Download citation
Download citation
link to html
The title compound, [Cd(C6H4NO2)2(H2O)4], was synthesized by the hydro­thermal reaction of cadmium chloride and nicotinic acid. Crystallographic analysis reveals it to be a new nicotinic acid complex. The molecule has crystallographic 2/m symmetry. The hydrogen-bonding interaction between the mol­ecules results in a three-dimensional supramolecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803010675/ww6074sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803010675/ww6074Isup2.hkl
Contains datablock I

CCDC reference: 214787

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.038
  • wR factor = 0.095
  • Data-to-parameter ratio = 8.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.520 0.839 Tmin' and Tmax expected: 0.587 0.839 RR' = 0.886 Please check that your absorption correction is appropriate.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Recently, the design and syntheses of non-centrosymmetric transition metal complexes attracted widespread attention for it is an essential requirement for a bulk material to exhibit non-linear optical (NLO) effects. We have investigated the coordination chemistry of nicotinic acid complexes. Our interest in these systems stems from the lack of a center of symmetry in the ligand. In addition, the introduction of electronic asymmetry (push–pull effects) through the bifunctional m-pyridinecarboxylate group is necessary for the second-order optical non-linearity. The reason that we adopted the Cd atom as the metal center is because its complexes are usually colorless, which is good for optical materials. Several nicotinic acid–transition metal complexes have been synthesized and studied, such as zinc (Lin et al., 1998; Cotton et al., 1991), chromium(II) (Cotton et al., 1991; Broderick et al., 1986). cobalt and copper (Waizumi et al., 1998), and nickel (Batten et al., 2001)

Here we report a new cadmium(II) complex, tetraaqua-trans-bis(nicotinato-κN)cadmium(II), (I). X-Ray single-crystal diffraction analysis reveals that it is isomorphous with other transition metal dinicotinates and crystallizes in the C2/m space group. Each cadmium(II) center is coordinated by two N atoms from two nicotinate groups and four O atoms from four coordinated water molecules in a slightly distorted octahedral geometry. Two nicotinate groups are in trans positions. The Cd—N and Cd—O bond lengths are 2.309 (5) and 2.321 (4) Å, respectively (Table 1).

The O atom of each coordinated water molecule forms bifurcated hydrogen bonds with the carbonyl O atom of nicotinate groups (Table 2). The intermolecular hydrogen-bonding interactions thus link the molecules into hydrogen-bonded three-dimensional crystal structure, as shown in Fig. 2.

Experimental top

The hydrothermal reaction of cadmium chloride (0.05 g, 0.27 mmol) and nicotinic acid (0.04 g, 0.32 mmol) in the molar ratio of 1:1 at 443 K for 5 d. After cooling to room temperature at 5 K h−1, colorless platelet crystals of (I) were isolated in 63% yield (base on Cd). Elemental analysis calculated for C12H16CdN2O8: C 33.62, H 3.76, N 6.53%; found: C 33.41, H 3.43, N 6.51%.

Refinement top

All H atoms were located in a difference Fourier map and refined freely [C—H = 0.79 (11)–1.00 (9) Å], along with an isotropic displacement parameter.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: XPREP (Bruker, 1997); program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the molecule of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. The molecular packing of the title complex. H atoms bonded to C atoms have been omitted for clarity.
Tetraaqua-trans-bis(nicotinato-κN)cadmium(II) top
Crystal data top
[Cd(C6H4NO2)2(H2O)4]F(000) = 428
Mr = 428.68Dx = 1.850 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 35 reflections
a = 14.5727 (8) Åθ = 2.7–25.0°
b = 6.9988 (1) ŵ = 1.46 mm1
c = 8.5447 (5) ÅT = 293 K
β = 118.012 (3)°Plate, colorless
V = 769.39 (7) Å30.36 × 0.14 × 0.12 mm
Z = 2
Data collection top
Siemens SMART CCD
diffractometer
733 independent reflections
Radiation source: fine-focus sealed tube718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1517
Tmin = 0.520, Tmax = 0.839k = 88
1341 measured reflectionsl = 910
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038All H-atom parameters refined
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.4415P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
733 reflectionsΔρmax = 1.03 e Å3
89 parametersΔρmin = 0.83 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (2)
Crystal data top
[Cd(C6H4NO2)2(H2O)4]V = 769.39 (7) Å3
Mr = 428.68Z = 2
Monoclinic, C2/mMo Kα radiation
a = 14.5727 (8) ŵ = 1.46 mm1
b = 6.9988 (1) ÅT = 293 K
c = 8.5447 (5) Å0.36 × 0.14 × 0.12 mm
β = 118.012 (3)°
Data collection top
Siemens SMART CCD
diffractometer
733 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
718 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.839Rint = 0.037
1341 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.095All H-atom parameters refined
S = 1.15Δρmax = 1.03 e Å3
733 reflectionsΔρmin = 0.83 e Å3
89 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles. correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.00000.00000.00000.0304 (4)
C10.2387 (6)0.00000.7435 (9)0.0380 (16)
C20.2466 (5)0.00000.5754 (8)0.0288 (14)
C30.3408 (5)0.00000.5726 (9)0.0376 (16)
H30.398 (7)0.00000.668 (12)0.06 (3)*
C40.3411 (5)0.00000.4122 (10)0.0397 (17)
H40.390 (8)0.00000.394 (13)0.07 (3)*
C50.2483 (5)0.00000.2583 (9)0.0339 (15)
H50.252 (8)0.00000.157 (13)0.07 (3)*
C60.1566 (5)0.00000.4141 (8)0.0295 (14)
H60.087 (7)0.00000.411 (11)0.06 (3)*
N0.1564 (4)0.00000.2577 (7)0.0303 (12)
O10.0606 (3)0.2301 (6)0.1246 (5)0.0403 (9)
H1A0.098 (5)0.184 (11)0.167 (8)0.06 (2)*
H1B0.098 (6)0.309 (12)0.058 (9)0.07 (2)*
O20.1490 (5)0.00000.7295 (8)0.0551 (15)
O30.3220 (5)0.00000.8877 (6)0.0525 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.0242 (4)0.0361 (5)0.0266 (4)0.0000.0083 (3)0.000
C10.060 (5)0.023 (4)0.034 (4)0.0000.025 (3)0.000
C20.032 (3)0.019 (3)0.030 (3)0.0000.010 (3)0.000
C30.027 (3)0.039 (4)0.037 (4)0.0000.007 (3)0.000
C40.023 (3)0.054 (5)0.041 (4)0.0000.014 (3)0.000
C50.032 (3)0.035 (4)0.037 (4)0.0000.018 (3)0.000
C60.030 (3)0.031 (4)0.027 (3)0.0000.013 (3)0.000
N0.028 (3)0.029 (3)0.032 (3)0.0000.013 (2)0.000
O10.0399 (19)0.036 (2)0.044 (2)0.0063 (17)0.0188 (18)0.0011 (17)
O20.066 (4)0.064 (4)0.052 (3)0.0000.041 (3)0.000
O30.073 (4)0.039 (3)0.027 (3)0.0000.008 (3)0.000
Geometric parameters (Å, º) top
Cd—N2.309 (5)C3—C41.373 (10)
Cd—Ni2.309 (5)C3—H30.85 (9)
Cd—O1ii2.321 (4)C4—C51.374 (10)
Cd—O1iii2.321 (4)C4—H40.79 (11)
Cd—O1i2.321 (4)C5—N1.336 (8)
Cd—O12.321 (4)C5—H50.89 (10)
C1—O21.254 (10)C6—N1.335 (8)
C1—O31.260 (9)C6—H61.00 (9)
C1—C21.495 (9)O1—H1A0.84 (7)
C2—C31.383 (9)O1—H1B0.80 (8)
C2—C61.386 (9)
N—Cd—Ni180.0 (4)C6—C2—C1119.5 (6)
N—Cd—O1ii91.13 (13)C4—C3—C2119.0 (6)
Ni—Cd—O1ii88.87 (13)C4—C3—H3120 (6)
N—Cd—O1iii88.87 (13)C2—C3—H3121 (7)
Ni—Cd—O1iii91.13 (13)C3—C4—C5119.5 (6)
O1ii—Cd—O1iii180.00 (17)C3—C4—H4128 (7)
N—Cd—O1i88.87 (13)C5—C4—H4113 (7)
Ni—Cd—O1i91.13 (13)N—C5—C4122.5 (6)
O1ii—Cd—O1i92.1 (2)N—C5—H5121 (6)
O1iii—Cd—O1i87.9 (2)C4—C5—H5117 (6)
N—Cd—O191.13 (13)N—C6—C2123.5 (6)
Ni—Cd—O188.87 (13)N—C6—H6117 (5)
O1ii—Cd—O187.9 (2)C2—C6—H6120 (5)
O1iii—Cd—O192.1 (2)C6—N—C5117.7 (6)
O1i—Cd—O1180.0 (2)C6—N—Cd119.5 (4)
O2—C1—O3125.2 (7)C5—N—Cd122.8 (4)
O2—C1—C2117.1 (6)Cd—O1—H1A113 (5)
O3—C1—C2117.8 (7)Cd—O1—H1B116 (5)
C3—C2—C6117.8 (6)H1A—O1—H1B102 (6)
C3—C2—C1122.8 (6)
O2—C1—C2—C3180.000 (3)C2—C6—N—Cd180.000 (1)
O3—C1—C2—C30.000 (3)C4—C5—N—C60.0
O2—C1—C2—C60.000 (3)C4—C5—N—Cd180.000 (1)
O3—C1—C2—C6180.000 (3)O1ii—Cd—N—C6136.06 (11)
C6—C2—C3—C40.000 (2)O1iii—Cd—N—C643.94 (11)
C1—C2—C3—C4180.000 (2)O1i—Cd—N—C643.94 (11)
C2—C3—C4—C50.000 (2)O1—Cd—N—C6136.06 (11)
C3—C4—C5—N0.000 (1)O1ii—Cd—N—C543.94 (11)
C3—C2—C6—N0.000 (2)O1iii—Cd—N—C5136.06 (11)
C1—C2—C6—N180.000 (2)O1i—Cd—N—C5136.06 (11)
C2—C6—N—C50.000 (1)O1—Cd—N—C543.94 (11)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2iv0.84 (7)1.90 (8)2.705 (7)158 (?)
O1—H1B···O3v0.80 (8)1.92 (8)2.709 (5)173 (?)
Symmetry codes: (iv) x, y, z1; (v) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C6H4NO2)2(H2O)4]
Mr428.68
Crystal system, space groupMonoclinic, C2/m
Temperature (K)293
a, b, c (Å)14.5727 (8), 6.9988 (1), 8.5447 (5)
β (°) 118.012 (3)
V3)769.39 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.36 × 0.14 × 0.12
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.520, 0.839
No. of measured, independent and
observed [I > 2σ(I)] reflections
1341, 733, 718
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.15
No. of reflections733
No. of parameters89
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.03, 0.83

Computer programs: SMART (Siemens, 1996), SMART, XPREP (Bruker, 1997), SHELXTL (Siemens, 1994), SHELXTL, SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cd—N2.309 (5)Cd—O12.321 (4)
Cd—Ni2.309 (5)C1—O21.254 (10)
Cd—O1ii2.321 (4)C1—O31.260 (9)
Cd—O1iii2.321 (4)C1—C21.495 (9)
Cd—O1i2.321 (4)
N—Cd—Ni180.0 (4)O1iii—Cd—O192.1 (2)
N—Cd—O1ii91.13 (13)O2—C1—O3125.2 (7)
N—Cd—O1i88.87 (13)O2—C1—C2117.1 (6)
N—Cd—O191.13 (13)O3—C1—C2117.8 (7)
O1ii—Cd—O187.9 (2)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2iv0.84 (7)1.90 (8)2.705 (7)158(?)
O1—H1B···O3v0.80 (8)1.92 (8)2.709 (5)173(?)
Symmetry codes: (iv) x, y, z1; (v) x+1/2, y+1/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds