Download citation
Download citation
link to html
The title compound, [CuCl2(C5H10N4)]n, is the first structurally characterized complex of a transition metal halide with a 2-monosubstituted tetrazole. The Cu atom is five-coordinated and has a distorted square-pyramidal coordination geometry. One of the basal sites of the pyramid is occupied by an N atom of the tetrazole ligand [Cu—N = 2.0131 (19) Å]. A Cl atom occupies the apical position [Cu—Cl = 2.6438 (8) Å] and belongs to the basal plane of the coordination pyramid of the neighbouring Cu atom. In fact, all the Cl atoms act as bridging ligands and the Cu atom coordination polyhedron shares both Cl—Cl edges with the polyhedra of two neighbouring Cu atoms, thus giving rise to polymeric chains running along the a axis of the crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802023085/ya6146sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802023085/ya6146Isup2.hkl
Contains datablock I

CCDC reference: 202977

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.035
  • wR factor = 0.098
  • Data-to-parameter ratio = 26.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Computing details top

Data collection: R3m Software (Nicolet, 1980); cell refinement: R3m Software; data reduction: R3m Software; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97.

catena-poly[[(2-tert-butyltetrazole-κN4)copper(II)]-di-µ-chloro] top
Crystal data top
[CuCl2(C5H10N4)]Z = 2
Mr = 260.61F(000) = 262
Triclinic, P1Dx = 1.716 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 6.1054 (15) ÅCell parameters from 25 reflections
b = 9.598 (3) Åθ = 19.2–22.1°
c = 9.813 (3) ŵ = 2.65 mm1
α = 108.92 (2)°T = 293 K
β = 106.899 (19)°Prism, green
γ = 97.39 (2)°0.60 × 0.42 × 0.10 mm
V = 504.5 (2) Å3
Data collection top
Nicolet R3m four-circle
diffractometer
2663 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 30.1°, θmin = 2.3°
ω/2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 1312
Tmin = 0.299, Tmax = 0.778l = 013
3216 measured reflections3 standard reflections every 100 reflections
2961 independent reflections intensity decay: 0.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.2094P]
where P = (Fo2 + 2Fc2)/3
2961 reflections(Δ/σ)max < 0.001
112 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.87 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.22407 (4)0.41412 (3)0.49362 (3)0.03175 (10)
Cl10.59253 (8)0.45976 (6)0.66413 (6)0.03636 (12)
Cl20.16180 (9)0.62584 (6)0.65569 (6)0.04406 (15)
N10.3290 (4)0.0171 (3)0.3036 (3)0.0648 (7)
N20.0982 (3)0.03464 (19)0.2408 (2)0.0350 (3)
N30.0305 (3)0.0903 (2)0.2848 (2)0.0417 (4)
N40.2226 (3)0.1962 (2)0.3855 (2)0.0369 (4)
C50.4010 (5)0.1278 (3)0.3940 (4)0.0607 (8)
H50.55730.17690.45630.073*
C60.0690 (4)0.1850 (2)0.1303 (3)0.0394 (4)
C70.2789 (5)0.1530 (3)0.0281 (4)0.0599 (7)
H7A0.35990.09840.08980.090*
H7B0.38460.24720.04750.090*
H7C0.22500.09310.02280.090*
C80.0642 (6)0.2725 (3)0.0382 (4)0.0661 (8)
H8A0.11240.21730.01840.099*
H8B0.03650.37040.03230.099*
H8C0.20110.28540.10690.099*
C90.1393 (7)0.2653 (4)0.2264 (4)0.0780 (10)
H9A0.00040.27560.29560.117*
H9B0.24070.36410.15990.117*
H9C0.22150.20710.28450.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02355 (13)0.03013 (14)0.03111 (14)0.00532 (9)0.00740 (9)0.00112 (10)
Cl10.0283 (2)0.0393 (3)0.0319 (2)0.00523 (18)0.00467 (17)0.00819 (19)
Cl20.0266 (2)0.0424 (3)0.0398 (3)0.00939 (19)0.00530 (19)0.0082 (2)
N10.0396 (11)0.0377 (11)0.0812 (17)0.0125 (9)0.0026 (11)0.0019 (11)
N20.0344 (8)0.0298 (8)0.0328 (8)0.0065 (6)0.0080 (7)0.0059 (6)
N30.0314 (8)0.0319 (8)0.0458 (10)0.0053 (7)0.0086 (7)0.0002 (7)
N40.0316 (8)0.0305 (8)0.0370 (8)0.0053 (6)0.0075 (7)0.0032 (7)
C50.0364 (12)0.0378 (12)0.0744 (19)0.0097 (9)0.0034 (12)0.0005 (12)
C60.0376 (10)0.0292 (9)0.0383 (10)0.0011 (8)0.0081 (8)0.0039 (8)
C70.0442 (13)0.0483 (14)0.0569 (15)0.0058 (11)0.0026 (12)0.0026 (12)
C80.0578 (16)0.0510 (15)0.0569 (16)0.0118 (12)0.0136 (13)0.0136 (12)
C90.085 (2)0.0624 (19)0.081 (2)0.0088 (17)0.0273 (19)0.0328 (17)
Geometric parameters (Å, º) top
Cu1—Cl12.2661 (9)C6—C91.512 (4)
Cu1—Cl2i2.2892 (9)C6—C81.515 (4)
Cu1—Cl22.2931 (9)C6—C71.516 (4)
Cu1—Cl1ii2.6438 (8)C7—H7A0.9600
Cu1—N42.0131 (19)C7—H7B0.9600
N1—N21.327 (3)C7—H7C0.9600
N1—C51.316 (3)C8—H8A0.9600
N2—N31.300 (2)C8—H8B0.9600
N2—C61.504 (3)C8—H8C0.9600
N3—N41.324 (2)C9—H9A0.9600
N4—C51.339 (3)C9—H9B0.9600
C5—H50.9300C9—H9C0.9600
N4—Cu1—Cl191.54 (6)N2—C6—C8107.18 (19)
N4—Cu1—Cl2i91.39 (6)C9—C6—C8111.1 (3)
Cl1—Cu1—Cl2i173.63 (2)N2—C6—C7107.66 (19)
N4—Cu1—Cl2161.22 (6)C9—C6—C7112.1 (3)
Cl1—Cu1—Cl290.59 (4)C8—C6—C7111.6 (2)
Cl2i—Cu1—Cl284.83 (4)C6—C7—H7A109.5
N4—Cu1—Cl1ii99.64 (6)C6—C7—H7B109.5
Cl1—Cu1—Cl1ii89.26 (3)H7A—C7—H7B109.5
Cl2i—Cu1—Cl1ii95.82 (3)C6—C7—H7C109.5
Cl2—Cu1—Cl1ii99.05 (3)H7A—C7—H7C109.5
Cu1—Cl1—Cu1ii90.74 (3)H7B—C7—H7C109.5
Cu1i—Cl2—Cu195.17 (4)C6—C8—H8A109.5
C5—N1—N2102.2 (2)C6—C8—H8B109.5
N3—N2—N1113.55 (18)H8A—C8—H8B109.5
N3—N2—C6123.33 (18)C6—C8—H8C109.5
N1—N2—C6123.12 (18)H8A—C8—H8C109.5
N2—N3—N4106.15 (18)H8B—C8—H8C109.5
N3—N4—C5106.08 (19)C6—C9—H9A109.5
N3—N4—Cu1123.85 (14)C6—C9—H9B109.5
C5—N4—Cu1130.06 (16)H9A—C9—H9B109.5
N1—C5—N4111.9 (2)C6—C9—H9C109.5
N1—C5—H5124.0H9A—C9—H9C109.5
N4—C5—H5124.0H9B—C9—H9C109.5
N2—C6—C9106.9 (2)
N4—Cu1—Cl1—Cu1ii99.62 (6)Cl2—Cu1—N4—N370.2 (3)
Cl2—Cu1—Cl1—Cu1ii99.04 (3)Cl1ii—Cu1—N4—N3103.87 (18)
Cl1ii—Cu1—Cl1—Cu1ii0.0Cl1—Cu1—N4—C514.8 (3)
N4—Cu1—Cl2—Cu1i79.02 (17)Cl2i—Cu1—N4—C5170.8 (3)
Cl1—Cu1—Cl2—Cu1i175.57 (2)Cl2—Cu1—N4—C5111.2 (3)
Cl2i—Cu1—Cl2—Cu1i0.0Cl1ii—Cu1—N4—C574.7 (3)
Cl1ii—Cu1—Cl2—Cu1i95.08 (3)N2—N1—C5—N40.7 (4)
C5—N1—N2—N31.6 (3)N3—N4—C5—N10.5 (4)
C5—N1—N2—C6177.9 (2)Cu1—N4—C5—N1179.2 (2)
N1—N2—N3—N42.0 (3)N3—N2—C6—C993.3 (3)
C6—N2—N3—N4177.52 (18)N1—N2—C6—C986.2 (3)
N2—N3—N4—C51.4 (3)N3—N2—C6—C8147.5 (2)
N2—N3—N4—Cu1179.71 (14)N1—N2—C6—C833.0 (3)
Cl1—Cu1—N4—N3166.62 (18)N3—N2—C6—C727.3 (3)
Cl2i—Cu1—N4—N37.73 (18)N1—N2—C6—C7153.2 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds