0.0036 (14)
C8A0.036 (2)0.036 (2)0.0309 (16)0.0083 (17)0.0056 (14)0.0081 (15)
C9A0.0265 (19)0.033 (2)0.0256 (16)0.0022 (15)0.0023 (14)0.0020 (14)
C10A0.0197 (16)0.0270 (18)0.0200 (14)0.0001 (14)0.0025 (12)0.0004 (12)
O1B0.0332 (12)0.0343 (13)0.0255 (11)0.0104 (11)0.0028 (9)0.0047 (10)
O2B0.0248 (11)0.0314 (13)0.0334 (12)0.0002 (11)0.0007 (9)0.0108 (9)
C1B0.0295 (18)0.031 (2)0.0220 (15)0.0006 (15)0.0014 (12)0.0010 (13)
C2B0.0210 (16)0.0261 (19)0.0218 (15)0.0027 (15)0.0026 (12)0.0023 (13)
C3B0.0260 (17)0.0283 (18)0.0215 (15)0.0018 (14)0.0058 (12)0.0065 (13)
C4B0.0213 (17)0.032 (2)0.0297 (16)0.0002 (15)0.0008 (12)0.0034 (14)
C5B0.0232 (17)0.0276 (18)0.0225 (15)0.0019 (15)0.0074 (12)0.0013 (12)
C6B0.030 (2)0.033 (2)0.0344 (17)0.0031 (17)0.0029 (14)0.0035 (15)
C7B0.042 (2)0.030 (2)0.0389 (19)0.0053 (17)0.0084 (15)0.0031 (16)
C8B0.049 (2)0.0257 (19)0.0310 (18)0.0018 (17)0.0046 (15)0.0030 (15)
C9B0.035 (2)0.030 (2)0.0261 (16)0.0051 (17)0.0009 (13)0.0005 (15)
C10B0.0248 (17)0.0235 (18)0.0218 (15)0.0013 (15)0.0047 (12)0.0036 (12)
Geometric parameters (Å, º) top
O1A—C2A1.452 (3)O1B—C2B1.428 (3)
O1A—H01A0.8400O1B—H01B0.8400
O2A—C3A1.431 (3)O2B—C3B1.432 (3)
O2A—H02A0.8400O2B—H02B0.8400
C1A—C10A1.506 (4)C1B—C10B1.507 (4)
C1A—C2A1.517 (4)C1B—C2B1.511 (4)
C1A—H1EA0.9900C1B—H1EB0.9900
C1A—1AA0.9900C1B—H1AB0.9900
C2A—C3A1.504 (4)C2B—C3B1.510 (4)
C2A—H2AA1.0000C2B—H2AB1.0000
C3A—C4A1.514 (4)C3B—C4B1.523 (4)
C3A—H3AA1.0000C3B—H3AB1.0000
C4A—C5A1.517 (4)C4B—C5B1.509 (4)
C4A—H4EA0.9900C4B—H4EB0.9900
C4A—H4AA0.9900C4B—H4AB0.9900
C5A—C6A1.394 (4)C5B—C6B1.400 (4)
C5A—C10A1.391 (4)C5B—C10B1.401 (4)
C6A—C7A1.385 (4)C6B—C7B1.376 (4)
C6A—H6A0.9500C6B—H6B0.9500
C7A—C8A1.383 (4)C7B—C8B1.387 (4)
C7A—H7A0.9500C7B—H7B0.9500
C8A—C9A1.381 (4)C8B—C9B1.379 (4)
C8A—H8A0.9500C8B—H8B0.9500
C9A—C10A1.400 (4)C9B—C10B1.395 (4)
C9A—H9A0.9500C9B—H9B0.9500
C2A—O1A—H01A109.5C2B—O1B—H01B109.5
C3A—O2A—H02A109.5C3B—O2B—H02B109.5
C10A—C1A—C2A113.0 (2)C10B—C1B—C2B113.3 (2)
C10A—C1A—H1EA109.0C10B—C1B—H1EB108.9
C2A—C1A—H1EA109.0C2B—C1B—H1EB108.9
C10A—C1A—1AA109.0C10B—C1B—H1AB108.9
C2A—C1A—1AA109.0C2B—C1B—H1AB108.9
H1EA—C1A—1AA107.8H1EB—C1B—H1AB107.7
O1A—C2A—C3A111.8 (2)O1B—C2B—C3B112.4 (2)
O1A—C2A—C1A110.1 (2)O1B—C2B—C1B107.1 (2)
C3A—C2A—C1A110.6 (2)C3B—C2B—C1B110.1 (2)
O1A—C2A—H2AA108.1O1B—C2B—H2AB109.0
C3A—C2A—H2AA108.1C3B—C2B—H2AB109.0
C1A—C2A—H2AA108.1C1B—C2B—H2AB109.0
O2A—C3A—C2A111.3 (2)O2B—C3B—C2B108.1 (2)
O2A—C3A—C4A107.2 (2)O2B—C3B—C4B110.9 (2)
C2A—C3A—C4A109.7 (2)C2B—C3B—C4B109.4 (2)
O2A—C3A—H3AA109.5O2B—C3B—H3AB109.5
C2A—C3A—H3AA109.5C2B—C3B—H3AB109.5
C4A—C3A—H3AA109.5C4B—C3B—H3AB109.5
C5A—C4A—C3A113.5 (2)C5B—C4B—C3B113.8 (2)
C5A—C4A—H4EA108.9C5B—C4B—H4EB108.8
C3A—C4A—H4EA108.9C3B—C4B—H4EB108.8
C5A—C4A—H4AA108.9C5B—C4B—H4AB108.8
C3A—C4A—H4AA108.9C3B—C4B—H4AB108.8
H4EA—C4A—H4AA107.7H4EB—C4B—H4AB107.7
C6A—C5A—C10A119.2 (3)C6B—C5B—C10B118.5 (3)
C6A—C5A—C4A119.9 (3)C6B—C5B—C4B120.3 (3)
C10A—C5A—C4A120.9 (3)C10B—C5B—C4B121.2 (3)
C7A—C6A—C5A120.8 (3)C7B—C6B—C5B121.5 (3)
C7A—C6A—H6A119.6C7B—C6B—H6B119.2
C5A—C6A—H6A119.6C5B—C6B—H6B119.2
C6A—C7A—C8A120.1 (3)C6B—C7B—C8B119.8 (3)
C6A—C7A—H7A120.0C6B—C7B—H7B120.1
C8A—C7A—H7A120.0C8B—C7B—H7B120.1
C9A—C8A—C7A119.7 (3)C9B—C8B—C7B119.6 (3)
C9A—C8A—H8A120.2C9B—C8B—H8B120.2
C7A—C8A—H8A120.2C7B—C8B—H8B120.2
C8A—C9A—C10A120.8 (3)C8B—C9B—C10B121.3 (3)
C8A—C9A—H9A119.6C8B—C9B—H9B119.3
C10A—C9A—H9A119.6C10B—C9B—H9B119.3
C5A—C10A—C9A119.5 (3)C5B—C10B—C9B119.3 (3)
C5A—C10A—C1A121.2 (2)C5B—C10B—C1B120.5 (3)
C9A—C10A—C1A119.2 (3)C9B—C10B—C1B120.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H01A···O1Bi0.841.972.809 (3)173
O2A—H02A···O2B0.842.032.856 (3)169
O1B—H01B···O1A0.842.072.882 (3)163
O2B—H02B···O1Aii0.841.972.805 (3)175
C9A—H9A···O2Aiii0.952.473.407 (4)169
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y, z+1.
(cis-1,2-CHD) cis-1,2-cyclohexanediol top
Crystal data top
C6H12O2F(000) = 512
Mr = 116.16Dx = 1.207 Mg m3
Orthorhombic, PbcaMelting point = 370–372 K
a = 8.545 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.588 (1) ŵ = 0.09 mm1
c = 19.717 (4) ÅT = 173 K
V = 1278.4 (4) Å3Plate. Major faces are {001} and {110}., colorless
Z = 80.32 × 0.25 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
1124 independent reflections
Radiation source: fine-focus sealed tube915 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 3.2°
ϕ and ω scans with 1.0° stepsh = 1010
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
k = 98
Tmin = 0.98, Tmax = 0.99l = 2323
2046 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.037P)2 + 0.24P]
where P = (Fo2 + 2Fc2)/3
1124 reflections(Δ/σ)max < 0.001
75 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C6H12O2V = 1278.4 (4) Å3
Mr = 116.16Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.545 (2) ŵ = 0.09 mm1
b = 7.588 (1) ÅT = 173 K
c = 19.717 (4) Å0.32 × 0.25 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
1124 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
915 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.027
2046 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.14Δρmax = 0.17 e Å3
1124 reflectionsΔρmin = 0.18 e Å3
75 parameters
Special details top

Experimental. The crystal-to-detector distance was 36 mm. Each frame was measured for 180 s. The number of scan sets measured was 3; the total number of frames measured was 346.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15954 (12)0.06166 (13)0.04206 (5)0.0275 (3)
H010.22300.11200.01590.041*
O20.12982 (12)0.24476 (13)0.03210 (5)0.0279 (4)
H020.10250.15420.01070.042*
C10.11073 (18)0.18253 (18)0.09370 (8)0.0233 (4)
H1A0.20570.24150.11270.028*
C20.00471 (17)0.32274 (18)0.06384 (8)0.0239 (4)
H2E0.06440.39210.02930.029*
C30.05477 (19)0.44645 (19)0.11849 (7)0.0289 (4)
H3E0.13020.53050.09830.035*
H3A0.03400.51500.13710.035*
C40.13409 (19)0.3458 (2)0.17567 (8)0.0325 (5)
H4A0.23060.28940.15830.039*
H4E0.16440.42930.21190.039*
C50.0266 (2)0.2051 (2)0.20510 (8)0.0364 (5)
H5E0.08390.13690.24000.044*
H5A0.06400.26240.22730.044*
C60.03188 (19)0.0801 (2)0.14987 (8)0.0301 (5)
H6E0.10700.00490.16970.036*
H6A0.05740.01270.13110.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0256 (7)0.0249 (6)0.0319 (7)0.0001 (5)0.0068 (5)0.0025 (5)
O20.0267 (7)0.0275 (7)0.0296 (7)0.0050 (5)0.0066 (5)0.0068 (5)
C10.0205 (9)0.0232 (8)0.0261 (9)0.0003 (7)0.0013 (7)0.0039 (7)
C20.0235 (10)0.0220 (8)0.0262 (9)0.0028 (7)0.0027 (7)0.0001 (7)
C30.0291 (10)0.0254 (9)0.0323 (10)0.0018 (7)0.0042 (8)0.0051 (7)
C40.0314 (10)0.0382 (10)0.0278 (10)0.0047 (8)0.0015 (8)0.0103 (8)
C50.0389 (11)0.0456 (11)0.0249 (10)0.0012 (9)0.0007 (8)0.0027 (8)
C60.0318 (10)0.0304 (9)0.0282 (9)0.0049 (8)0.0002 (7)0.0067 (7)
Geometric parameters (Å, º) top
O1—C11.4324 (17)C3—H3E0.9900
O1—H010.8400C3—H3A0.9900
O2—C21.4365 (17)C4—C51.524 (2)
O2—H020.8400C4—H4A0.9900
C1—C61.512 (2)C4—H4E0.9900
C1—C21.516 (2)C5—C61.528 (2)
C1—H1A1.0000C5—H5E0.9900
C2—C31.517 (2)C5—H5A0.9900
C2—H2E1.0000C6—H6E0.9900
C3—C41.521 (2)C6—H6A0.9900
C1—O1—H01109.5H3E—C3—H3A108.0
C2—O2—H02109.5C3—C4—C5111.44 (13)
O1—C1—C6108.74 (11)C3—C4—H4A109.3
O1—C1—C2110.32 (12)C5—C4—H4A109.3
C6—C1—C2112.27 (13)C3—C4—H4E109.3
O1—C1—H1A108.5C5—C4—H4E109.3
C6—C1—H1A108.5H4A—C4—H4E108.0
C2—C1—H1A108.5C4—C5—C6111.14 (13)
O2—C2—C1110.99 (12)C4—C5—H5E109.4
O2—C2—C3107.24 (12)C6—C5—H5E109.4
C1—C2—C3111.01 (12)C4—C5—H5A109.4
O2—C2—H2E109.2C6—C5—H5A109.4
C1—C2—H2E109.2H5E—C5—H5A108.0
C3—C2—H2E109.2C1—C6—C5110.40 (13)
C2—C3—C4111.42 (12)C1—C6—H6E109.6
C2—C3—H3E109.3C5—C6—H6E109.6
C4—C3—H3E109.3C1—C6—H6A109.6
C2—C3—H3A109.3C5—C6—H6A109.6
C4—C3—H3A109.3H6E—C6—H6A108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.841.912.7451 (14)171
O2—H02···O1ii0.842.002.7584 (14)150
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z.
(k99096) cis-1,2-cyclohexanediol top
Crystal data top
C6H12O2Dx = 1.182 Mg m3
Mr = 116.16Melting point = 370–372 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 8.617 (1) ÅCell parameters from 14491 reflections
b = 7.693 (1) Åθ = 1.0–25.0°
c = 19.695 (3) ŵ = 0.09 mm1
V = 1305.6 (3) Å3T = 299 K
Z = 8Thick plate. Major faces are {001} and {110}., colorless
F(000) = 5120.40 × 0.32 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
1133 independent reflections
Radiation source: fine-focus sealed tube777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 3.1°
ϕ and ω scans with 1.5° stepsh = 1010
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
k = 99
Tmin = 0.98, Tmax = 0.99l = 2323
2017 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.025P)2 + 0.15P]
where P = (Fo2 + 2Fc2)/3
1133 reflections(Δ/σ)max < 0.001
75 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C6H12O2V = 1305.6 (3) Å3
Mr = 116.16Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.617 (1) ŵ = 0.09 mm1
b = 7.693 (1) ÅT = 299 K
c = 19.695 (3) Å0.40 × 0.32 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
1133 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
777 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.033
2017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.05Δρmax = 0.11 e Å3
1133 reflectionsΔρmin = 0.13 e Å3
75 parameters
Special details top

Experimental. The crystal-to-detector distance was 36 mm. Each frame was measured for 60 s. The number of scan sets measured was 3; the total number of frames measured was 273.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15845 (12)0.06377 (12)0.04103 (5)0.0447 (3)
H010.22190.11200.01640.067*
O20.12725 (10)0.24504 (13)0.03120 (5)0.0462 (3)
H020.10030.15950.00930.069*
C10.10979 (16)0.18126 (17)0.09290 (7)0.0359 (4)
H1A0.20200.23750.11200.043*
C20.00538 (15)0.32016 (17)0.06377 (7)0.0366 (4)
H2E0.06390.38850.03050.044*
C30.05429 (18)0.44011 (19)0.11881 (7)0.0466 (5)
H3E0.12740.52190.09920.056*
H3A0.03170.50590.13760.056*
C40.13332 (19)0.3392 (2)0.17515 (8)0.0543 (5)
H4E0.16330.41860.21110.065*
H4A0.22680.28520.15760.065*
C50.0275 (2)0.2002 (2)0.20402 (8)0.0630 (5)
H5E0.08370.13300.23770.076*
H5A0.06010.25490.22640.076*
C60.03130 (19)0.0794 (2)0.14826 (8)0.0501 (5)
H6E0.10410.00330.16750.060*
H6A0.05510.01480.12930.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0373 (7)0.0382 (7)0.0587 (7)0.0006 (5)0.0092 (5)0.0053 (5)
O20.0431 (6)0.0451 (7)0.0503 (7)0.0111 (6)0.0132 (5)0.0120 (5)
C10.0310 (8)0.0348 (9)0.0419 (9)0.0003 (7)0.0014 (7)0.0034 (7)
C20.0379 (9)0.0309 (8)0.0410 (9)0.0030 (7)0.0022 (7)0.0007 (7)
C30.0476 (10)0.0387 (10)0.0534 (11)0.0037 (8)0.0059 (8)0.0109 (8)
C40.0520 (11)0.0648 (12)0.0460 (11)0.0080 (9)0.0031 (8)0.0155 (9)
C50.0682 (12)0.0797 (13)0.0410 (10)0.0033 (11)0.0040 (9)0.0065 (10)
C60.0512 (11)0.0503 (11)0.0486 (10)0.0080 (9)0.0000 (8)0.0135 (9)
Geometric parameters (Å, º) top
O1—C11.4271 (16)C3—H3E0.9700
O1—H010.8200C3—H3A0.9700
O2—C21.4323 (15)C4—C51.516 (2)
O2—H020.8200C4—H4E0.9700
C1—C61.5035 (18)C4—H4A0.9700
C1—C21.5102 (18)C5—C61.526 (2)
C1—H1A0.9800C5—H5E0.9700
C2—C31.5135 (18)C5—H5A0.9700
C2—H2E0.9800C6—H6E0.9700
C3—C41.516 (2)C6—H6A0.9700
C1—O1—H01109.5H3E—C3—H3A108.0
C2—O2—H02109.5C5—C4—C3111.46 (13)
O1—C1—C6108.73 (11)C5—C4—H4E109.3
O1—C1—C2110.56 (11)C3—C4—H4E109.3
C6—C1—C2112.11 (12)C5—C4—H4A109.3
O1—C1—H1A108.5C3—C4—H4A109.3
C6—C1—H1A108.5H4E—C4—H4A108.0
C2—C1—H1A108.5C4—C5—C6111.08 (13)
O2—C2—C1111.10 (11)C4—C5—H5E109.4
O2—C2—C3107.20 (11)C6—C5—H5E109.4
C1—C2—C3111.21 (12)C4—C5—H5A109.4
O2—C2—H2E109.1C6—C5—H5A109.4
C1—C2—H2E109.1H5E—C5—H5A108.0
C3—C2—H2E109.1C1—C6—C5110.73 (12)
C2—C3—C4111.38 (12)C1—C6—H6E109.5
C2—C3—H3E109.4C5—C6—H6E109.5
C4—C3—H3E109.4C1—C6—H6A109.5
C2—C3—H3A109.4C5—C6—H6A109.5
C4—C3—H3A109.4H6E—C6—H6A108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.821.942.7564 (14)171
O2—H02···O1ii0.822.052.7821 (14)149
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z.
(trans-1,2-CHD_1) rac-trans-1,2-cyclohexanediol top
Crystal data top
C6H12O2F(000) = 512
Mr = 116.16Dx = 1.219 Mg m3
Orthorhombic, PbcaMelting point = 376–377 K
a = 8.415 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.799 (1) ŵ = 0.09 mm1
c = 19.295 (2) ÅT = 173 K
V = 1266.3 (3) Å3Plate. Largest face is {001}., colorless
Z = 80.30 × 0.25 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
1099 independent reflections
Radiation source: fine-focus sealed tube976 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 18 pixels mm-1θmax = 24.9°, θmin = 3.2°
ϕ and ω scans with 2.0° stepsh = 99
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
k = 99
Tmin = 0.97, Tmax = 0.99l = 2222
2001 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.038P)2 + 0.34P]
where P = (Fo2 + 2Fc2)/3
1099 reflections(Δ/σ)max < 0.001
75 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C6H12O2V = 1266.3 (3) Å3
Mr = 116.16Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.415 (1) ŵ = 0.09 mm1
b = 7.799 (1) ÅT = 173 K
c = 19.295 (2) Å0.30 × 0.25 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
1099 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
976 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.99Rint = 0.014
2001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.08Δρmax = 0.12 e Å3
1099 reflectionsΔρmin = 0.20 e Å3
75 parameters
Special details top

Experimental. The crystal-to-detector distance was 36 mm. Each frame was measured for 60 s. The number of scan sets measured was 3; the total number of frames measured was 210.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31931 (9)0.41673 (10)0.43574 (4)0.0242 (2)
H010.35880.49520.46010.036*
O20.59910 (11)0.28810 (10)0.49844 (4)0.0303 (3)
H020.66550.22310.51760.045*
C10.44268 (13)0.33382 (14)0.39711 (6)0.0214 (3)
H1A0.52120.42180.38130.026*
C20.52748 (14)0.20101 (14)0.44099 (6)0.0215 (3)
H2A0.44730.11760.45910.026*
C30.65007 (14)0.10399 (16)0.39847 (6)0.0280 (3)
H3E0.70090.01530.42770.034*
H3A0.73370.18430.38270.034*
C40.57303 (17)0.01905 (17)0.33560 (6)0.0329 (3)
H4E0.65570.03890.30760.039*
H4A0.49630.06890.35140.039*
C50.48747 (16)0.15112 (18)0.29108 (6)0.0343 (3)
H5E0.43260.09250.25240.041*
H5A0.56600.23170.27110.041*
C60.36633 (15)0.25074 (16)0.33411 (6)0.0262 (3)
H6E0.31710.34060.30490.031*
H6A0.28120.17190.34950.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0227 (4)0.0217 (5)0.0283 (5)0.0021 (3)0.0006 (3)0.0045 (3)
O20.0361 (6)0.0254 (5)0.0295 (5)0.0070 (4)0.0132 (4)0.0092 (4)
C10.0208 (6)0.0205 (6)0.0228 (6)0.0000 (5)0.0030 (5)0.0004 (5)
C20.0237 (6)0.0207 (6)0.0201 (6)0.0000 (5)0.0030 (5)0.0030 (5)
C30.0268 (7)0.0272 (7)0.0301 (7)0.0058 (5)0.0011 (5)0.0047 (5)
C40.0380 (8)0.0334 (7)0.0272 (7)0.0074 (6)0.0013 (6)0.0101 (6)
C50.0414 (8)0.0407 (8)0.0210 (6)0.0036 (6)0.0012 (6)0.0039 (6)
C60.0291 (7)0.0291 (6)0.0204 (6)0.0016 (6)0.0023 (5)0.0017 (5)
Geometric parameters (Å, º) top
O1—C11.4323 (13)C3—H3E0.9900
O1—H010.8400C3—H3A0.9900
O2—C21.4330 (13)C4—C51.5222 (18)
O2—H020.8400C4—H4E0.9900
C1—C21.5163 (16)C4—H4A0.9900
C1—C61.5200 (16)C5—C61.5270 (17)
C1—H1A1.0000C5—H5E0.9900
C2—C31.5199 (16)C5—H5A0.9900
C2—H2A1.0000C6—H6E0.9900
C3—C41.5266 (17)C6—H6A0.9900
C1—O1—H01109.5H3E—C3—H3A108.0
C2—O2—H02109.5C5—C4—C3110.83 (10)
O1—C1—C2111.03 (9)C5—C4—H4E109.5
O1—C1—C6107.60 (9)C3—C4—H4E109.5
C2—C1—C6110.75 (9)C5—C4—H4A109.5
O1—C1—H1A109.1C3—C4—H4A109.5
C2—C1—H1A109.1H4E—C4—H4A108.1
C6—C1—H1A109.1C4—C5—C6110.69 (10)
O2—C2—C1107.83 (8)C4—C5—H5E109.5
O2—C2—C3111.60 (9)C6—C5—H5E109.5
C1—C2—C3110.98 (9)C4—C5—H5A109.5
O2—C2—H2A108.8C6—C5—H5A109.5
C1—C2—H2A108.8H5E—C5—H5A108.1
C3—C2—H2A108.8C1—C6—C5111.69 (10)
C2—C3—C4110.90 (10)C1—C6—H6E109.3
C2—C3—H3E109.5C5—C6—H6E109.3
C4—C3—H3E109.5C1—C6—H6A109.3
C2—C3—H3A109.5C5—C6—H6A109.3
C4—C3—H3A109.5H6E—C6—H6A107.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.841.902.7173 (11)163
O2—H02···O1ii0.841.922.7565 (11)177
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1.
(k99093) rac-trans-1,2-cyclohexanediol top
Crystal data top
C6H12O2F(000) = 512
Mr = 116.16Dx = 1.191 Mg m3
Orthorhombic, PbcaMelting point = 376–377 K
a = 8.491 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.893 (1) ŵ = 0.09 mm1
c = 19.331 (2) ÅT = 299 K
V = 1295.6 (3) Å3Thick plate. Largest face is {001}., colorless
Z = 80.22 × 0.21 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
1136 independent reflections
Radiation source: fine-focus sealed tube924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 3.2°
ϕ and ω scans with 2.0° stepsh = 1010
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
k = 99
Tmin = 0.97, Tmax = 0.99l = 2222
2071 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.039P)2 + 0.2P]
where P = (Fo2 + 2Fc2)/3
1136 reflections(Δ/σ)max < 0.001
75 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C6H12O2V = 1295.6 (3) Å3
Mr = 116.16Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.491 (1) ŵ = 0.09 mm1
b = 7.893 (1) ÅT = 299 K
c = 19.331 (2) Å0.22 × 0.21 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
1136 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
924 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.99Rint = 0.016
2071 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.05Δρmax = 0.11 e Å3
1136 reflectionsΔρmin = 0.15 e Å3
75 parameters
Special details top

Experimental. The crystal-to-detector distance was 36 mm. Each frame was measured for 80 s. The number of scan sets measured was 2; the total number of frames measured was 172.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32005 (9)0.41472 (10)0.43700 (5)0.0447 (3)
H010.35830.48940.46130.067*
O20.59992 (12)0.29040 (11)0.49777 (5)0.0556 (3)
H020.66290.22680.51680.083*
C10.44207 (14)0.33474 (15)0.39782 (6)0.0374 (3)
H1A0.51690.42120.38230.045*
C20.52875 (14)0.20494 (15)0.44057 (6)0.0382 (3)
H2A0.45220.12300.45850.046*
C30.64930 (15)0.11061 (18)0.39748 (7)0.0505 (4)
H3E0.69960.02460.42570.061*
H3A0.72990.18900.38210.061*
C40.57318 (19)0.02765 (19)0.33513 (7)0.0585 (4)
H4E0.65360.02690.30730.070*
H4A0.49990.05880.35050.070*
C50.48640 (19)0.1570 (2)0.29154 (7)0.0613 (4)
H5E0.43270.10000.25380.074*
H5A0.56130.23610.27180.074*
C60.36673 (16)0.25342 (18)0.33519 (7)0.0475 (4)
H6E0.31770.34050.30710.057*
H6A0.28490.17600.35030.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0417 (5)0.0386 (5)0.0538 (6)0.0041 (4)0.0012 (4)0.0074 (4)
O20.0659 (7)0.0439 (6)0.0570 (6)0.0133 (5)0.0230 (5)0.0179 (5)
C10.0369 (6)0.0337 (7)0.0416 (7)0.0015 (6)0.0052 (6)0.0017 (5)
C20.0423 (7)0.0336 (7)0.0386 (7)0.0006 (6)0.0044 (6)0.0045 (5)
C30.0476 (8)0.0481 (8)0.0558 (9)0.0101 (7)0.0027 (6)0.0099 (7)
C40.0663 (9)0.0594 (9)0.0497 (8)0.0134 (8)0.0012 (7)0.0177 (7)
C50.0733 (10)0.0717 (10)0.0388 (8)0.0068 (9)0.0015 (7)0.0071 (7)
C60.0527 (8)0.0509 (8)0.0390 (8)0.0036 (7)0.0047 (6)0.0038 (6)
Geometric parameters (Å, º) top
O1—C11.4302 (14)C3—H3E0.9700
O1—H010.8200C3—H3A0.9700
O2—C21.4292 (14)C4—C51.515 (2)
O2—H020.8200C4—H4E0.9700
C1—C21.5081 (17)C4—H4A0.9700
C1—C61.5123 (18)C5—C61.5243 (19)
C1—H1A0.9800C5—H5E0.9700
C2—C31.5153 (17)C5—H5A0.9700
C2—H2A0.9800C6—H6E0.9700
C3—C41.5164 (19)C6—H6A0.9700
C1—O1—H01109.5H3E—C3—H3A108.0
C2—O2—H02109.5C5—C4—C3111.00 (12)
O1—C1—C2111.30 (9)C5—C4—H4E109.4
O1—C1—C6107.75 (9)C3—C4—H4E109.4
C2—C1—C6110.90 (10)C5—C4—H4A109.4
O1—C1—H1A108.9C3—C4—H4A109.4
C2—C1—H1A108.9H4E—C4—H4A108.0
C6—C1—H1A108.9C4—C5—C6110.66 (11)
O2—C2—C1108.04 (9)C4—C5—H5E109.5
O2—C2—C3111.81 (10)C6—C5—H5E109.5
C1—C2—C3111.24 (10)C4—C5—H5A109.5
O2—C2—H2A108.6C6—C5—H5A109.5
C1—C2—H2A108.6H5E—C5—H5A108.1
C3—C2—H2A108.6C1—C6—C5111.91 (10)
C2—C3—C4111.18 (11)C1—C6—H6E109.2
C2—C3—H3E109.4C5—C6—H6E109.2
C4—C3—H3E109.4C1—C6—H6A109.2
C2—C3—H3A109.4C5—C6—H6A109.2
C4—C3—H3A109.4H6E—C6—H6A107.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.821.942.7330 (12)162
O2—H02···O1ii0.821.962.7758 (13)177
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1.
(trans-1,2-CHD_2) rac-trans-1,2-cyclohexanediol top
Crystal data top
C6H12O2F(000) = 512
Mr = 116.16Dx = 1.173 Mg m3
Monoclinic, C2/cMelting point = 376–377 K
a = 18.321 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.015 (2) ŵ = 0.09 mm1
c = 7.201 (2) ÅT = 173 K
β = 95.28 (2)°Lozenge. Largest face is {100}; others are {110} and {111}., colorless
V = 1315.7 (5) Å30.50 × 0.33 × 0.17 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
1159 independent reflections
Radiation source: fine-focus sealed tube950 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 2.3°
ϕ and ω scans with 1.0° stepsh = 2121
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.97, Tmax = 0.99l = 88
2102 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.042P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
1159 reflections(Δ/σ)max < 0.001
90 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C6H12O2V = 1315.7 (5) Å3
Mr = 116.16Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.321 (3) ŵ = 0.09 mm1
b = 10.015 (2) ÅT = 173 K
c = 7.201 (2) Å0.50 × 0.33 × 0.17 mm
β = 95.28 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1159 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
950 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.99Rint = 0.013
2102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.05Δρmax = 0.12 e Å3
1159 reflectionsΔρmin = 0.13 e Å3
90 parameters
Special details top

Experimental. The crystal-to-detector distance was 36 mm. Each frame was measured for 20 s. The number of scan sets measured was 4; the total number of frames measured was 387.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.20979 (8)0.38598 (11)0.35850 (18)0.0450 (4)0.938 (2)
H010.22780.45920.32900.067*
O20.24125 (8)0.1181 (2)0.2722 (2)0.0493 (6)0.938 (2)
H020.25700.13330.38340.074*
C10.17524 (7)0.32265 (13)0.19511 (16)0.0358 (4)0.938 (2)
H1A0.20680.33540.09040.043*0.938 (2)
C20.17010 (7)0.17555 (13)0.23531 (17)0.0386 (4)0.938 (2)
H2A0.14210.16270.34680.046*0.938 (2)
C30.13133 (9)0.10168 (16)0.0708 (2)0.0468 (4)0.938 (2)
H3E0.12510.00690.10520.056*0.938 (2)
H3A0.16220.10450.03510.056*0.938 (2)
C40.05679 (8)0.16137 (17)0.0100 (2)0.0559 (5)0.938 (2)
H4A0.02360.14730.10910.067*0.938 (2)
H4E0.03540.11530.10400.067*0.938 (2)
C50.06269 (10)0.30995 (18)0.0291 (3)0.0558 (5)0.938 (2)
H5E0.01300.34770.05900.067*0.938 (2)
H5A0.09090.32370.13840.067*0.938 (2)
C60.10057 (13)0.38214 (17)0.1392 (3)0.0480 (9)0.938 (2)
H6E0.10600.47780.10890.058*0.938 (2)
H6A0.06990.37560.24510.058*0.938 (2)
O1X0.1916 (7)0.3768 (13)0.4050 (15)0.028 (5)*0.062 (2)
O2X0.2458 (8)0.1386 (16)0.259 (2)0.045 (11)*0.062 (2)
C1X0.1470 (5)0.2955 (10)0.2762 (11)0.025 (5)*0.062 (2)
H1AX0.12130.23120.34290.030*0.062 (2)
C2X0.1950 (4)0.2216 (11)0.1489 (13)0.025 (4)*0.062 (2)
H2AX0.22070.28590.08230.029*0.062 (2)
C3X0.1470 (7)0.1340 (10)0.0104 (15)0.018 (5)*0.062 (2)
H3AX0.12150.06900.07640.021*0.062 (2)
H3EX0.17670.08700.06840.021*0.062 (2)
C4X0.0923 (6)0.2234 (13)0.1080 (12)0.032 (5)*0.062 (2)
H4AX0.11790.28730.17580.038*0.062 (2)
H4EX0.06260.16940.19550.038*0.062 (2)
C5X0.0443 (5)0.2973 (16)0.0193 (19)0.031 (7)*0.062 (2)
H5AX0.01810.23340.08540.038*0.062 (2)
H5EX0.00980.35240.05400.038*0.062 (2)
C6X0.0923 (7)0.3849 (12)0.1579 (18)0.023 (10)*0.062 (2)
H6AX0.11780.44990.09190.028*0.062 (2)
H6EX0.06260.43190.23670.028*0.062 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0569 (8)0.0408 (7)0.0338 (6)0.0107 (5)0.0144 (6)0.0010 (4)
O20.0596 (10)0.0477 (8)0.0371 (8)0.0134 (5)0.0144 (5)0.0028 (5)
C10.0397 (7)0.0394 (8)0.0262 (6)0.0052 (6)0.0079 (6)0.0008 (5)
C20.0426 (8)0.0404 (8)0.0313 (7)0.0013 (6)0.0044 (6)0.0011 (6)
C30.0571 (10)0.0437 (9)0.0381 (8)0.0088 (7)0.0033 (7)0.0041 (7)
C40.0481 (9)0.0703 (11)0.0467 (9)0.0157 (8)0.0095 (7)0.0101 (7)
C50.0472 (9)0.0670 (12)0.0490 (9)0.0037 (9)0.0186 (9)0.0005 (9)
C60.0476 (11)0.0499 (14)0.0439 (10)0.0051 (7)0.0107 (8)0.0021 (6)
Geometric parameters (Å, º) top
O1—C11.4319 (15)C6—H6A0.9900
O1—H010.8400O1X—C1X1.4324
O2—C21.4272 (17)O2X—C2X1.4312
O2—H020.8400C1X—C2X1.5196
C1—C21.506 (2)C1X—C6X1.5409
C1—C61.512 (2)C1X—H1AX0.9530
C1—H1A1.0000C2X—C3X1.5420
C2—C31.5166 (18)C2X—H2AX0.9530
C2—H2A1.0000C3X—C4X1.5408
C3—C41.518 (2)C3X—H3AX0.9531
C3—H3E0.9900C3X—H3EX0.9473
C3—H3A0.9900C4X—C5X1.5194
C4—C51.520 (3)C4X—H4AX0.9529
C4—H4A0.9900C4X—H4EX0.9611
C4—H4E0.9900C5X—C6X1.5420
C5—C61.523 (2)C5X—H5AX0.9529
C5—H5E0.9900C5X—H5EX0.9606
C5—H5A0.9900C6X—H6AX0.9531
C6—H6E0.9900C6X—H6EX0.9471
O1—C1—C2107.83 (10)O1X—C1X—C2X109.9
O1—C1—C6111.40 (13)O1X—C1X—C6X109.3
C2—C1—C6111.44 (13)C2X—C1X—C6X109.4
O1—C1—H1A108.7O1X—C1X—H1AX109.7
C2—C1—H1A108.7C2X—C1X—H1AX108.4
C6—C1—H1A108.7C6X—C1X—H1AX110.1
O2—C2—C1110.97 (14)O2X—C2X—C1X109.4
O2—C2—C3107.63 (11)O2X—C2X—C3X109.3
C1—C2—C3111.11 (11)C1X—C2X—C3X109.9
O2—C2—H2A109.0O2X—C2X—H2AX110.1
C1—C2—H2A109.0C1X—C2X—H2AX108.4
C3—C2—H2A109.0C3X—C2X—H2AX109.7
C2—C3—C4112.18 (12)C4X—C3X—C2X109.3
C2—C3—H3E109.2C4X—C3X—H3AX110.4
C4—C3—H3E109.2C2X—C3X—H3AX110.0
C2—C3—H3A109.2C4X—C3X—H3EX109.7
C4—C3—H3A109.2C2X—C3X—H3EX110.2
H3E—C3—H3A107.9H3AX—C3X—H3EX107.1
C3—C4—C5111.20 (13)C5X—C4X—C3X109.4
C3—C4—H4A109.4C5X—C4X—H4AX108.7
C5—C4—H4A109.4C3X—C4X—H4AX110.4
C3—C4—H4E109.4C5X—C4X—H4EX110.2
C5—C4—H4E109.4C3X—C4X—H4EX109.6
H4A—C4—H4E108.0H4AX—C4X—H4EX108.5
C4—C5—C6110.63 (14)C4X—C5X—C6X109.9
C4—C5—H5E109.5C4X—C5X—H5AX108.7
C6—C5—H5E109.5C6X—C5X—H5AX110.0
C4—C5—H5A109.5C4X—C5X—H5EX109.7
C6—C5—H5A109.5C6X—C5X—H5EX109.6
H5E—C5—H5A108.1H5AX—C5X—H5EX108.9
C1—C6—C5111.08 (17)C1X—C6X—C5X109.3
C1—C6—H6E109.4C1X—C6X—H6AX110.4
C5—C6—H6E109.4C5X—C6X—H6AX110.0
C1—C6—H6A109.4C1X—C6X—H6EX109.7
C5—C6—H6A109.4C5X—C6X—H6EX110.2
H6E—C6—H6A108.0H6AX—C6X—H6EX107.2
O1—C1—C2—O262.45 (15)O1X—C1X—C2X—O2X60.0
C6—C1—C2—O2175.00 (13)C6X—C1X—C2X—O2X180.0
O1—C1—C2—C3177.84 (11)O1X—C1X—C2X—C3X180.0
C6—C1—C2—C355.29 (18)C6X—C1X—C2X—C3X60.0
O2—C2—C3—C4175.81 (16)O2X—C2X—C3X—C4X180.0
C1—C2—C3—C454.13 (17)C1X—C2X—C3X—C4X60.0
C2—C3—C4—C554.16 (18)C2X—C3X—C4X—C5X59.7
C3—C4—C5—C654.9 (2)C3X—C4X—C5X—C6X60.0
O1—C1—C6—C5177.32 (16)O1X—C1X—C6X—C5X180.0
C2—C1—C6—C556.8 (2)C2X—C1X—C6X—C5X59.7
C4—C5—C6—C156.4 (3)C4X—C5X—C6X—C1X60.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.841.862.6928 (19)171
O2—H02···O1ii0.841.912.7274 (18)164
O1—H01···O2Xi0.841.982.81 (3)171
O2—H02···O1Xii0.841.722.528 (10)161
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1.
(k99095) rac-trans-1,2-cyclohexanediol top
Crystal data top
C6H12O2F(000) = 512
Mr = 116.16Dx = 1.148 Mg m3
Monoclinic, C2/cMelting point = 376–377 K
a = 18.578 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.007 (3) ŵ = 0.08 mm1
c = 7.272 (2) ÅT = 299 K
β = 96.32 (2)°Lozenge. Largest face is {100}; others are {110} and {111}., colorless
V = 1343.7 (7) Å30.25 × 0.19 × 0.05 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
1182 independent reflections
Radiation source: fine-focus sealed tube856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 2.3°
ϕ and ω scans with 2.0° stepsh = 2221
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.98, Tmax = 0.99l = 88
2285 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.057P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
1182 reflections(Δ/σ)max < 0.001
90 parametersΔρmax = 0.10 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C6H12O2V = 1343.7 (7) Å3
Mr = 116.16Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.578 (5) ŵ = 0.08 mm1
b = 10.007 (3) ÅT = 299 K
c = 7.272 (2) Å0.25 × 0.19 × 0.05 mm
β = 96.32 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1182 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
856 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.024
2285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.03Δρmax = 0.10 e Å3
1182 reflectionsΔρmin = 0.12 e Å3
90 parameters
Special details top

Experimental. The crystal-to-detector distance was 36 mm. Each frame was measured for 80 s. The number of scan sets measured was 3; the total number of frames measured was 217.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.21017 (10)0.38595 (14)0.3575 (2)0.0708 (5)0.932 (3)
H010.22730.45760.32890.106*
O20.24052 (11)0.1182 (2)0.2725 (2)0.0773 (7)0.932 (3)
H020.25660.13500.37960.116*
C10.17503 (8)0.32267 (16)0.1959 (2)0.0558 (5)0.932 (3)
H1A0.20490.33570.09440.067*0.932 (3)
C20.17083 (9)0.17609 (16)0.2340 (2)0.0594 (5)0.932 (3)
H2A0.14420.16320.34170.071*0.932 (3)
C30.13149 (12)0.10288 (19)0.0714 (3)0.0725 (6)0.932 (3)
H3E0.12580.00990.10450.087*0.932 (3)
H3A0.16050.10590.03160.087*0.932 (3)
C40.05785 (11)0.1620 (2)0.0115 (3)0.0897 (7)0.932 (3)
H4E0.03650.11690.09940.108*0.932 (3)
H4A0.02650.14770.10780.108*0.932 (3)
C50.06293 (14)0.3096 (2)0.0264 (4)0.0867 (7)0.932 (3)
H5E0.01460.34620.05460.104*0.932 (3)
H5A0.08910.32350.13310.104*0.932 (3)
C60.10141 (16)0.3815 (2)0.1391 (4)0.0732 (10)0.932 (3)
H6E0.10660.47520.10900.088*0.932 (3)
H6A0.07240.37580.24190.088*0.932 (3)
O1X0.1924 (8)0.3760 (14)0.4062 (16)0.039 (6)*0.068 (3)
O2X0.2503 (8)0.1449 (17)0.250 (2)0.059 (9)*0.068 (3)
C1X0.1484 (5)0.2930 (11)0.2783 (13)0.040 (6)*0.068 (3)
H1AX0.12510.22560.34530.049*0.068 (3)
C2X0.1964 (5)0.2252 (11)0.1453 (14)0.033 (5)*0.068 (3)
H2AX0.21970.29260.07830.039*0.068 (3)
C3X0.1491 (7)0.1358 (11)0.0077 (16)0.035 (6)*0.068 (3)
H3AX0.12600.06770.07400.042*0.068 (3)
H3EX0.17890.09260.07470.042*0.068 (3)
C4X0.0911 (7)0.2223 (14)0.1045 (14)0.044 (5)*0.068 (3)
H4AX0.11420.28930.17270.052*0.068 (3)
H4EX0.06180.16720.19150.052*0.068 (3)
C5X0.0431 (5)0.2901 (19)0.028 (2)0.069 (12)*0.068 (3)
H5AX0.01930.22300.09500.083*0.068 (3)
H5EX0.00650.34340.04090.083*0.068 (3)
C6X0.0904 (7)0.3795 (14)0.166 (2)0.051 (12)*0.068 (3)
H6AX0.11350.44760.09970.061*0.068 (3)
H6EX0.06060.42270.24850.061*0.068 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0941 (12)0.0597 (9)0.0521 (9)0.0155 (7)0.0210 (9)0.0013 (6)
O20.0976 (12)0.0677 (10)0.0599 (10)0.0219 (9)0.0214 (8)0.0045 (7)
C10.0647 (10)0.0561 (10)0.0429 (9)0.0067 (8)0.0105 (8)0.0022 (7)
C20.0699 (10)0.0561 (10)0.0495 (10)0.0012 (9)0.0063 (8)0.0004 (8)
C30.0925 (14)0.0605 (11)0.0611 (12)0.0129 (10)0.0060 (11)0.0065 (9)
C40.0800 (13)0.1013 (16)0.0818 (14)0.0225 (12)0.0182 (11)0.0155 (12)
C50.0762 (12)0.0939 (17)0.0814 (15)0.0034 (13)0.0301 (13)0.0005 (14)
C60.0747 (14)0.0701 (17)0.0700 (14)0.0075 (9)0.0144 (12)0.0019 (9)
Geometric parameters (Å, º) top
O1—C11.4285 (18)C6—H6A0.9700
O1—H010.8200O1X—C1X1.4336
O2—C21.418 (2)O2X—C2X1.4336
O2—H020.8200C1X—C6X1.5434
C1—C21.497 (3)C1X—C2X1.5437
C1—C61.505 (3)C1X—H1AX0.9623
C1—H1A0.9800C2X—C3X1.5433
C2—C31.510 (2)C2X—H2AX0.9623
C2—H2A0.9800C3X—C4X1.5434
C3—C41.510 (3)C3X—H3AX0.9622
C3—H3E0.9700C3X—H3EX0.9621
C3—H3A0.9700C4X—C5X1.5435
C4—C51.507 (3)C4X—H4AX0.9623
C4—H4E0.9700C4X—H4EX0.9619
C4—H4A0.9700C5X—C6X1.5432
C5—C61.513 (3)C5X—H5AX0.9623
C5—H5E0.9700C5X—H5EX0.9623
C5—H5A0.9700C6X—H6AX0.9622
C6—H6E0.9700C6X—H6EX0.9620
O1—C1—C2108.08 (12)O1X—C1X—C6X109.4
O1—C1—C6111.81 (16)O1X—C1X—C2X109.5
C2—C1—C6111.73 (16)C6X—C1X—C2X109.5
O1—C1—H1A108.4O1X—C1X—H1AX109.5
C2—C1—H1A108.4C6X—C1X—H1AX109.5
C6—C1—H1A108.4C2X—C1X—H1AX109.5
O2—C2—C1111.82 (17)O2X—C2X—C3X109.4
O2—C2—C3108.02 (14)O2X—C2X—C1X109.4
C1—C2—C3111.16 (14)C3X—C2X—C1X109.5
O2—C2—H2A108.6O2X—C2X—H2AX109.5
C1—C2—H2A108.6C3X—C2X—H2AX109.5
C3—C2—H2A108.6C1X—C2X—H2AX109.5
C2—C3—C4112.39 (16)C2X—C3X—C4X109.4
C2—C3—H3E109.1C2X—C3X—H3AX109.8
C4—C3—H3E109.1C4X—C3X—H3AX109.8
C2—C3—H3A109.1C2X—C3X—H3EX109.8
C4—C3—H3A109.1C4X—C3X—H3EX109.8
H3E—C3—H3A107.9H3AX—C3X—H3EX108.2
C5—C4—C3111.32 (17)C3X—C4X—C5X109.5
C5—C4—H4E109.4C3X—C4X—H4AX109.8
C3—C4—H4E109.4C5X—C4X—H4AX109.8
C5—C4—H4A109.4C3X—C4X—H4EX109.7
C3—C4—H4A109.4C5X—C4X—H4EX109.8
H4E—C4—H4A108.0H4AX—C4X—H4EX108.3
C4—C5—C6110.76 (19)C6X—C5X—C4X109.5
C4—C5—H5E109.5C6X—C5X—H5AX109.8
C6—C5—H5E109.5C4X—C5X—H5AX109.8
C4—C5—H5A109.5C6X—C5X—H5EX109.7
C6—C5—H5A109.5C4X—C5X—H5EX109.8
H5E—C5—H5A108.1H5AX—C5X—H5EX108.2
C1—C6—C5111.6 (2)C5X—C6X—C1X109.4
C1—C6—H6E109.3C5X—C6X—H6AX109.8
C5—C6—H6E109.3C1X—C6X—H6AX109.8
C1—C6—H6A109.3C5X—C6X—H6EX109.8
C5—C6—H6A109.3C1X—C6X—H6EX109.8
H6E—C6—H6A108.0H6AX—C6X—H6EX108.2
O1—C1—C2—O261.5 (2)O1X—C1X—C2X—O2X60.0
C6—C1—C2—O2175.11 (18)C6X—C1X—C2X—O2X180.0
O1—C1—C2—C3177.71 (15)O1X—C1X—C2X—C3X180.0
C6—C1—C2—C354.3 (2)C6X—C1X—C2X—C3X60.1
O2—C2—C3—C4176.7 (2)O2X—C2X—C3X—C4X180.0
C1—C2—C3—C453.7 (2)C1X—C2X—C3X—C4X60.1
C2—C3—C4—C554.1 (3)C2X—C3X—C4X—C5X60.0
C3—C4—C5—C654.5 (3)C3X—C4X—C5X—C6X60.1
O1—C1—C6—C5177.1 (2)C4X—C5X—C6X—C1X60.1
C2—C1—C6—C555.9 (3)O1X—C1X—C6X—C5X180.0
C4—C5—C6—C155.6 (4)C2X—C1X—C6X—C5X60.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.821.892.707 (2)172
O2—H02···O1ii0.821.952.745 (2)162
O1—H01···O2Xi0.822.022.83 (3)169
O2—H02···O1Xii0.821.742.525 (11)161
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1.
(R,R-1,2-CHD) R,R-1,2-cyclohexanediol top
Crystal data top
C6H12O2Dx = 1.194 Mg m3
Mr = 116.16Melting point = 380–383 K
Trigonal, P3221Mo Kα radiation, λ = 0.71073 Å
a = 10.183 (1) ŵ = 0.09 mm1
c = 10.796 (1) ÅT = 173 K
V = 969.49 (16) Å3Block, colorless
Z = 60.20 × 0.20 × 0.20 mm
F(000) = 384
Data collection top
Nonius KappaCCD
diffractometer
677 independent reflections
Radiation source: fine-focus sealed tube620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 2.3°
ϕ and ω scans with 2.0° stepsh = 1210
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
k = 1212
Tmin = 0.98, Tmax = 0.98l = 1212
4834 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.033P)2 + 0.18P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
677 reflectionsΔρmax = 0.13 e Å3
76 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.039 (6)
Crystal data top
C6H12O2Z = 6
Mr = 116.16Mo Kα radiation
Trigonal, P3221µ = 0.09 mm1
a = 10.183 (1) ÅT = 173 K
c = 10.796 (1) Å0.20 × 0.20 × 0.20 mm
V = 969.49 (16) Å3
Data collection top
Nonius KappaCCD
diffractometer
677 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
620 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.98Rint = 0.034
4834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.08Δρmax = 0.13 e Å3
677 reflectionsΔρmin = 0.11 e Å3
76 parameters
Special details top

Experimental. The crystal-to-detector distance was 36 mm. Each frame was measured for 60 s. The number of scan sets measured was 2; the total number of frames measured was 141.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41961 (17)0.14658 (17)0.26617 (11)0.0368 (4)
H010.45520.20250.28530.055*
O20.46388 (18)0.14676 (15)0.30653 (12)0.0419 (4)
H020.49450.13250.23830.063*
C10.3594 (2)0.1146 (2)0.37427 (16)0.0303 (5)
H1A0.43760.07870.44130.036*
C20.3287 (2)0.0122 (2)0.34210 (16)0.0298 (5)
H2A0.25460.02130.27200.036*
C30.2624 (3)0.0516 (3)0.45243 (19)0.0424 (6)
H3E0.23760.13030.42790.051*
H3A0.33890.09380.51940.051*
C40.1203 (3)0.0867 (3)0.5005 (2)0.0562 (7)
H4E0.08340.05860.57520.067*
H4A0.03990.12260.43670.067*
C50.1523 (4)0.2133 (3)0.5324 (3)0.0655 (8)
H5E0.05720.30400.55930.079*
H5A0.22550.18090.60180.079*
C60.2171 (3)0.2531 (3)0.4201 (2)0.0467 (6)
H6E0.24090.33300.44320.056*
H6A0.14060.29320.35300.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0480 (9)0.0445 (10)0.0344 (7)0.0356 (8)0.0045 (7)0.0042 (7)
O20.0489 (10)0.0251 (7)0.0404 (8)0.0100 (7)0.0131 (7)0.0032 (6)
C10.0347 (11)0.0309 (11)0.0272 (9)0.0178 (9)0.0017 (9)0.0018 (8)
C20.0315 (11)0.0251 (11)0.0313 (9)0.0129 (9)0.0008 (8)0.0019 (9)
C30.0539 (15)0.0332 (12)0.0415 (10)0.0228 (11)0.0125 (11)0.0023 (10)
C40.0566 (16)0.0459 (15)0.0607 (14)0.0216 (13)0.0297 (13)0.0046 (12)
C50.081 (2)0.0384 (15)0.0695 (16)0.0238 (14)0.0417 (16)0.0114 (13)
C60.0557 (15)0.0310 (12)0.0530 (13)0.0213 (12)0.0166 (12)0.0052 (10)
Geometric parameters (Å, º) top
O1—C11.429 (2)C3—H3E0.9900
O1—H010.8400C3—H3A0.9900
O2—C21.426 (2)C4—C51.518 (4)
O2—H020.8400C4—H4E0.9900
C1—C21.513 (3)C4—H4A0.9900
C1—C61.513 (3)C5—C61.529 (3)
C1—H1A1.0000C5—H5E0.9900
C2—C31.518 (3)C5—H5A0.9900
C2—H2A1.0000C6—H6E0.9900
C3—C41.519 (3)C6—H6A0.9900
C1—O1—H01109.5H3E—C3—H3A108.0
C2—O2—H02109.5C5—C4—C3110.8 (2)
O1—C1—C2107.59 (14)C5—C4—H4E109.5
O1—C1—C6112.00 (16)C3—C4—H4E109.5
C2—C1—C6111.08 (18)C5—C4—H4A109.5
O1—C1—H1A108.7C3—C4—H4A109.5
C2—C1—H1A108.7H4E—C4—H4A108.1
C6—C1—H1A108.7C4—C5—C6110.4 (2)
O2—C2—C1111.66 (16)C4—C5—H5E109.6
O2—C2—C3107.48 (16)C6—C5—H5E109.6
C1—C2—C3110.74 (16)C4—C5—H5A109.6
O2—C2—H2A109.0C6—C5—H5A109.6
C1—C2—H2A109.0H5E—C5—H5A108.1
C3—C2—H2A109.0C1—C6—C5110.58 (19)
C2—C3—C4111.48 (18)C1—C6—H6E109.5
C2—C3—H3E109.3C5—C6—H6E109.5
C4—C3—H3E109.3C1—C6—H6A109.5
C2—C3—H3A109.3C5—C6—H6A109.5
C4—C3—H3A109.3H6E—C6—H6A108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.841.912.7410 (18)169
O2—H02···O1ii0.841.972.7866 (18)166
Symmetry codes: (i) x+1, x+y, z+2/3; (ii) xy, y, z+1/3.
(k99094) R,R-1,2-cyclohexanediol top
Crystal data top
C6H12O2Dx = 1.171 Mg m3
Mr = 116.16Melting point = 380–383 K
Trigonal, P3221Mo Kα radiation, λ = 0.71073 Å
a = 10.229 (1) ŵ = 0.09 mm1
c = 10.909 (1) ÅT = 293 K
V = 988.51 (16) Å3Block, colorless
Z = 60.22 × 0.20 × 0.19 mm
F(000) = 384
Data collection top
Nonius KappaCCD
diffractometer
686 independent reflections
Radiation source: fine-focus sealed tube601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 2.3°
ϕ and ω scans with 2.0° stepsh = 1212
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
k = 99
Tmin = 0.98, Tmax = 0.98l = 1212
2294 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.048P)2 + 0.029P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
686 reflectionsΔρmax = 0.08 e Å3
88 parametersΔρmin = 0.09 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (7)
Crystal data top
C6H12O2Z = 6
Mr = 116.16Mo Kα radiation
Trigonal, P3221µ = 0.09 mm1
a = 10.229 (1) ÅT = 293 K
c = 10.909 (1) Å0.22 × 0.20 × 0.19 mm
V = 988.51 (16) Å3
Data collection top
Nonius KappaCCD
diffractometer
686 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
601 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.98Rint = 0.020
2294 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.06Δρmax = 0.08 e Å3
686 reflectionsΔρmin = 0.09 e Å3
88 parameters
Special details top

Experimental. The crystal-to-detector distance was 36 mm. Each frame was measured for 60 s. The number of scan sets measured was 3; the total number of frames measured was 212.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41912 (17)0.14589 (17)0.26670 (11)0.0594 (4)
H010.45370.20040.28510.086 (8)*
O20.46423 (18)0.14606 (14)0.30693 (13)0.0678 (5)
H020.49460.13110.24180.089 (9)*
C10.3602 (2)0.1135 (2)0.37374 (15)0.0462 (5)
H1A0.43710.07840.43820.056 (5)*
C20.3300 (2)0.01262 (19)0.34293 (14)0.0459 (5)
H2A0.25740.02000.27520.045 (5)*
C30.2645 (3)0.0517 (2)0.45181 (19)0.0633 (6)
H3E0.24050.12860.42810.083 (8)*
H3A0.33930.09270.51670.066 (6)*
C40.1234 (3)0.0852 (3)0.4995 (2)0.0745 (7)
H4E0.08750.05740.57180.089 (8)*
H4A0.04480.12040.43760.112 (10)*
C50.1550 (3)0.2106 (3)0.5314 (3)0.0896 (9)
H5E0.06230.29910.55760.109 (9)*
H5A0.22650.17890.59860.140 (14)*
C60.2192 (3)0.2500 (2)0.4203 (2)0.0696 (7)
H6E0.24230.32800.44270.102 (8)*
H6A0.14410.28950.35570.066 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0783 (9)0.0697 (10)0.0560 (8)0.0563 (9)0.0063 (7)0.0061 (7)
O20.0799 (11)0.0403 (7)0.0669 (9)0.0179 (7)0.0200 (7)0.0044 (6)
C10.0527 (11)0.0485 (10)0.0436 (9)0.0299 (9)0.0029 (8)0.0017 (8)
C20.0503 (10)0.0395 (10)0.0473 (9)0.0219 (9)0.0008 (8)0.0019 (8)
C30.0827 (16)0.0535 (12)0.0590 (10)0.0380 (11)0.0128 (11)0.0028 (10)
C40.0758 (16)0.0722 (15)0.0746 (14)0.0363 (12)0.0277 (14)0.0026 (12)
C50.105 (2)0.0635 (15)0.0958 (17)0.0389 (16)0.0463 (18)0.0205 (14)
C60.0805 (16)0.0475 (12)0.0802 (14)0.0316 (12)0.0168 (13)0.0074 (11)
Geometric parameters (Å, º) top
O1—C11.427 (2)C3—H3E0.9700
O1—H010.8200C3—H3A0.9700
O2—C21.424 (2)C4—C51.512 (3)
O2—H020.8200C4—H4E0.9700
C1—C21.507 (2)C4—H4A0.9700
C1—C61.509 (3)C5—C61.525 (3)
C1—H1A0.9800C5—H5E0.9700
C2—C31.512 (3)C5—H5A0.9700
C2—H2A0.9800C6—H6E0.9700
C3—C41.515 (3)C6—H6A0.9700
C1—O1—H01109.5H3E—C3—H3A107.9
C2—O2—H02109.5C5—C4—C3110.7 (2)
O1—C1—C2107.90 (13)C5—C4—H4E109.5
O1—C1—C6112.35 (16)C3—C4—H4E109.5
C2—C1—C6110.91 (17)C5—C4—H4A109.5
O1—C1—H1A108.5C3—C4—H4A109.5
C2—C1—H1A108.5H4E—C4—H4A108.1
C6—C1—H1A108.5C4—C5—C6110.1 (2)
O2—C2—C1111.71 (16)C4—C5—H5E109.6
O2—C2—C3107.78 (15)C6—C5—H5E109.6
C1—C2—C3111.00 (15)C4—C5—H5A109.6
O2—C2—H2A108.8C6—C5—H5A109.6
C1—C2—H2A108.8H5E—C5—H5A108.1
C3—C2—H2A108.8C1—C6—C5111.22 (18)
C2—C3—C4111.66 (18)C1—C6—H6E109.4
C2—C3—H3E109.3C5—C6—H6E109.4
C4—C3—H3E109.3C1—C6—H6A109.4
C2—C3—H3A109.3C5—C6—H6A109.4
C4—C3—H3A109.3H6E—C6—H6A108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.821.962.7681 (17)170
O2—H02···O1ii0.822.022.8171 (19)164
Symmetry codes: (i) x+1, x+y, z+2/3; (ii) xy, y, z+1/3.

Experimental details

(1:1cis/trans-2,3-TD)(S,S-2,3-TD)(k99104)(k99103)
Crystal data
Chemical formula(C10H12O2)·(C10H12O2)C10H12O2C10H12O2C10H12O2
Mr328.40164.20164.20164.20
Crystal system, space groupMonoclinic, C2Monoclinic, P21Monoclinic, P21Monoclinic, P21
Temperature (K)9090110173
a, b, c (Å)23.2312 (13), 4.9750 (4), 15.484 (2)5.8751 (2), 27.9972 (8), 5.0132 (2)5.877 (1), 28.029 (4), 5.015 (1)5.886 (1), 28.108 (4), 5.029 (1)
α, β, γ (°)90, 112.53 (1), 9090, 94.528 (1), 9090, 94.51 (1), 9090, 94.35 (1), 90
V3)1653.1 (3)822.03 (5)823.5 (2)829.6 (2)
Z4444
Radiation typeCu KαCu KαMo KαMo Kα
µ (mm1)0.730.740.090.09
Crystal size (mm)0.30 × 0.05 × 0.020.12 × 0.10 × 0.080.30 × 0.20 × 0.050.30 × 0.20 × 0.05
Data collection
DiffractometerBruker-Nonius X8 Proteum
diffractometer
Bruker-Nonius X8 Proteum
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
SADABS in APEX2 (Bruker-Nonius, 2004)
Multi-scan
SADABS in APEX2 (Bruker-Nonius, 2004)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.810, 0.9860.916, 0.9430.97, 1.000.97, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
10614, 2316, 2226 9460, 2869, 2859 2839, 1462, 1258 4563, 1471, 1223
Rint0.1160.0290.0310.040
(sin θ/λ)max1)0.5940.6010.5940.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.229, 1.18 0.036, 0.087, 1.12 0.035, 0.071, 1.06 0.039, 0.078, 1.06
No. of reflections2316286914621471
No. of parameters239222221221
No. of restraints1111
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.480.28, 0.300.17, 0.190.15, 0.21
Absolute structure?Flack H D (1983), Acta Cryst. A39, 876-881??
Absolute structure parameter?0.00 (13)??


(cis-1,2-CHD)(k99096)(trans-1,2-CHD_1)(k99093)
Crystal data
Chemical formulaC6H12O2C6H12O2C6H12O2C6H12O2
Mr116.16116.16116.16116.16
Crystal system, space groupOrthorhombic, PbcaOrthorhombic, PbcaOrthorhombic, PbcaOrthorhombic, Pbca
Temperature (K)173299173299
a, b, c (Å)8.545 (2), 7.588 (1), 19.717 (4)8.617 (1), 7.693 (1), 19.695 (3)8.415 (1), 7.799 (1), 19.295 (2)8.491 (1), 7.893 (1), 19.331 (2)
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)1278.4 (4)1305.6 (3)1266.3 (3)1295.6 (3)
Z8888
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.090.090.090.09
Crystal size (mm)0.32 × 0.25 × 0.060.40 × 0.32 × 0.120.30 × 0.25 × 0.080.22 × 0.21 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.98, 0.990.98, 0.990.97, 0.990.97, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
2046, 1124, 915 2017, 1133, 777 2001, 1099, 976 2071, 1136, 924
Rint0.0270.0330.0140.016
(sin θ/λ)max1)0.5950.5950.5930.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.101, 1.14 0.040, 0.088, 1.05 0.034, 0.086, 1.08 0.036, 0.090, 1.05
No. of reflections1124113310991136
No. of parameters75757575
No. of restraints0000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.180.11, 0.130.12, 0.200.11, 0.15
Absolute structure????
Absolute structure parameter????


(trans-1,2-CHD_2)(k99095)(R,R-1,2-CHD)(k99094)
Crystal data
Chemical formulaC6H12O2C6H12O2C6H12O2C6H12O2
Mr116.16116.16116.16116.16
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/cTrigonal, P3221Trigonal, P3221
Temperature (K)173299173293
a, b, c (Å)18.321 (3), 10.015 (2), 7.201 (2)18.578 (5), 10.007 (3), 7.272 (2)10.183 (1), 10.183 (1), 10.796 (1)10.229 (1), 10.229 (1), 10.909 (1)
α, β, γ (°)90, 95.28 (2), 9090, 96.32 (2), 9090, 90, 12090, 90, 120
V3)1315.7 (5)1343.7 (7)969.49 (16)988.51 (16)
Z8866
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.090.080.090.09
Crystal size (mm)0.50 × 0.33 × 0.170.25 × 0.19 × 0.050.20 × 0.20 × 0.200.22 × 0.20 × 0.19
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.97, 0.990.98, 0.990.98, 0.980.98, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
2102, 1159, 950 2285, 1182, 856 4834, 677, 620 2294, 686, 601
Rint0.0130.0240.0340.020
(sin θ/λ)max1)0.5940.5940.5940.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.05 0.047, 0.128, 1.03 0.033, 0.076, 1.08 0.031, 0.080, 1.06
No. of reflections11591182677686
No. of parameters90907688
No. of restraints0000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.130.10, 0.120.13, 0.110.08, 0.09
Absolute structure????
Absolute structure parameter????

Computer programs: APEX2 (Bruker-Nonius, 2004), COLLECT (Nonius, 1999), Saintplus in APEX2 (Bruker-Nonius,2004), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1990), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997b), XP in SHELXTL (Sheldrick, 1994), Mercury (Macrae et al., 2006), # XP in Siemens SHELXTL (Sheldrick, 1994); Mercury (Macrae et al., 2006), SHELX97-2 (Sheldrick, 1997) and local procedures, SHELXL97 (Sheldrick, 1997) and local procedures.

Hydrogen-bond geometry (Å, º) for (1:1cis/trans-2,3-TD) top
D—H···AD—HH···AD···AD—H···A
O1A—H01A···O1B0.841.962.788 (7)168.7
O1B—H01B···O1Ai0.841.922.762 (7)175.3
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) for (S,S-2,3-TD) top
D—H···AD—HH···AD···AD—H···A
O1A—H01A···O1Bi0.841.962.7992 (15)174.4
O2A—H02A···O2B0.842.032.8549 (15)165.9
O1B—H01B···O1A0.842.032.8645 (15)170.6
O2B—H02B···O1Aii0.841.972.7980 (14)166.4
C9A—H9A···O2Aiii0.952.453.3843 (18)167.8
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y, z+1.
Hydrogen-bond geometry (Å, º) for (k99104) top
D—H···AD—HH···AD···AD—H···A
O1A—H01A···O1Bi0.841.972.803 (2)174.3
O2A—H02A···O2B0.842.032.859 (3)170.2
O1B—H01B···O1A0.842.052.866 (2)164.4
O2B—H02B···O1Aii0.841.972.801 (2)173.0
C9A—H9A···O2Aiii0.952.453.388 (3)168.0
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y, z+1.
Hydrogen-bond geometry (Å, º) for (k99103) top
D—H···AD—HH···AD···AD—H···A
O1A—H01A···O1Bi0.841.972.809 (3)172.8
O2A—H02A···O2B0.842.032.856 (3)169.4
O1B—H01B···O1A0.842.072.882 (3)162.8
O2B—H02B···O1Aii0.841.972.805 (3)175.3
C9A—H9A···O2Aiii0.952.473.407 (4)168.5
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y, z+1.
Hydrogen-bond geometry (Å, º) for (cis-1,2-CHD) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.841.912.7451 (14)170.5
O2—H02···O1ii0.842.002.7584 (14)149.7
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) for (k99096) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.821.942.7564 (14)170.9
O2—H02···O1ii0.822.052.7821 (14)149.2
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) for (trans-1,2-CHD_1) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.841.902.7173 (11)162.9
O2—H02···O1ii0.841.922.7565 (11)177.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) for (k99093) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.821.942.7330 (12)161.5
O2—H02···O1ii0.821.962.7758 (13)177.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) for (trans-1,2-CHD_2) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.841.862.6928 (19)170.9
O2—H02···O1ii0.841.912.7274 (18)163.7
O1—H01···O2Xi0.841.982.81 (3)170.7
O2—H02···O1Xii0.841.722.528 (10)161.3
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) for (k99095) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.821.892.707 (2)171.5
O2—H02···O1ii0.821.952.745 (2)161.8
O1—H01···O2Xi0.822.022.83 (3)169.2
O2—H02···O1Xii0.821.742.525 (11)160.9
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) for (R,R-1,2-CHD) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.841.912.7410 (18)169.1
O2—H02···O1ii0.841.972.7866 (18)165.5
Symmetry codes: (i) x+1, x+y, z+2/3; (ii) xy, y, z+1/3.
Hydrogen-bond geometry (Å, º) for (k99094) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.821.962.7681 (17)169.5
O2—H02···O1ii0.822.022.8171 (19)163.6
Symmetry codes: (i) x+1, x+y, z+2/3; (ii) xy, y, z+1/3.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds