Download citation
Download citation
link to html
The molecular structure of the title compound, C11H12N2O3S, adopts a cistrans configuration with respect to the position of the benzoyl and propionic acid groups relative to the S atom across the thio­urea C—N bonds, respectively. In the crystal structure, the mol­ecules are linked by weak N—H...S, N—H...O and O—H...O interactions to form a two-dimensional network perpendicular to the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803010389/ww6087sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803010389/ww6087Isup2.hkl
Contains datablock I

CCDC reference: 214836

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.045
  • wR factor = 0.123
  • Data-to-parameter ratio = 18.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The molecular dimension of the title compound, (I), is in agreement with other benzoylthiourea derivatives, PhCONHCSNHR, where R = Ph (Yamin & Yusof, 2003a), R = p-bromophenyl (Yamin & Yusof, 2003b) and R = 3,4-dimethyphenyl (Shanmuga Sundara Raj et al., 1999). The title compound also adopt a cis-trans configuration with respect to the position of the propionic acid and benzoyl groups relative to the S atom across the C8—N2 and C8—N1 bonds, respectively.

The central carbonyl-thiourea moiety (S1/C8/N1/N2/C7), phenyl (C1–C6) and propionic acid [maximum deviation at C9 of −0.130 (2) Å] fragments are planar. The central thiourea moeity makes angles with the phenyl and propionic acid fragments of 52.74 (9) and 75.14 (11)°, respectively. The phenyl ring is inclined to the propionic acid fragment by 22.46 (13)°. There is one intramolecular hydrogen bond, N2—H2A···O1, present (Table 2) and as a result, a pseudo-six-membered ring (N2—C8—N1—C7—O1—H2A) is formed. In the crystal structure, the molecules are linked by intermolecular contacts, N2—H2A···O1i, N1—H1A···S1ii and O3—H3···O2iii (see Table 2 for symmetry codes) to form a two-dimensional network perpendicular to the a axis (Fig. 2).

Experimental top

A solution of 3-aminopropionic acid (2.22 g, 0.025 mol) in acetone (50 ml) was added dropwise to 50 ml of an acetone solution containing an equimolar amount of benzoylisothiocyanate in a two-necked round-bottomed flask. The solution was refluxed for about 2 h and then cooled in ice. The white precipitate was filtered off and washed with ethanol–distilled water, then dried in a vacuum (yield 85%). Recrystallization from ethanol yielded single crystals suitable for X-ray analysis.

Refinement top

After checking their presence in the difference fourier map, all H atoms were fixed geometrically and allowed to ride on their parent C or N atoms with C—H = 0.93–0.97 Å and N—H = 0.86 Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, (I), with ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of compound (I), viewed down the b axis. The dashed lines denote N—H···S, N—H···O and O—H···O hydrogen bonds.
(I) top
Crystal data top
C11H12N2O3SZ = 2
Mr = 252.29F(000) = 264
Triclinic, P1Dx = 1.334 Mg m3
a = 4.5868 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.582 (2) ÅCell parameters from 2840 reflections
c = 13.080 (3) Åθ = 1.6–27.5°
α = 94.685 (3)°µ = 0.26 mm1
β = 91.341 (3)°T = 273 K
γ = 96.759 (3)°Slab, colourless
V = 628.0 (2) Å30.58 × 0.46 × 0.18 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2818 independent reflections
Radiation source: fine-focus sealed tube2363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 83.66 pixels mm-1θmax = 27.5°, θmin = 1.6°
ω scansh = 55
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.866, Tmax = 0.955l = 1616
7220 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.1496P]
where P = (Fo2 + 2Fc2)/3
2818 reflections(Δ/σ)max < 0.000
155 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C11H12N2O3Sγ = 96.759 (3)°
Mr = 252.29V = 628.0 (2) Å3
Triclinic, P1Z = 2
a = 4.5868 (9) ÅMo Kα radiation
b = 10.582 (2) ŵ = 0.26 mm1
c = 13.080 (3) ÅT = 273 K
α = 94.685 (3)°0.58 × 0.46 × 0.18 mm
β = 91.341 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2818 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2363 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.955Rint = 0.017
7220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
2818 reflectionsΔρmin = 0.19 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36044 (11)0.13532 (4)0.10273 (4)0.06111 (18)
O10.9292 (4)0.39011 (12)0.09335 (10)0.0719 (4)
O20.4306 (4)0.50196 (17)0.37633 (10)0.0815 (5)
O30.7400 (5)0.3907 (2)0.44855 (12)0.1109 (8)
H30.68410.42680.50110.166*
N10.7182 (3)0.20049 (13)0.04471 (10)0.0472 (3)
H1A0.69200.11980.06240.057*
N20.6622 (3)0.35995 (13)0.08252 (11)0.0524 (4)
H2A0.77830.40880.04800.063*
C11.1061 (4)0.09273 (17)0.19906 (14)0.0542 (4)
H1B1.11750.05510.13750.065*
C21.2122 (5)0.0361 (2)0.28751 (17)0.0703 (5)
H2B1.29830.03890.28500.084*
C31.1911 (6)0.0898 (2)0.37851 (17)0.0779 (6)
H3A1.26090.05060.43780.094*
C41.0673 (6)0.2013 (2)0.38280 (16)0.0812 (7)
H4A1.05250.23730.44500.097*
C50.9654 (5)0.2597 (2)0.29529 (15)0.0685 (5)
H5A0.88420.33590.29810.082*
C60.9834 (4)0.20516 (16)0.20277 (12)0.0485 (4)
C70.8787 (4)0.27413 (16)0.10954 (12)0.0494 (4)
C80.5922 (3)0.24015 (15)0.04628 (12)0.0455 (4)
C90.5530 (4)0.41369 (18)0.17796 (13)0.0554 (4)
H9A0.34630.38300.18240.067*
H9B0.57150.50600.17820.067*
C100.7189 (5)0.3781 (2)0.26981 (14)0.0679 (5)
H10B0.70320.28570.26830.081*
H10C0.92500.40970.26510.081*
C110.6123 (4)0.4292 (2)0.36940 (14)0.0603 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0664 (3)0.0559 (3)0.0578 (3)0.0070 (2)0.0181 (2)0.0009 (2)
O10.1110 (12)0.0454 (7)0.0559 (8)0.0062 (7)0.0267 (7)0.0013 (6)
O20.0981 (11)0.1067 (12)0.0465 (7)0.0474 (10)0.0087 (7)0.0042 (7)
O30.1393 (16)0.1595 (19)0.0484 (8)0.0909 (15)0.0011 (9)0.0077 (10)
N10.0566 (8)0.0419 (7)0.0411 (7)0.0002 (6)0.0058 (6)0.0010 (5)
N20.0636 (9)0.0486 (8)0.0436 (7)0.0011 (6)0.0135 (6)0.0009 (6)
C10.0588 (10)0.0540 (10)0.0491 (9)0.0027 (8)0.0061 (7)0.0047 (7)
C20.0789 (14)0.0658 (12)0.0673 (13)0.0172 (10)0.0125 (10)0.0035 (10)
C30.0939 (16)0.0880 (16)0.0509 (11)0.0158 (13)0.0158 (10)0.0107 (10)
C40.1131 (19)0.0905 (16)0.0419 (10)0.0180 (14)0.0094 (11)0.0070 (10)
C50.0985 (16)0.0637 (12)0.0454 (10)0.0162 (11)0.0065 (9)0.0064 (8)
C60.0550 (9)0.0481 (9)0.0400 (8)0.0021 (7)0.0042 (7)0.0000 (6)
C70.0587 (10)0.0469 (9)0.0408 (8)0.0000 (7)0.0043 (7)0.0017 (7)
C80.0460 (8)0.0495 (9)0.0404 (8)0.0047 (7)0.0005 (6)0.0024 (6)
C90.0630 (11)0.0552 (10)0.0480 (9)0.0098 (8)0.0117 (8)0.0027 (7)
C100.0679 (12)0.0863 (14)0.0499 (10)0.0228 (10)0.0039 (9)0.0121 (9)
C110.0603 (11)0.0736 (12)0.0465 (10)0.0126 (9)0.0053 (8)0.0052 (8)
Geometric parameters (Å, º) top
S1—C81.6728 (17)C2—H2B0.9300
O1—C71.222 (2)C3—C41.373 (3)
O2—C111.199 (2)C3—H3A0.9300
O3—C111.296 (2)C4—C51.374 (3)
O3—H30.8200C4—H4A0.9300
N1—C71.368 (2)C5—C61.387 (3)
N1—C81.391 (2)C5—H5A0.9300
N1—H1A0.8600C6—C71.488 (2)
N2—C81.317 (2)C9—C101.504 (3)
N2—C91.454 (2)C9—H9A0.9700
N2—H2A0.8600C9—H9B0.9700
C1—C61.378 (3)C10—C111.485 (3)
C1—C21.384 (3)C10—H10B0.9700
C1—H1B0.9300C10—H10C0.9700
C2—C31.366 (3)
C11—O3—H3109.5C1—C6—C7122.26 (15)
C7—N1—C8127.95 (14)C5—C6—C7118.08 (16)
C7—N1—H1A116.0O1—C7—N1122.27 (15)
C8—N1—H1A116.0O1—C7—C6121.61 (15)
C8—N2—C9123.27 (15)N1—C7—C6116.11 (14)
C8—N2—H2A118.4N2—C8—N1117.26 (14)
C9—N2—H2A118.4N2—C8—S1123.77 (13)
C6—C1—C2119.61 (18)N1—C8—S1118.97 (12)
C6—C1—H1B120.2N2—C9—C10111.62 (15)
C2—C1—H1B120.2N2—C9—H9A109.3
C3—C2—C1120.4 (2)C10—C9—H9A109.3
C3—C2—H2B119.8N2—C9—H9B109.3
C1—C2—H2B119.8C10—C9—H9B109.3
C2—C3—C4120.23 (19)H9A—C9—H9B108.0
C2—C3—H3A119.9C11—C10—C9113.63 (16)
C4—C3—H3A119.9C11—C10—H10B108.8
C3—C4—C5120.0 (2)C9—C10—H10B108.8
C3—C4—H4A120.0C11—C10—H10C108.8
C5—C4—H4A120.0C9—C10—H10C108.8
C4—C5—C6120.1 (2)H10B—C10—H10C107.7
C4—C5—H5A119.9O2—C11—O3122.94 (17)
C6—C5—H5A119.9O2—C11—C10123.40 (18)
C1—C6—C5119.62 (17)O3—C11—C10113.64 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.992.656 (2)133
N2—H2A···O1i0.862.403.047 (2)132
N1—H1A···S1ii0.862.693.5466 (16)175
O3—H3···O2iii0.821.832.649 (2)176
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H12N2O3S
Mr252.29
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)4.5868 (9), 10.582 (2), 13.080 (3)
α, β, γ (°)94.685 (3), 91.341 (3), 96.759 (3)
V3)628.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.58 × 0.46 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.866, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
7220, 2818, 2363
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.03
No. of reflections2818
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.19

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
S1—C81.6728 (17)O3—C111.296 (2)
O1—C71.222 (2)N2—C81.317 (2)
O2—C111.199 (2)N2—C91.454 (2)
C7—N1—C8127.95 (14)N2—C8—S1123.77 (13)
C8—N2—C9123.27 (15)N1—C8—S1118.97 (12)
N2—C8—N1117.26 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.992.656 (2)133
N2—H2A···O1i0.862.403.047 (2)132
N1—H1A···S1ii0.862.693.5466 (16)175
O3—H3···O2iii0.821.832.649 (2)176
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds