Download citation
Download citation
link to html
The crystal structure of samarium iron borate was analyzed with regard to growth conditions and tem­per­ature. The inclusion of about 7% Bi atoms in the crystals grown using the Bi2Mo3O12-based flux was discovered and there were no impurities in the crystals grown using the Li2WO4-based flux. No pronounced structural features associated with Bi inclusion were observed. The different absolute configurations of the samples grown using both fluxes were demonstrated. Below 80 K, a negative thermal expansion of the c unit-cell parameter was found. The structure of (Sm0.93Bi0.07)Fe3(BO3)4 belongs to the trigonal space group R32 in the tem­per­ature range 90–400 K. A decrease in the (Sm,Bi)—O, Sm—B, Sm—Fe, Fe—O, Fe—B and Fe—Fe distances is observed with a lowering of the tem­per­ature, B1—O does not change, B2—O increases slightly and the B2O3 triangles deviate from the ab plane. The strongest decrease in the equivalent isotropic atomic displacement parameters (Ueq) with decreasing tem­per­ature is observed for atoms Sm and O2, and the weakest is observed for B1. The O2 atoms have the highest Ueq values, the most elongated atomic displacement ellipsoids of all the atoms and the smallest number of allowed vibrational modes of all the O atoms. The largest number of allowed vibrational modes and the strongest inter­actions with neighbouring atoms is seen for the B atoms, and the opposite is seen for the Sm atoms. The quadrupole splitting Δ(T) of the paramagnetic Mössbauer spectra increases linearly with cooling. The Néel tem­per­ature [TN = 31.93 (5) K] was determined from the tem­per­ature dependence of the hyperfine magnetic field Bhf(T), which has a non-Brillouin character. The easy-plane long-range magnetic ordering below TN was confirmed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520622003948/xk5093sup1.cif
Contains datablocks global, 90K, 200K, 293K, 400K, Sample7_1_NoBi

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520622003948/xk509390Ksup2.hkl
Contains datablock 90K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520622003948/xk5093200Ksup3.hkl
Contains datablock 200K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520622003948/xk5093293Ksup4.hkl
Contains datablock 293K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520622003948/xk5093400Ksup5.hkl
Contains datablock 400K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520622003948/xk5093Sample7_1_NoBisup6.hkl
Contains datablock Sample7_1_NoBi

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520622003948/xk5093sup7.pdf
Supplementary material

CCDC references: 2165912; 2165913; 2165914; 2165915; 2165916

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018) for (90K), 200K, 293K, 400K; CrysAlis PRO (Agilent, 2014) for Sample7_1_NoBi. Cell refinement: CrysAlis PRO (Rigaku OD, 2018) for (90K), 200K, 293K, 400K; CrysAlis PRO (Agilent, 2014) for Sample7_1_NoBi. Data reduction: CrysAlis PRO (Rigaku OD, 2018) for (90K), 200K, 293K, 400K; CrysAlis PRO (Agilent, 2014) for Sample7_1_NoBi. For all structures, program(s) used to solve structure: JANA2006 (Petříček et al., 2014).

Samarium bismuth triiron tetrakis(borate) (90K) top
Crystal data top
Sm0.93Bi0.07Fe3(BO3)4Dx = 4.624 Mg m3
Mr = 557.2Mo Kα radiation, λ = 0.71073 Å
Trigonal, R32Cell parameters from 18525 reflections
Hall symbol: R 3 2"θ = 4.3–74.0°
a = 9.5638 (1) ŵ = 13.66 mm1
c = 7.5790 (1) ÅT = 90 K
V = 600.35 (1) Å3Sphere, light green
Z = 30.11 (1) mm (radius)
F(000) = 772
Data collection top
Rigaku Xcalibur EosS2 with high theta cut
diffractometer
2769 independent reflections
Radiation source: X-ray tube2769 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1745 pixels mm-1θmax = 74.3°, θmin = 3.6°
ω scansh = 2525
Absorption correction: for a sphere
(JANA2006; Petříček et al., 2014)
k = 2525
Tmin = 0.159, Tmax = 0.254l = 2020
20719 measured reflections
Refinement top
Refinement on F2Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
R[F2 > 2σ(F2)] = 0.011(Δ/σ)max = 0.049
wR(F2) = 0.030Δρmax = 1.08 e Å3
S = 1.08Δρmin = 0.95 e Å3
2769 reflectionsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
36 parametersExtinction coefficient: 238E1 (6)
0 restraintsAbsolute structure: 1253 of Friedel pairs used in the refinement
2 constraintsAbsolute structure parameter: 0.028 (4)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sm10000.003087 (9)0.93
Bi10000.003087 (9)0.07
Fe10.783046 (13)0.6666670.6666670.002644 (17)
O10.85571 (6)0.85571 (6)0.50.00397 (8)
O20.59106 (7)0.59106 (7)0.50.00570 (10)
O30.97422 (5)0.78660 (6)0.81628 (6)0.00461 (8)
B1000.50.00371 (16)
B20.44717 (9)0.44717 (9)0.50.00393 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.003186 (11)0.003186 (11)0.002888 (14)0.001593 (6)00
Bi10.003186 (11)0.003186 (11)0.002888 (14)0.001593 (6)00
Fe10.00256 (2)0.00256 (2)0.00281 (3)0.001279 (12)0.000026 (7)0.000052 (14)
O10.00311 (8)0.00311 (8)0.00486 (12)0.00094 (10)0.00045 (5)0.00045 (5)
O20.00377 (10)0.00377 (10)0.00760 (16)0.00040 (13)0.00164 (7)0.00164 (7)
O30.00364 (9)0.00535 (10)0.00520 (9)0.00253 (8)0.00070 (7)0.00078 (7)
B10.00352 (19)0.00352 (19)0.0041 (3)0.00176 (9)00
B20.00338 (15)0.00338 (15)0.00473 (17)0.0014 (2)0.00011 (9)0.00011 (9)
Geometric parameters (Å, º) top
Sm1—Bi10Bi1—O3v2.3794 (4)
Sm1—O3i2.3794 (5)Bi1—O3vi2.3794 (7)
Sm1—O3ii2.3794 (4)Fe1—O12.0226 (4)
Sm1—O3iii2.3794 (7)Fe1—O1vii2.0226 (4)
Sm1—O3iv2.3794 (5)Fe1—O22.0401 (5)
Sm1—O3v2.3794 (4)Fe1—O2vii2.0401 (9)
Sm1—O3vi2.3794 (7)Fe1—O31.9614 (4)
Bi1—O3i2.3794 (5)Fe1—O3viii1.9614 (7)
Bi1—O3ii2.3794 (4)O1—B1ix1.3800 (4)
Bi1—O3iii2.3794 (7)O2—B21.3761 (8)
Bi1—O3iv2.3794 (5)O3—B2x1.3715 (11)
Bi1—Sm1—O3i0O3iii—Bi1—O3vi142.040 (14)
Bi1—Sm1—O3ii0O3iv—Bi1—O3v89.217 (18)
Bi1—Sm1—O3iii0O3iv—Bi1—O3vi89.217 (18)
Bi1—Sm1—O3iv0O3v—Bi1—O3vi89.217 (18)
Bi1—Sm1—O3v0O1—Fe1—O1vii168.13 (3)
Bi1—Sm1—O3vi0O1—Fe1—O277.069 (19)
O3i—Sm1—O3ii89.217 (18)O1—Fe1—O2vii94.27 (2)
O3i—Sm1—O3iii89.217 (18)O1—Fe1—O392.013 (18)
O3i—Sm1—O3iv122.541 (14)O1—Fe1—O3viii95.57 (2)
O3i—Sm1—O3v142.04 (2)O1vii—Fe1—O294.27 (2)
O3i—Sm1—O3vi72.602 (18)O1vii—Fe1—O2vii77.07 (3)
O3ii—Sm1—O3iii89.217 (18)O1vii—Fe1—O395.57 (2)
O3ii—Sm1—O3iv142.04 (2)O1vii—Fe1—O3viii92.01 (2)
O3ii—Sm1—O3v72.602 (16)O2—Fe1—O2vii87.43 (3)
O3ii—Sm1—O3vi122.54 (2)O2—Fe1—O3167.37 (3)
O3iii—Sm1—O3iv72.602 (18)O2—Fe1—O3viii87.08 (3)
O3iii—Sm1—O3v122.54 (2)O2vii—Fe1—O387.08 (3)
O3iii—Sm1—O3vi142.040 (14)O2vii—Fe1—O3viii167.37 (2)
O3iv—Sm1—O3v89.217 (18)O3—Fe1—O3viii100.45 (3)
O3iv—Sm1—O3vi89.217 (18)Fe1—O1—Fe1xi103.552 (19)
O3v—Sm1—O3vi89.217 (18)Fe1—O1—B1ix128.22 (3)
Sm1—Bi1—O3i0Fe1xi—O1—B1ix128.22 (3)
Sm1—Bi1—O3ii0Fe1—O2—Fe1xi102.31 (2)
Sm1—Bi1—O3iii0Fe1—O2—B2128.84 (4)
Sm1—Bi1—O3iv0Fe1xi—O2—B2128.84 (4)
Sm1—Bi1—O3v0Sm1xii—O3—Bi1xii0.0 (5)
Sm1—Bi1—O3vi0Sm1xii—O3—Fe1120.43 (3)
O3i—Bi1—O3ii89.217 (18)Sm1xii—O3—B2x107.20 (3)
O3i—Bi1—O3iii89.217 (18)Bi1xii—O3—Fe1120.43 (3)
O3i—Bi1—O3iv122.541 (14)Bi1xii—O3—B2x107.20 (3)
O3i—Bi1—O3v142.04 (2)Fe1—O3—B2x132.24 (4)
O3i—Bi1—O3vi72.602 (18)O1xiii—B1—O1xiv120.00 (4)
O3ii—Bi1—O3iii89.217 (18)O1xiii—B1—O1xv120.00 (4)
O3ii—Bi1—O3iv142.04 (2)O1xiv—B1—O1xv120.00 (4)
O3ii—Bi1—O3v72.602 (16)O2—B2—O3xvi117.75 (8)
O3ii—Bi1—O3vi122.54 (2)O2—B2—O3xvii117.75 (8)
O3iii—Bi1—O3iv72.602 (18)O3xvi—B2—O3xvii124.51 (5)
O3iii—Bi1—O3v122.54 (2)
Symmetry codes: (i) x1, y1, z1; (ii) y+1, xy, z1; (iii) x+y, x+1, z1; (iv) y1, x1, z+1; (v) xy, y+1, z+1; (vi) x+1, x+y, z+1; (vii) x+y+2/3, x+4/3, z+1/3; (viii) xy+2/3, y+4/3, z+4/3; (ix) x+1, y+1, z; (x) x+2/3, y+1/3, z+1/3; (xi) y+4/3, xy+2/3, z1/3; (xii) x+1, y+1, z+1; (xiii) x1, y1, z; (xiv) y+1, xy, z; (xv) x+y, x+1, z; (xvi) x2/3, y1/3, z1/3; (xvii) y1/3, x2/3, z+4/3.
Samarium bismuth triiron tetrakis(borate) (200K) top
Crystal data top
Sm0.93Bi0.07Fe3(BO3)4Dx = 4.622 Mg m3
Mr = 557.2Mo Kα radiation, λ = 0.71073 Å
Trigonal, R32Cell parameters from 18525 reflections
Hall symbol: R 3 2"θ = 4.3–73.9°
a = 9.5635 (1) ŵ = 13.66 mm1
c = 7.5823 (1) ÅT = 200 K
V = 600.57 (1) Å3Sphere, light green
Z = 30.11 (1) mm (radius)
F(000) = 772
Data collection top
Rigaku Xcalibur EosS2 with high theta cut
diffractometer
2770 independent reflections
Radiation source: X-ray tube2770 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.1745 pixels mm-1θmax = 74.3°, θmin = 3.6°
ω scansh = 2525
Absorption correction: for a sphere
(JANA2006; Petříček et al., 2014)
k = 2525
Tmin = 0.159, Tmax = 0.254l = 2020
20756 measured reflections
Refinement top
Refinement on F2Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
R[F2 > 2σ(F2)] = 0.011(Δ/σ)max = 0.049
wR(F2) = 0.030Δρmax = 0.96 e Å3
S = 1.04Δρmin = 0.58 e Å3
2770 reflectionsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
36 parametersExtinction coefficient: 305E1 (6)
0 restraintsAbsolute structure: 1253 of Friedel pairs used in the refinement
2 constraintsAbsolute structure parameter: 0.030 (4)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sm10000.005360 (10)0.93
Bi10000.005360 (10)0.07
Fe10.783019 (12)0.6666670.6666670.003812 (17)
O10.85570 (6)0.85570 (6)0.50.00513 (8)
O20.59079 (7)0.59079 (7)0.50.00841 (11)
O30.97419 (5)0.78650 (6)0.81627 (6)0.00627 (8)
B1000.50.00428 (15)
B20.44698 (9)0.44698 (9)0.50.00496 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.005531 (13)0.005531 (13)0.005019 (15)0.002766 (7)00
Bi10.005531 (13)0.005531 (13)0.005019 (15)0.002766 (7)00
Fe10.00361 (2)0.00370 (2)0.00416 (3)0.001849 (12)0.000047 (7)0.000094 (14)
O10.00385 (8)0.00385 (8)0.00644 (12)0.00097 (10)0.00070 (5)0.00070 (5)
O20.00512 (10)0.00512 (10)0.01150 (19)0.00008 (13)0.00296 (8)0.00296 (8)
O30.00458 (9)0.00759 (11)0.00697 (9)0.00329 (8)0.00106 (7)0.00129 (8)
B10.00390 (18)0.00390 (18)0.0050 (3)0.00195 (9)00
B20.00428 (15)0.00428 (15)0.00601 (16)0.0019 (2)0.00029 (9)0.00029 (9)
Geometric parameters (Å, º) top
Sm1—Bi10Bi1—O3v2.3805 (5)
Sm1—O3i2.3805 (5)Bi1—O3vi2.3805 (7)
Sm1—O3ii2.3805 (5)Fe1—O12.0228 (4)
Sm1—O3iii2.3805 (7)Fe1—O1vii2.0228 (4)
Sm1—O3iv2.3805 (5)Fe1—O22.0419 (5)
Sm1—O3v2.3805 (5)Fe1—O2vii2.0418 (9)
Sm1—O3vi2.3805 (7)Fe1—O31.9615 (4)
Bi1—O3i2.3805 (5)Fe1—O3viii1.9615 (7)
Bi1—O3ii2.3805 (5)O1—B1ix1.3801 (4)
Bi1—O3iii2.3805 (7)O2—B21.3753 (8)
Bi1—O3iv2.3805 (5)O3—B2x1.3703 (11)
Bi1—Sm1—O3i0O3iii—Bi1—O3vi142.046 (14)
Bi1—Sm1—O3ii0O3iv—Bi1—O3v89.214 (19)
Bi1—Sm1—O3iii0O3iv—Bi1—O3vi89.214 (19)
Bi1—Sm1—O3iv0O3v—Bi1—O3vi89.214 (19)
Bi1—Sm1—O3v0O1—Fe1—O1vii168.15 (3)
Bi1—Sm1—O3vi0O1—Fe1—O277.111 (19)
O3i—Sm1—O3ii89.214 (19)O1—Fe1—O2vii94.23 (2)
O3i—Sm1—O3iii89.214 (19)O1—Fe1—O392.048 (18)
O3i—Sm1—O3iv122.538 (14)O1—Fe1—O3viii95.53 (2)
O3i—Sm1—O3v142.05 (2)O1vii—Fe1—O294.23 (2)
O3i—Sm1—O3vi72.607 (19)O1vii—Fe1—O2vii77.11 (3)
O3ii—Sm1—O3iii89.214 (19)O1vii—Fe1—O395.53 (2)
O3ii—Sm1—O3iv142.05 (2)O1vii—Fe1—O3viii92.05 (2)
O3ii—Sm1—O3v72.607 (16)O2—Fe1—O2vii87.45 (3)
O3ii—Sm1—O3vi122.54 (2)O2—Fe1—O3167.45 (3)
O3iii—Sm1—O3iv72.607 (19)O2—Fe1—O3viii87.07 (3)
O3iii—Sm1—O3v122.54 (2)O2vii—Fe1—O387.07 (3)
O3iii—Sm1—O3vi142.046 (14)O2vii—Fe1—O3viii167.45 (2)
O3iv—Sm1—O3v89.214 (19)O3—Fe1—O3viii100.42 (3)
O3iv—Sm1—O3vi89.214 (19)Fe1—O1—Fe1xi103.563 (18)
O3v—Sm1—O3vi89.214 (19)Fe1—O1—B1ix128.22 (3)
Sm1—Bi1—O3i0Fe1xi—O1—B1ix128.22 (3)
Sm1—Bi1—O3ii0Fe1—O2—Fe1xi102.21 (2)
Sm1—Bi1—O3iii0Fe1—O2—B2128.89 (4)
Sm1—Bi1—O3iv0Fe1xi—O2—B2128.89 (4)
Sm1—Bi1—O3v0Sm1xii—O3—Bi1xii0.0 (5)
Sm1—Bi1—O3vi0Sm1xii—O3—Fe1120.41 (3)
O3i—Bi1—O3ii89.214 (19)Sm1xii—O3—B2x107.22 (3)
O3i—Bi1—O3iii89.214 (19)Bi1xii—O3—Fe1120.41 (3)
O3i—Bi1—O3iv122.538 (14)Bi1xii—O3—B2x107.22 (3)
O3i—Bi1—O3v142.05 (2)Fe1—O3—B2x132.25 (4)
O3i—Bi1—O3vi72.607 (19)O1xiii—B1—O1xiv120.00 (4)
O3ii—Bi1—O3iii89.214 (19)O1xiii—B1—O1xv120.00 (4)
O3ii—Bi1—O3iv142.05 (2)O1xiv—B1—O1xv120.00 (4)
O3ii—Bi1—O3v72.607 (16)O2—B2—O3xvi117.71 (8)
O3ii—Bi1—O3vi122.54 (2)O2—B2—O3xvii117.71 (8)
O3iii—Bi1—O3iv72.607 (19)O3xvi—B2—O3xvii124.58 (5)
O3iii—Bi1—O3v122.54 (2)
Symmetry codes: (i) x1, y1, z1; (ii) y+1, xy, z1; (iii) x+y, x+1, z1; (iv) y1, x1, z+1; (v) xy, y+1, z+1; (vi) x+1, x+y, z+1; (vii) x+y+2/3, x+4/3, z+1/3; (viii) xy+2/3, y+4/3, z+4/3; (ix) x+1, y+1, z; (x) x+2/3, y+1/3, z+1/3; (xi) y+4/3, xy+2/3, z1/3; (xii) x+1, y+1, z+1; (xiii) x1, y1, z; (xiv) y+1, xy, z; (xv) x+y, x+1, z; (xvi) x2/3, y1/3, z1/3; (xvii) y1/3, x2/3, z+4/3.
Samarium bismuth triiron tetrakis(borate) (293K) top
Crystal data top
Sm0.93Bi0.07Fe3(BO3)4Dx = 4.618 Mg m3
Mr = 557.2Mo Kα radiation, λ = 0.71073 Å
Trigonal, R32Cell parameters from 18022 reflections
Hall symbol: R 3 2"θ = 4.3–74°
a = 9.5642 (1) ŵ = 13.65 mm1
c = 7.5883 (1) ÅT = 293 K
V = 601.14 (1) Å3Sphere, light green
Z = 30.11 (1) mm (radius)
F(000) = 772
Data collection top
Rigaku Xcalibur EosS2 with high theta cut
diffractometer
2774 independent reflections
Radiation source: X-ray tube2772 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.1745 pixels mm-1θmax = 74.4°, θmin = 3.6°
ω scansh = 2525
Absorption correction: for a sphere
(JANA2006; Petříček et al., 2014)
k = 2525
Tmin = 0.160, Tmax = 0.255l = 2020
20806 measured reflections
Refinement top
Refinement on F2Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
R[F2 > 2σ(F2)] = 0.012(Δ/σ)max = 0.047
wR(F2) = 0.032Δρmax = 1.02 e Å3
S = 1.04Δρmin = 0.63 e Å3
2774 reflectionsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
36 parametersExtinction coefficient: 328E1 (6)
0 restraintsAbsolute structure: 1254 of Friedel pairs used in the refinement
2 constraintsAbsolute structure parameter: 0.031 (4)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sm10000.007298 (12)0.93
Bi10000.007298 (12)0.07
Fe10.783039 (13)0.6666670.6666670.004945 (19)
O10.85574 (6)0.85574 (6)0.50.00650 (8)
O20.59065 (8)0.59065 (8)0.50.01089 (12)
O30.97414 (6)0.78639 (7)0.81626 (7)0.00802 (9)
B1000.50.00510 (16)
B20.44692 (9)0.44692 (9)0.50.00598 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.007518 (16)0.007518 (16)0.006857 (18)0.003759 (8)00
Bi10.007518 (16)0.007518 (16)0.006857 (18)0.003759 (8)00
Fe10.00466 (2)0.00482 (3)0.00542 (3)0.002408 (13)0.000061 (8)0.000123 (16)
O10.00480 (9)0.00480 (9)0.00810 (13)0.00105 (10)0.00095 (6)0.00095 (6)
O20.00642 (11)0.00642 (11)0.0150 (2)0.00043 (14)0.00422 (10)0.00422 (10)
O30.00585 (10)0.00991 (13)0.00888 (11)0.00437 (10)0.00152 (8)0.00181 (9)
B10.00467 (19)0.00467 (19)0.0060 (3)0.00233 (10)00
B20.00498 (15)0.00498 (15)0.00729 (17)0.0020 (2)0.00035 (11)0.00035 (11)
Geometric parameters (Å, º) top
Sm1—Bi10Bi1—O3v2.3820 (5)
Sm1—O3i2.3820 (6)Bi1—O3vi2.3820 (8)
Sm1—O3ii2.3820 (5)Fe1—O12.0238 (4)
Sm1—O3iii2.3820 (8)Fe1—O1vii2.0238 (4)
Sm1—O3iv2.3820 (6)Fe1—O22.0436 (6)
Sm1—O3v2.3820 (5)Fe1—O2vii2.0435 (9)
Sm1—O3vi2.3820 (8)Fe1—O31.9615 (5)
Bi1—O3i2.3820 (6)Fe1—O3viii1.9616 (8)
Bi1—O3ii2.3820 (5)O1—B1ix1.3797 (4)
Bi1—O3iii2.3820 (8)O2—B21.3747 (8)
Bi1—O3iv2.3820 (6)O3—B2x1.3701 (12)
Bi1—Sm1—O3i0O3iii—Bi1—O3vi142.064 (16)
Bi1—Sm1—O3ii0O3iv—Bi1—O3v89.20 (2)
Bi1—Sm1—O3iii0O3iv—Bi1—O3vi89.20 (2)
Bi1—Sm1—O3iv0O3v—Bi1—O3vi89.20 (2)
Bi1—Sm1—O3v0O1—Fe1—O1vii168.15 (3)
Bi1—Sm1—O3vi0O1—Fe1—O277.12 (2)
O3i—Sm1—O3ii89.20 (2)O1—Fe1—O2vii94.23 (2)
O3i—Sm1—O3iii89.20 (2)O1—Fe1—O392.09 (2)
O3i—Sm1—O3iv122.530 (16)O1—Fe1—O3viii95.48 (2)
O3i—Sm1—O3v142.06 (3)O1vii—Fe1—O294.23 (2)
O3i—Sm1—O3vi72.63 (2)O1vii—Fe1—O2vii77.12 (3)
O3ii—Sm1—O3iii89.20 (2)O1vii—Fe1—O395.48 (2)
O3ii—Sm1—O3iv142.06 (3)O1vii—Fe1—O3viii92.09 (3)
O3ii—Sm1—O3v72.626 (18)O2—Fe1—O2vii87.47 (3)
O3ii—Sm1—O3vi122.53 (2)O2—Fe1—O3167.50 (3)
O3iii—Sm1—O3iv72.63 (2)O2—Fe1—O3viii87.04 (3)
O3iii—Sm1—O3v122.53 (2)O2vii—Fe1—O387.04 (3)
O3iii—Sm1—O3vi142.064 (16)O2vii—Fe1—O3viii167.50 (2)
O3iv—Sm1—O3v89.20 (2)O3—Fe1—O3viii100.43 (3)
O3iv—Sm1—O3vi89.20 (2)Fe1—O1—Fe1xi103.58 (2)
O3v—Sm1—O3vi89.20 (2)Fe1—O1—B1ix128.21 (3)
Sm1—Bi1—O3i0Fe1xi—O1—B1ix128.21 (3)
Sm1—Bi1—O3ii0Fe1—O2—Fe1xi102.18 (2)
Sm1—Bi1—O3iii0Fe1—O2—B2128.91 (4)
Sm1—Bi1—O3iv0Fe1xi—O2—B2128.91 (4)
Sm1—Bi1—O3v0Sm1xii—O3—Bi1xii0.0 (5)
Sm1—Bi1—O3vi0Sm1xii—O3—Fe1120.41 (3)
O3i—Bi1—O3ii89.20 (2)Sm1xii—O3—B2x107.19 (3)
O3i—Bi1—O3iii89.20 (2)Bi1xii—O3—Fe1120.41 (3)
O3i—Bi1—O3iv122.530 (16)Bi1xii—O3—B2x107.19 (3)
O3i—Bi1—O3v142.06 (3)Fe1—O3—B2x132.27 (5)
O3i—Bi1—O3vi72.63 (2)O1xiii—B1—O1xiv120.00 (4)
O3ii—Bi1—O3iii89.20 (2)O1xiii—B1—O1xv120.00 (4)
O3ii—Bi1—O3iv142.06 (3)O1xiv—B1—O1xv120.00 (4)
O3ii—Bi1—O3v72.626 (18)O2—B2—O3xvi117.73 (8)
O3ii—Bi1—O3vi122.53 (2)O2—B2—O3xvii117.73 (8)
O3iii—Bi1—O3iv72.63 (2)O3xvi—B2—O3xvii124.54 (6)
O3iii—Bi1—O3v122.53 (2)
Symmetry codes: (i) x1, y1, z1; (ii) y+1, xy, z1; (iii) x+y, x+1, z1; (iv) y1, x1, z+1; (v) xy, y+1, z+1; (vi) x+1, x+y, z+1; (vii) x+y+2/3, x+4/3, z+1/3; (viii) xy+2/3, y+4/3, z+4/3; (ix) x+1, y+1, z; (x) x+2/3, y+1/3, z+1/3; (xi) y+4/3, xy+2/3, z1/3; (xii) x+1, y+1, z+1; (xiii) x1, y1, z; (xiv) y+1, xy, z; (xv) x+y, x+1, z; (xvi) x2/3, y1/3, z1/3; (xvii) y1/3, x2/3, z+4/3.
Samarium bismuth triiron tetrakis(borate) (400K) top
Crystal data top
Sm0.93Bi0.07Fe3(BO3)4Dx = 4.612 Mg m3
Mr = 557.2Mo Kα radiation, λ = 0.71073 Å
Trigonal, R32Cell parameters from 17062 reflections
Hall symbol: R 3 2"θ = 4.3–74.1°
a = 9.5650 (1) ŵ = 13.63 mm1
c = 7.5972 (1) ÅT = 400 K
V = 601.94 (1) Å3Sphere, light green
Z = 30.11 (1) mm (radius)
F(000) = 772
Data collection top
Rigaku Xcalibur EosS2 with high theta cut
diffractometer
2781 independent reflections
Radiation source: X-ray tube2761 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.1745 pixels mm-1θmax = 74.4°, θmin = 3.6°
ω scansh = 2525
Absorption correction: for a sphere
(JANA2006; Petříček et al., 2014)
k = 2525
Tmin = 0.116, Tmax = 0.215l = 2020
20801 measured reflections
Refinement top
Refinement on F2Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.000196I2)
R[F2 > 2σ(F2)] = 0.012(Δ/σ)max = 0.047
wR(F2) = 0.029Δρmax = 0.83 e Å3
S = 1.03Δρmin = 0.92 e Å3
2781 reflectionsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
36 parametersExtinction coefficient: 283E1 (4)
0 restraintsAbsolute structure: 1259 of Friedel pairs used in the refinement
2 constraintsAbsolute structure parameter: 0.028 (4)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sm10000.010045 (14)0.93
Bi10000.010045 (14)0.07
Fe10.783072 (13)0.6666670.6666670.006755 (19)
O10.85579 (6)0.85579 (6)0.50.00859 (9)
O20.59067 (8)0.59067 (8)0.50.01407 (14)
O30.97415 (6)0.78624 (7)0.81623 (7)0.01053 (10)
B1000.50.00660 (16)
B20.44683 (9)0.44683 (9)0.50.00770 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.010342 (18)0.010342 (18)0.00945 (2)0.005171 (9)00
Bi10.010342 (18)0.010342 (18)0.00945 (2)0.005171 (9)00
Fe10.00636 (2)0.00658 (3)0.00740 (3)0.003290 (13)0.000100 (9)0.000201 (18)
O10.00635 (9)0.00635 (9)0.01077 (15)0.00145 (11)0.00124 (6)0.00124 (6)
O20.00847 (12)0.00847 (12)0.0194 (3)0.00018 (15)0.00517 (11)0.00517 (11)
O30.00739 (11)0.01289 (14)0.01184 (12)0.00547 (11)0.00214 (9)0.00277 (10)
B10.00622 (19)0.00622 (19)0.0074 (3)0.00311 (10)00
B20.00669 (16)0.00669 (16)0.00922 (16)0.0030 (3)0.00033 (11)0.00033 (11)
Geometric parameters (Å, º) top
Sm1—Bi10Bi1—O3v2.3844 (5)
Sm1—O3i2.3844 (6)Bi1—O3vi2.3844 (8)
Sm1—O3ii2.3844 (5)Fe1—O12.0251 (4)
Sm1—O3iii2.3844 (8)Fe1—O1vii2.0251 (4)
Sm1—O3iv2.3844 (6)Fe1—O22.0447 (6)
Sm1—O3v2.3844 (5)Fe1—O2vii2.0447 (9)
Sm1—O3vi2.3844 (8)Fe1—O31.9619 (5)
Bi1—O3i2.3844 (6)Fe1—O3viii1.9619 (8)
Bi1—O3ii2.3844 (5)O1—B1ix1.3794 (4)
Bi1—O3iii2.3844 (8)O2—B21.3759 (8)
Bi1—O3iv2.3844 (6)O3—B2x1.3690 (11)
Bi1—Sm1—O3i0O3iii—Bi1—O3vi142.064 (16)
Bi1—Sm1—O3ii0O3iv—Bi1—O3v89.18 (2)
Bi1—Sm1—O3iii0O3iv—Bi1—O3vi89.18 (2)
Bi1—Sm1—O3iv0O3v—Bi1—O3vi89.18 (2)
Bi1—Sm1—O3v0O1—Fe1—O1vii168.16 (3)
Bi1—Sm1—O3vi0O1—Fe1—O277.08 (2)
O3i—Sm1—O3ii89.18 (2)O1—Fe1—O2vii94.27 (2)
O3i—Sm1—O3iii89.18 (2)O1—Fe1—O392.16 (2)
O3i—Sm1—O3iv122.550 (16)O1—Fe1—O3viii95.42 (2)
O3i—Sm1—O3v142.06 (3)O1vii—Fe1—O294.27 (2)
O3i—Sm1—O3vi72.65 (2)O1vii—Fe1—O2vii77.08 (3)
O3ii—Sm1—O3iii89.18 (2)O1vii—Fe1—O395.42 (2)
O3ii—Sm1—O3iv142.06 (3)O1vii—Fe1—O3viii92.16 (3)
O3ii—Sm1—O3v72.653 (19)O2—Fe1—O2vii87.51 (3)
O3ii—Sm1—O3vi122.55 (2)O2—Fe1—O3167.53 (3)
O3iii—Sm1—O3iv72.65 (2)O2—Fe1—O3viii87.03 (3)
O3iii—Sm1—O3v122.55 (2)O2vii—Fe1—O387.03 (3)
O3iii—Sm1—O3vi142.064 (16)O2vii—Fe1—O3viii167.53 (2)
O3iv—Sm1—O3v89.18 (2)O3—Fe1—O3viii100.41 (3)
O3iv—Sm1—O3vi89.18 (2)Fe1—O1—Fe1xi103.609 (19)
O3v—Sm1—O3vi89.18 (2)Fe1—O1—B1ix128.20 (3)
Sm1—Bi1—O3i0Fe1xi—O1—B1ix128.20 (3)
Sm1—Bi1—O3ii0Fe1—O2—Fe1xi102.23 (2)
Sm1—Bi1—O3iii0Fe1—O2—B2128.89 (4)
Sm1—Bi1—O3iv0Fe1xi—O2—B2128.89 (4)
Sm1—Bi1—O3v0Sm1xii—O3—Bi1xii0.0 (5)
Sm1—Bi1—O3vi0Sm1xii—O3—Fe1120.40 (3)
O3i—Bi1—O3ii89.18 (2)Sm1xii—O3—B2x107.16 (3)
O3i—Bi1—O3iii89.18 (2)Bi1xii—O3—Fe1120.40 (3)
O3i—Bi1—O3iv122.550 (16)Bi1xii—O3—B2x107.16 (3)
O3i—Bi1—O3v142.06 (3)Fe1—O3—B2x132.31 (5)
O3i—Bi1—O3vi72.65 (2)O1xiii—B1—O1xiv120.00 (4)
O3ii—Bi1—O3iii89.18 (2)O1xiii—B1—O1xv120.00 (4)
O3ii—Bi1—O3iv142.06 (3)O1xiv—B1—O1xv120.00 (4)
O3ii—Bi1—O3v72.653 (19)O2—B2—O3xvi117.75 (8)
O3ii—Bi1—O3vi122.55 (2)O2—B2—O3xvii117.75 (8)
O3iii—Bi1—O3iv72.65 (2)O3xvi—B2—O3xvii124.51 (5)
O3iii—Bi1—O3v122.55 (2)
Symmetry codes: (i) x1, y1, z1; (ii) y+1, xy, z1; (iii) x+y, x+1, z1; (iv) y1, x1, z+1; (v) xy, y+1, z+1; (vi) x+1, x+y, z+1; (vii) x+y+2/3, x+4/3, z+1/3; (viii) xy+2/3, y+4/3, z+4/3; (ix) x+1, y+1, z; (x) x+2/3, y+1/3, z+1/3; (xi) y+4/3, xy+2/3, z1/3; (xii) x+1, y+1, z+1; (xiii) x1, y1, z; (xiv) y+1, xy, z; (xv) x+y, x+1, z; (xvi) x2/3, y1/3, z1/3; (xvii) y1/3, x2/3, z+4/3.
(Sample7_1_NoBi) top
Crystal data top
SmFe3B4O12Dx = 4.580 Mg m3
Mr = 553.1Mo Kα radiation, λ = 0.71073 Å
Trigonal, R32Cell parameters from 19924 reflections
Hall symbol: R 3 2"θ = 5.6–73.7°
a = 9.5665 (1) ŵ = 12.61 mm1
c = 7.5911 (1) ÅT = 293 K
V = 601.65 (1) Å3Sphere, light-green
Z = 30.13 mm (radius)
F(000) = 768
Data collection top
Rigaku Xcalibur EosS2 with high theta cut
diffractometer
2770 independent reflections
Radiation source: X-ray tube2770 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.0628 pixels mm-1θmax = 74.2°, θmin = 4.3°
ω scansh = 2524
Absorption correction: for a sphere
(JANA2006; Petříček et al., 2014)
k = 2123
Tmin = 0.109, Tmax = 0.208l = 1920
20799 measured reflections
Refinement top
Refinement on F2Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
R[F2 > 2σ(F2)] = 0.009(Δ/σ)max = 0.047
wR(F2) = 0.026Δρmax = 1.12 e Å3
S = 1.02Δρmin = 1.32 e Å3
2770 reflectionsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
36 parametersExtinction coefficient: 178E1 (5)
0 restraintsAbsolute structure: 1259 of Friedel pairs used in the refinement
0 constraintsAbsolute structure parameter: 0.397 (4)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10000.007673 (8)
Fe10.783035 (9)0.6666670.6666670.005381 (13)
B1000.50.00553 (11)
B20.44687 (6)0.44687 (6)0.50.00651 (10)
O10.85576 (4)0.85576 (4)0.50.00690 (6)
O20.59061 (5)0.59061 (5)0.50.01141 (9)
O30.97419 (4)0.78644 (5)0.81637 (5)0.00849 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.007962 (10)0.007962 (10)0.007095 (13)0.003981 (5)00
Fe10.005090 (14)0.005267 (17)0.00585 (2)0.002634 (8)0.000060 (5)0.000120 (10)
B10.00499 (13)0.00499 (13)0.0066 (2)0.00249 (6)00
B20.00556 (10)0.00556 (10)0.00781 (14)0.00234 (15)0.00022 (7)0.00022 (7)
O10.00523 (6)0.00523 (6)0.00852 (11)0.00134 (7)0.00100 (4)0.00100 (4)
O20.00695 (7)0.00695 (7)0.01564 (18)0.00003 (10)0.00417 (7)0.00417 (7)
O30.00625 (7)0.01021 (9)0.00949 (8)0.00447 (6)0.00164 (6)0.00202 (6)
Geometric parameters (Å, º) top
Sm1—O3i2.3819 (4)Fe1—O2vii2.0444 (6)
Sm1—O3ii2.3819 (4)Fe1—O31.9629 (3)
Sm1—O3iii2.3819 (6)Fe1—O3viii1.9629 (5)
Sm1—O3iv2.3819 (4)B1—O1ix1.3799 (3)
Sm1—O3v2.3819 (4)B1—O1x1.3799 (5)
Sm1—O3vi2.3819 (6)B1—O1xi1.3799 (5)
Fe1—O12.0245 (3)B2—O21.3751 (6)
Fe1—O1vii2.0245 (3)B2—O3xii1.3700 (8)
Fe1—O22.0444 (4)B2—O3xiii1.3700 (8)
O3i—Sm1—O3ii89.212 (15)O1vii—Fe1—O3viii92.094 (18)
O3i—Sm1—O3iii89.212 (15)O2—Fe1—O2vii87.48 (2)
O3i—Sm1—O3iv122.539 (11)O2—Fe1—O3167.50 (2)
O3i—Sm1—O3v142.046 (18)O2—Fe1—O3viii87.03 (2)
O3i—Sm1—O3vi72.611 (15)O2vii—Fe1—O387.025 (19)
O3ii—Sm1—O3iii89.212 (15)O2vii—Fe1—O3viii167.505 (16)
O3ii—Sm1—O3iv142.046 (18)O3—Fe1—O3viii100.46 (2)
O3ii—Sm1—O3v72.611 (13)O1ix—B1—O1x120.00 (3)
O3ii—Sm1—O3vi122.539 (17)O1ix—B1—O1xi120.00 (3)
O3iii—Sm1—O3iv72.611 (15)O1x—B1—O1xi120.00 (3)
O3iii—Sm1—O3v122.539 (17)O2—B2—O3xii117.69 (6)
O3iii—Sm1—O3vi142.046 (11)O2—B2—O3xiii117.69 (6)
O3iv—Sm1—O3v89.212 (15)O3xii—B2—O3xiii124.61 (4)
O3iv—Sm1—O3vi89.212 (15)Fe1—O1—Fe1xiv103.571 (13)
O3v—Sm1—O3vi89.212 (15)Fe1—O1—B1xv128.21 (2)
O1—Fe1—O1vii168.16 (2)Fe1xiv—O1—B1xv128.21 (2)
O1—Fe1—O277.131 (14)Fe1—O2—Fe1xiv102.166 (16)
O1—Fe1—O2vii94.228 (17)Fe1—O2—B2128.92 (3)
O1—Fe1—O392.095 (14)Fe1xiv—O2—B2128.92 (3)
O1—Fe1—O3viii95.473 (16)Sm1xvi—O3—Fe1120.42 (2)
O1vii—Fe1—O294.228 (16)Sm1xvi—O3—B2xvii107.25 (2)
O1vii—Fe1—O2vii77.131 (19)Fe1—O3—B2xvii132.21 (3)
O1vii—Fe1—O395.473 (15)
Symmetry codes: (i) x1, y1, z1; (ii) y+1, xy, z1; (iii) x+y, x+1, z1; (iv) y1, x1, z+1; (v) xy, y+1, z+1; (vi) x+1, x+y, z+1; (vii) x+y+2/3, x+4/3, z+1/3; (viii) xy+2/3, y+4/3, z+4/3; (ix) x1, y1, z; (x) y+1, xy, z; (xi) x+y, x+1, z; (xii) x2/3, y1/3, z1/3; (xiii) y1/3, x2/3, z+4/3; (xiv) y+4/3, xy+2/3, z1/3; (xv) x+1, y+1, z; (xvi) x+1, y+1, z+1; (xvii) x+2/3, y+1/3, z+1/3.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds