The title compound, [Cd(C6H4NO2)2(H2O)4], was synthesized by the hydrothermal reaction of cadmium chloride and nicotinic acid. Crystallographic analysis reveals it to be a new nicotinic acid complex. The molecule has crystallographic 2/m symmetry. The hydrogen-bonding interaction between the molecules results in a three-dimensional supramolecular structure.
Supporting information
CCDC reference: 214787
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean (C-C) = 0.010 Å
- R factor = 0.038
- wR factor = 0.095
- Data-to-parameter ratio = 8.2
checkCIF results
No syntax errors found
ADDSYM reports no extra symmetry
Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90
Tmin and Tmax reported: 0.520 0.839
Tmin' and Tmax expected: 0.587 0.839
RR' = 0.886
Please check that your absorption correction is appropriate.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check
The hydrothermal reaction of cadmium chloride (0.05 g, 0.27 mmol) and nicotinic acid (0.04 g, 0.32 mmol) in the molar ratio of 1:1 at 443 K for 5 d. After cooling to room temperature at 5 K h−1, colorless platelet crystals of (I) were isolated in 63% yield (base on Cd). Elemental analysis calculated for C12H16CdN2O8: C 33.62, H 3.76, N 6.53%; found: C 33.41, H 3.43, N 6.51%.
All H atoms were located in a difference Fourier map and refined freely [C—H = 0.79 (11)–1.00 (9) Å], along with an isotropic displacement parameter.
Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: XPREP (Bruker, 1997); program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.
Tetraaqua-
trans-bis(nicotinato-
κN)cadmium(II)
top
Crystal data top
[Cd(C6H4NO2)2(H2O)4] | F(000) = 428 |
Mr = 428.68 | Dx = 1.850 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2y | Cell parameters from 35 reflections |
a = 14.5727 (8) Å | θ = 2.7–25.0° |
b = 6.9988 (1) Å | µ = 1.46 mm−1 |
c = 8.5447 (5) Å | T = 293 K |
β = 118.012 (3)° | Plate, colorless |
V = 769.39 (7) Å3 | 0.36 × 0.14 × 0.12 mm |
Z = 2 | |
Data collection top
Siemens SMART CCD diffractometer | 733 independent reflections |
Radiation source: fine-focus sealed tube | 718 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω scans | θmax = 25.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −15→17 |
Tmin = 0.520, Tmax = 0.839 | k = −8→8 |
1341 measured reflections | l = −9→10 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | All H-atom parameters refined |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0528P)2 + 0.4415P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max < 0.001 |
733 reflections | Δρmax = 1.03 e Å−3 |
89 parameters | Δρmin = −0.83 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.019 (2) |
Crystal data top
[Cd(C6H4NO2)2(H2O)4] | V = 769.39 (7) Å3 |
Mr = 428.68 | Z = 2 |
Monoclinic, C2/m | Mo Kα radiation |
a = 14.5727 (8) Å | µ = 1.46 mm−1 |
b = 6.9988 (1) Å | T = 293 K |
c = 8.5447 (5) Å | 0.36 × 0.14 × 0.12 mm |
β = 118.012 (3)° | |
Data collection top
Siemens SMART CCD diffractometer | 733 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 718 reflections with I > 2σ(I) |
Tmin = 0.520, Tmax = 0.839 | Rint = 0.037 |
1341 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.095 | All H-atom parameters refined |
S = 1.15 | Δρmax = 1.03 e Å−3 |
733 reflections | Δρmin = −0.83 e Å−3 |
89 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles. correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cd | 0.0000 | 0.0000 | 0.0000 | 0.0304 (4) | |
C1 | 0.2387 (6) | 0.0000 | 0.7435 (9) | 0.0380 (16) | |
C2 | 0.2466 (5) | 0.0000 | 0.5754 (8) | 0.0288 (14) | |
C3 | 0.3408 (5) | 0.0000 | 0.5726 (9) | 0.0376 (16) | |
H3 | 0.398 (7) | 0.0000 | 0.668 (12) | 0.06 (3)* | |
C4 | 0.3411 (5) | 0.0000 | 0.4122 (10) | 0.0397 (17) | |
H4 | 0.390 (8) | 0.0000 | 0.394 (13) | 0.07 (3)* | |
C5 | 0.2483 (5) | 0.0000 | 0.2583 (9) | 0.0339 (15) | |
H5 | 0.252 (8) | 0.0000 | 0.157 (13) | 0.07 (3)* | |
C6 | 0.1566 (5) | 0.0000 | 0.4141 (8) | 0.0295 (14) | |
H6 | 0.087 (7) | 0.0000 | 0.411 (11) | 0.06 (3)* | |
N | 0.1564 (4) | 0.0000 | 0.2577 (7) | 0.0303 (12) | |
O1 | 0.0606 (3) | 0.2301 (6) | −0.1246 (5) | 0.0403 (9) | |
H1A | 0.098 (5) | 0.184 (11) | −0.167 (8) | 0.06 (2)* | |
H1B | 0.098 (6) | 0.309 (12) | −0.058 (9) | 0.07 (2)* | |
O2 | 0.1490 (5) | 0.0000 | 0.7295 (8) | 0.0551 (15) | |
O3 | 0.3220 (5) | 0.0000 | 0.8877 (6) | 0.0525 (14) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cd | 0.0242 (4) | 0.0361 (5) | 0.0266 (4) | 0.000 | 0.0083 (3) | 0.000 |
C1 | 0.060 (5) | 0.023 (4) | 0.034 (4) | 0.000 | 0.025 (3) | 0.000 |
C2 | 0.032 (3) | 0.019 (3) | 0.030 (3) | 0.000 | 0.010 (3) | 0.000 |
C3 | 0.027 (3) | 0.039 (4) | 0.037 (4) | 0.000 | 0.007 (3) | 0.000 |
C4 | 0.023 (3) | 0.054 (5) | 0.041 (4) | 0.000 | 0.014 (3) | 0.000 |
C5 | 0.032 (3) | 0.035 (4) | 0.037 (4) | 0.000 | 0.018 (3) | 0.000 |
C6 | 0.030 (3) | 0.031 (4) | 0.027 (3) | 0.000 | 0.013 (3) | 0.000 |
N | 0.028 (3) | 0.029 (3) | 0.032 (3) | 0.000 | 0.013 (2) | 0.000 |
O1 | 0.0399 (19) | 0.036 (2) | 0.044 (2) | −0.0063 (17) | 0.0188 (18) | 0.0011 (17) |
O2 | 0.066 (4) | 0.064 (4) | 0.052 (3) | 0.000 | 0.041 (3) | 0.000 |
O3 | 0.073 (4) | 0.039 (3) | 0.027 (3) | 0.000 | 0.008 (3) | 0.000 |
Geometric parameters (Å, º) top
Cd—N | 2.309 (5) | C3—C4 | 1.373 (10) |
Cd—Ni | 2.309 (5) | C3—H3 | 0.85 (9) |
Cd—O1ii | 2.321 (4) | C4—C5 | 1.374 (10) |
Cd—O1iii | 2.321 (4) | C4—H4 | 0.79 (11) |
Cd—O1i | 2.321 (4) | C5—N | 1.336 (8) |
Cd—O1 | 2.321 (4) | C5—H5 | 0.89 (10) |
C1—O2 | 1.254 (10) | C6—N | 1.335 (8) |
C1—O3 | 1.260 (9) | C6—H6 | 1.00 (9) |
C1—C2 | 1.495 (9) | O1—H1A | 0.84 (7) |
C2—C3 | 1.383 (9) | O1—H1B | 0.80 (8) |
C2—C6 | 1.386 (9) | | |
| | | |
N—Cd—Ni | 180.0 (4) | C6—C2—C1 | 119.5 (6) |
N—Cd—O1ii | 91.13 (13) | C4—C3—C2 | 119.0 (6) |
Ni—Cd—O1ii | 88.87 (13) | C4—C3—H3 | 120 (6) |
N—Cd—O1iii | 88.87 (13) | C2—C3—H3 | 121 (7) |
Ni—Cd—O1iii | 91.13 (13) | C3—C4—C5 | 119.5 (6) |
O1ii—Cd—O1iii | 180.00 (17) | C3—C4—H4 | 128 (7) |
N—Cd—O1i | 88.87 (13) | C5—C4—H4 | 113 (7) |
Ni—Cd—O1i | 91.13 (13) | N—C5—C4 | 122.5 (6) |
O1ii—Cd—O1i | 92.1 (2) | N—C5—H5 | 121 (6) |
O1iii—Cd—O1i | 87.9 (2) | C4—C5—H5 | 117 (6) |
N—Cd—O1 | 91.13 (13) | N—C6—C2 | 123.5 (6) |
Ni—Cd—O1 | 88.87 (13) | N—C6—H6 | 117 (5) |
O1ii—Cd—O1 | 87.9 (2) | C2—C6—H6 | 120 (5) |
O1iii—Cd—O1 | 92.1 (2) | C6—N—C5 | 117.7 (6) |
O1i—Cd—O1 | 180.0 (2) | C6—N—Cd | 119.5 (4) |
O2—C1—O3 | 125.2 (7) | C5—N—Cd | 122.8 (4) |
O2—C1—C2 | 117.1 (6) | Cd—O1—H1A | 113 (5) |
O3—C1—C2 | 117.8 (7) | Cd—O1—H1B | 116 (5) |
C3—C2—C6 | 117.8 (6) | H1A—O1—H1B | 102 (6) |
C3—C2—C1 | 122.8 (6) | | |
| | | |
O2—C1—C2—C3 | 180.000 (3) | C2—C6—N—Cd | 180.000 (1) |
O3—C1—C2—C3 | 0.000 (3) | C4—C5—N—C6 | 0.0 |
O2—C1—C2—C6 | 0.000 (3) | C4—C5—N—Cd | 180.000 (1) |
O3—C1—C2—C6 | 180.000 (3) | O1ii—Cd—N—C6 | −136.06 (11) |
C6—C2—C3—C4 | 0.000 (2) | O1iii—Cd—N—C6 | 43.94 (11) |
C1—C2—C3—C4 | 180.000 (2) | O1i—Cd—N—C6 | −43.94 (11) |
C2—C3—C4—C5 | 0.000 (2) | O1—Cd—N—C6 | 136.06 (11) |
C3—C4—C5—N | 0.000 (1) | O1ii—Cd—N—C5 | 43.94 (11) |
C3—C2—C6—N | 0.000 (2) | O1iii—Cd—N—C5 | −136.06 (11) |
C1—C2—C6—N | 180.000 (2) | O1i—Cd—N—C5 | 136.06 (11) |
C2—C6—N—C5 | 0.000 (1) | O1—Cd—N—C5 | −43.94 (11) |
Symmetry codes: (i) −x, −y, −z; (ii) x, −y, z; (iii) −x, y, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O2iv | 0.84 (7) | 1.90 (8) | 2.705 (7) | 158 (?) |
O1—H1B···O3v | 0.80 (8) | 1.92 (8) | 2.709 (5) | 173 (?) |
Symmetry codes: (iv) x, y, z−1; (v) −x+1/2, y+1/2, −z+1. |
Experimental details
Crystal data |
Chemical formula | [Cd(C6H4NO2)2(H2O)4] |
Mr | 428.68 |
Crystal system, space group | Monoclinic, C2/m |
Temperature (K) | 293 |
a, b, c (Å) | 14.5727 (8), 6.9988 (1), 8.5447 (5) |
β (°) | 118.012 (3) |
V (Å3) | 769.39 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.46 |
Crystal size (mm) | 0.36 × 0.14 × 0.12 |
|
Data collection |
Diffractometer | Siemens SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.520, 0.839 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1341, 733, 718 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.595 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.095, 1.15 |
No. of reflections | 733 |
No. of parameters | 89 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 1.03, −0.83 |
Selected geometric parameters (Å, º) topCd—N | 2.309 (5) | Cd—O1 | 2.321 (4) |
Cd—Ni | 2.309 (5) | C1—O2 | 1.254 (10) |
Cd—O1ii | 2.321 (4) | C1—O3 | 1.260 (9) |
Cd—O1iii | 2.321 (4) | C1—C2 | 1.495 (9) |
Cd—O1i | 2.321 (4) | | |
| | | |
N—Cd—Ni | 180.0 (4) | O1iii—Cd—O1 | 92.1 (2) |
N—Cd—O1ii | 91.13 (13) | O2—C1—O3 | 125.2 (7) |
N—Cd—O1i | 88.87 (13) | O2—C1—C2 | 117.1 (6) |
N—Cd—O1 | 91.13 (13) | O3—C1—C2 | 117.8 (7) |
O1ii—Cd—O1 | 87.9 (2) | | |
Symmetry codes: (i) −x, −y, −z; (ii) x, −y, z; (iii) −x, y, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O2iv | 0.84 (7) | 1.90 (8) | 2.705 (7) | 158(?) |
O1—H1B···O3v | 0.80 (8) | 1.92 (8) | 2.709 (5) | 173(?) |
Symmetry codes: (iv) x, y, z−1; (v) −x+1/2, y+1/2, −z+1. |
Recently, the design and syntheses of non-centrosymmetric transition metal complexes attracted widespread attention for it is an essential requirement for a bulk material to exhibit non-linear optical (NLO) effects. We have investigated the coordination chemistry of nicotinic acid complexes. Our interest in these systems stems from the lack of a center of symmetry in the ligand. In addition, the introduction of electronic asymmetry (push–pull effects) through the bifunctional m-pyridinecarboxylate group is necessary for the second-order optical non-linearity. The reason that we adopted the Cd atom as the metal center is because its complexes are usually colorless, which is good for optical materials. Several nicotinic acid–transition metal complexes have been synthesized and studied, such as zinc (Lin et al., 1998; Cotton et al., 1991), chromium(II) (Cotton et al., 1991; Broderick et al., 1986). cobalt and copper (Waizumi et al., 1998), and nickel (Batten et al., 2001)
Here we report a new cadmium(II) complex, tetraaqua-trans-bis(nicotinato-κN)cadmium(II), (I). X-Ray single-crystal diffraction analysis reveals that it is isomorphous with other transition metal dinicotinates and crystallizes in the C2/m space group. Each cadmium(II) center is coordinated by two N atoms from two nicotinate groups and four O atoms from four coordinated water molecules in a slightly distorted octahedral geometry. Two nicotinate groups are in trans positions. The Cd—N and Cd—O bond lengths are 2.309 (5) and 2.321 (4) Å, respectively (Table 1).
The O atom of each coordinated water molecule forms bifurcated hydrogen bonds with the carbonyl O atom of nicotinate groups (Table 2). The intermolecular hydrogen-bonding interactions thus link the molecules into hydrogen-bonded three-dimensional crystal structure, as shown in Fig. 2.