Download citation
Download citation
link to html
New coordination compounds trans-bis­(oxalato)di­aqua­rhodiate sodium dihydrate Na[Rh(H2O)2Ox2]·2H2O (crystallizes in two polymorphic forms NaRh-1 and NaRh-2), trans-bis­(oxalato)hydroxo­aqua­rhodiate sodium tetrahydrate Na2[Rh(H2O)(OH)Ox2]·4H2O (Na2Rh) and trans-bis­(oxalato)di­aqua­rhodic acid tetrahydrate (H3O)[Rh(H2O)2Ox2]·4H2O (HRh) are synthesized. The compounds are characterized by IR spectroscopy, elemental analysis and single crystal X-ray diffraction. NaRh-1, NaRh-2 and Na2Rh crystallize in space group P1. Trans-bis­(oxalato)di­aqua­rhodic acid exists not only in solution, but can also crystallize as a tetrahydrate (space group C2/c). The formation of various species in solution of rhodium hydroxide in oxalic acid and their redistribution were studied using 103Rh NMR spectroscopy.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205252062101115X/yh5016sup1.cif
Contains datablocks HRh, Na2Rh, NaRh-1, NaRh-2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252062101115X/yh5016HRhsup2.hkl
Contains datablock HRh

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252062101115X/yh5016Na2Rhsup3.hkl
Contains datablock Na2Rh

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252062101115X/yh5016NaRh-1sup4.hkl
Contains datablock NaRh-1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252062101115X/yh5016NaRh-2sup5.hkl
Contains datablock NaRh-2

CCDC references: 2093873; 2093874; 2093875; 2093876

Computing details top

Data collection: Bruker APEX3 for HRh; Bruker APEX2 for Na2Rh; CrysAlis PRO 1.171.38.46 (Rigaku OD, 2015) for NaRh-2. Cell refinement: Bruker SAINT for HRh, Na2Rh; CrysAlis PRO 1.171.38.46 (Rigaku OD, 2015) for NaRh-2. Data reduction: Bruker SAINT for HRh, Na2Rh; CrysAlis PRO 1.171.38.46 (Rigaku OD, 2015) for NaRh-2. Program(s) used to solve structure: ShelXT (Sheldrick, 2015) for HRh, Na2Rh; SHELXS97 (Sheldrick, 2008) for NaRh-1; SHELXT-2018 (Sheldrick, 2015) for NaRh-2. Program(s) used to refine structure: SHELXL (Sheldrick, 2015) for HRh, Na2Rh, NaRh-1; SHELXL2018 (Sheldrick, 2015) for NaRh-2. Molecular graphics: Olex2 (Dolomanov et al., 2009) for HRh, Na2Rh, NaRh-1; ShelXle (Hübschle, 2011) for NaRh-2. Software used to prepare material for publication: Olex2 (Dolomanov et al., 2009) for HRh, Na2Rh, NaRh-1; CIFTAB (Sheldrick, 2015) for NaRh-2.

(HRh) top
Crystal data top
C4H4O10Rh·3(H2O)·(H5O2)F(000) = 816
Mr = 406.07Dx = 2.054 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.2131 (8) ÅCell parameters from 8655 reflections
b = 13.0362 (6) Åθ = 2.6–30.5°
c = 6.3015 (3) ŵ = 1.38 mm1
β = 99.572 (2)°T = 150 K
V = 1313.32 (11) Å3Block, light yellow
Z = 40.13 × 0.1 × 0.08 mm
Data collection top
Bruker D8 Venture
diffractometer
1996 independent reflections
Radiation source: Incoatec IuS3.0 microfocus X-ray tube1774 reflections with I > 2σ(I)
Incoatec HELIOS multilayer mirrors monochromatorRint = 0.025
Detector resolution: 7.41 pixels mm-1θmax = 30.5°, θmin = 2.0°
ω and φ scansh = 2323
Absorption correction: multi-scan
SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.0746 before and 0.0555 after correction. The Ratio of minimum to maximum transmission is 0.8463. The λ/2 correction factor is Not present.
k = 1718
Tmin = 0.631, Tmax = 0.746l = 97
7956 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0165P)2 + 4.4254P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1996 reflectionsΔρmax = 0.70 e Å3
102 parametersΔρmin = 0.73 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.2500000.2500000.5000000.01806 (7)
O10.18127 (9)0.12063 (11)0.4605 (3)0.0200 (3)
O1A0.20064 (9)0.04681 (11)0.4244 (2)0.0197 (3)
O20.33893 (10)0.15918 (11)0.4132 (3)0.0222 (3)
O2A0.35667 (10)0.00480 (11)0.3290 (2)0.0199 (3)
C10.22535 (13)0.04303 (15)0.4268 (3)0.0157 (3)
C20.31488 (13)0.06547 (15)0.3862 (3)0.0159 (4)
O2W0.45548 (11)0.22119 (14)0.9158 (3)0.0275 (4)
O1W0.28772 (11)0.21350 (12)0.8130 (3)0.0254 (3)
H1WA0.2710650.1544200.8385480.038*
H1WB0.3400660.2085570.8408360.038*
H2WB0.4678760.2823290.9473370.038*0.5
H2W0.4803160.2021190.8159270.038*0.5
H2WA0.4701860.1841691.0253270.038*
O3W0.5000000.09158 (18)1.2500000.0232 (4)
H3WA0.5412890.0527801.2485690.035*0.5
H3WB0.4629990.0532341.2858830.035*0.5
O4W0.04220 (14)0.0884 (2)0.4373 (5)0.0621 (8)
H4WC0.0190180.0457410.5081600.14 (5)*0.5
H4WA0.0875980.0641010.4123290.109 (19)*
H4WB0.0515480.1428810.5085000.08 (3)*0.5
H4W0.0106480.1009310.3204490.13 (5)*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.02282 (12)0.00693 (10)0.02589 (12)0.00165 (8)0.00834 (8)0.00095 (8)
O10.0231 (7)0.0092 (6)0.0286 (8)0.0011 (5)0.0066 (6)0.0012 (5)
O1A0.0203 (7)0.0113 (6)0.0268 (7)0.0014 (5)0.0018 (6)0.0023 (5)
O20.0245 (7)0.0095 (6)0.0354 (9)0.0016 (6)0.0131 (6)0.0014 (6)
O2A0.0254 (7)0.0146 (7)0.0201 (7)0.0043 (6)0.0051 (6)0.0028 (5)
C10.0210 (9)0.0115 (8)0.0141 (8)0.0008 (7)0.0016 (7)0.0005 (7)
C20.0221 (9)0.0121 (8)0.0138 (8)0.0022 (7)0.0037 (7)0.0015 (6)
O2W0.0249 (8)0.0313 (9)0.0266 (8)0.0050 (7)0.0052 (6)0.0056 (7)
O1W0.0339 (9)0.0112 (6)0.0317 (8)0.0005 (6)0.0072 (7)0.0024 (6)
O3W0.0153 (9)0.0263 (12)0.0289 (11)0.0000.0060 (8)0.000
O4W0.0330 (11)0.0491 (15)0.113 (2)0.0211 (10)0.0374 (14)0.0469 (16)
Geometric parameters (Å, º) top
Rh1—O1i2.0140 (15)O2W—H2W0.8394
Rh1—O12.0139 (15)O2W—H2WA0.8432
Rh1—O2i2.0104 (15)O1W—H1WA0.8404
Rh1—O22.0105 (15)O1W—H1WB0.8401
Rh1—O1Wi2.0225 (17)O3W—H3WA0.8403
Rh1—O1W2.0225 (17)O3W—H3WAii0.84 (15)
O1—C11.277 (2)O3W—H3WBii0.84 (15)
O1A—C11.237 (2)O3W—H3WB0.8403
O2—C21.285 (2)O4W—H4WC0.8400
O2A—C21.228 (2)O4W—H4WA0.8401
C1—C21.543 (3)O4W—H4WB0.8400
O2W—H2WB0.8377O4W—H4W0.8400
O1—Rh1—O1i180.0O1A—C1—C2119.28 (17)
O1i—Rh1—O1W90.29 (6)O2—C2—C1115.55 (17)
O1i—Rh1—O1Wi89.71 (6)O2A—C2—O2125.29 (19)
O1—Rh1—O1W89.71 (6)O2A—C2—C1119.15 (18)
O1—Rh1—O1Wi90.29 (6)H2WB—O2W—H2WA109.1
O2i—Rh1—O1i83.13 (6)H2W—O2W—H2WA109.8
O2—Rh1—O1i96.87 (6)Rh1—O1W—H1WA110.3
O2—Rh1—O183.13 (6)Rh1—O1W—H1WB110.6
O2i—Rh1—O196.87 (6)H1WA—O1W—H1WB103.6
O2i—Rh1—O2180.0H3WA—O3W—H3WAii106.0
O2i—Rh1—O1W89.28 (7)H3WAii—O3W—H3WBii104.5
O2i—Rh1—O1Wi90.72 (7)H3WA—O3W—H3WB104.5
O2—Rh1—O1Wi89.28 (7)H3WA—O3W—H3WBii14.8
O2—Rh1—O1W90.72 (7)H3WB—O3W—H3WAii14.8
O1Wi—Rh1—O1W180.0H3WB—O3W—H3WBii107.0
C1—O1—Rh1111.75 (13)H4WC—O4W—H4WA109.5
C2—O2—Rh1112.35 (13)H4WA—O4W—H4WB109.5
O1—C1—C2116.45 (17)H4WA—O4W—H4W109.5
O1A—C1—O1124.27 (19)
Rh1—O1—C1—O1A170.50 (16)O1—C1—C2—O27.2 (3)
Rh1—O1—C1—C29.7 (2)O1—C1—C2—O2A171.87 (18)
Rh1—O2—C2—O2A178.50 (16)O1A—C1—C2—O2173.04 (18)
Rh1—O2—C2—C10.5 (2)O1A—C1—C2—O2A7.9 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x+1, y, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1Aiii0.841.942.745 (2)160
O1W—H1WB···O2W0.841.862.691 (2)170
O2W—H2WB···O4Wiv0.841.852.647 (4)158
O2W—H2W···O2Wv0.841.952.730 (3)155
O2W—H2WA···O3W0.841.862.703 (2)175
O3W—H3WA···O2Av0.841.952.7589 (19)161
O3W—H3WB···O2Avi0.841.942.7589 (19)164
O4W—H4WC···O4Wvii0.842.072.858 (5)157
O4W—H4WA···O1A0.841.842.640 (3)160
O4W—H4WB···O2Wviii0.841.842.647 (4)160
O4W—H4W···O4Wix0.841.712.524 (7)162
Symmetry codes: (iii) x, y, z+1/2; (iv) x+1/2, y1/2, z+3/2; (v) x+1, y, z+3/2; (vi) x, y, z+1; (vii) x, y, z+1; (viii) x+1/2, y+1/2, z+3/2; (ix) x, y, z+1/2.
(Na2Rh) top
Crystal data top
C4H11Na2O14RhZ = 1
Mr = 432.02F(000) = 214
Triclinic, P1Dx = 2.404 Mg m3
a = 5.5500 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.4400 (13) ÅCell parameters from 3338 reflections
c = 8.5900 (17) Åθ = 3.2–31.5°
α = 94.20 (3)°µ = 1.59 mm1
β = 99.40 (3)°T = 150 K
γ = 98.10 (3)°Plate, light yellow
V = 298.42 (11) Å30.2 × 0.12 × 0.06 mm
Data collection top
Bruker APEX
diffractometer
1984 independent reflections
Radiation source: sealed tube1975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.33 pixels mm-1θmax = 31.5°, θmin = 2.4°
φ and ω scansh = 87
Absorption correction: multi-scan
SADABS-2012/1 (Bruker,2012) was used for absorption correction. wR2(int) was 0.0409 before and 0.0312 after correction. The Ratio of minimum to maximum transmission is 0.8860. The λ/2 correction factor is 0.0015.
k = 69
Tmin = 0.661, Tmax = 0.746l = 129
3654 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Only H-atom coordinates refined
wR(F2) = 0.043 w = 1/[σ2(Fo2) + 0.2058P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1984 reflectionsΔρmax = 0.81 e Å3
115 parametersΔρmin = 1.15 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh11.0000000.5000001.0000000.00490 (4)
Na10.34339 (11)0.27579 (10)0.39134 (7)0.01407 (12)
O10.82155 (18)0.43668 (15)0.77298 (11)0.00861 (17)
O20.84634 (17)0.20136 (15)1.01610 (11)0.00840 (17)
O2A0.64014 (18)0.08094 (15)0.85859 (12)0.01118 (18)
O1W0.69920 (17)0.61254 (16)1.06057 (12)0.00876 (17)
H1WA0.688 (4)0.715 (3)1.015 (2)0.013*
H1W0.562 (5)0.549 (6)1.019 (5)0.013*0.5
O2W0.2773 (2)0.49025 (19)0.61525 (14)0.0160 (2)
H2WA0.176 (4)0.575 (3)0.608 (3)0.024*
H2WB0.276 (5)0.437 (4)0.701 (2)0.024*
O1A0.6014 (3)0.16343 (19)0.61175 (14)0.0244 (3)
O3W0.0789 (2)0.1099 (2)0.33619 (15)0.0203 (2)
H3WA0.150 (5)0.105 (4)0.244 (2)0.031*
H3WB0.193 (4)0.060 (4)0.377 (3)0.031*
C10.7167 (3)0.2435 (2)0.74093 (16)0.0103 (2)
C20.7346 (2)0.1061 (2)0.88150 (15)0.0075 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.00469 (6)0.00475 (6)0.00449 (7)0.00056 (4)0.00005 (4)0.00041 (4)
Na10.0128 (3)0.0173 (3)0.0106 (3)0.0000 (2)0.0012 (2)0.0016 (2)
O10.0103 (4)0.0083 (4)0.0058 (4)0.0005 (3)0.0007 (3)0.0005 (3)
O20.0097 (4)0.0065 (4)0.0076 (4)0.0016 (3)0.0001 (3)0.0005 (3)
O2A0.0129 (4)0.0063 (4)0.0128 (4)0.0014 (3)0.0011 (3)0.0010 (3)
O1W0.0067 (4)0.0093 (4)0.0106 (4)0.0011 (3)0.0028 (3)0.0005 (3)
O2W0.0157 (5)0.0193 (5)0.0140 (5)0.0026 (4)0.0061 (4)0.0010 (4)
O1A0.0432 (7)0.0116 (5)0.0106 (5)0.0032 (5)0.0102 (5)0.0019 (4)
O3W0.0170 (5)0.0267 (6)0.0168 (5)0.0013 (4)0.0039 (4)0.0055 (5)
C10.0133 (5)0.0083 (5)0.0079 (5)0.0011 (4)0.0007 (4)0.0004 (4)
C20.0070 (5)0.0070 (5)0.0083 (5)0.0011 (4)0.0012 (4)0.0001 (4)
Geometric parameters (Å, º) top
Rh1—O1i2.0221 (11)Na1—O3W2.3907 (16)
Rh1—O12.0221 (11)O1—C11.2868 (17)
Rh1—O2i2.0150 (11)O2—C21.2854 (16)
Rh1—O22.0151 (11)O2A—C21.2324 (16)
Rh1—O1Wi2.0377 (10)O1W—H1WA0.797 (15)
Rh1—O1W2.0378 (10)O1W—H1W0.823 (19)
Na1—Na1ii3.4033 (18)O2W—H2WA0.837 (16)
Na1—O1ii2.5879 (13)O2W—H2WB0.836 (16)
Na1—O2Aiii2.4277 (14)O1A—C11.2239 (18)
Na1—O2Wii2.4211 (15)O3W—H3WA0.823 (17)
Na1—O2W2.3928 (15)O3W—H3WB0.813 (17)
Na1—O1Aiii2.8864 (15)C1—C21.5467 (19)
Na1—O1A2.4012 (15)
O1—Rh1—O1i180.0O1A—Na1—O1Aiii61.20 (5)
O1—Rh1—O1W89.72 (5)O3W—Na1—Na1ii134.80 (5)
O1i—Rh1—O1W90.28 (5)O3W—Na1—O1ii83.95 (5)
O1i—Rh1—O1Wi89.72 (5)O3W—Na1—O2Aiii82.91 (5)
O1—Rh1—O1Wi90.28 (5)O3W—Na1—O2Wii162.24 (5)
O2i—Rh1—O197.36 (5)O3W—Na1—O2W92.21 (6)
O2—Rh1—O182.64 (5)O3W—Na1—O1A116.31 (6)
O2i—Rh1—O1i82.64 (5)O3W—Na1—O1Aiii78.79 (5)
O2—Rh1—O1i97.36 (5)Rh1—O1—Na1ii122.51 (5)
O2i—Rh1—O2180.0C1—O1—Rh1112.54 (9)
O2—Rh1—O1Wi88.78 (5)C1—O1—Na1ii119.86 (8)
O2—Rh1—O1W91.22 (5)C2—O2—Rh1112.78 (9)
O2i—Rh1—O1Wi91.22 (5)C2—O2A—Na1iii118.35 (9)
O2i—Rh1—O1W88.78 (5)Rh1—O1W—H1WA105.2 (16)
O1Wi—Rh1—O1W180.0Rh1—O1W—H1W117 (3)
O1ii—Na1—Na1ii78.44 (4)H1WA—O1W—H1W95 (4)
O1ii—Na1—O1Aiii145.39 (4)Na1—O2W—Na1ii89.98 (5)
O2Aiii—Na1—Na1ii136.52 (5)Na1—O2W—H2WA122.8 (17)
O2Aiii—Na1—O1ii87.27 (4)Na1ii—O2W—H2WA100.8 (17)
O2Aiii—Na1—O1Aiii61.11 (4)Na1—O2W—H2WB118.5 (17)
O2W—Na1—Na1ii45.35 (4)Na1ii—O2W—H2WB113.4 (18)
O2Wii—Na1—Na1ii44.67 (4)H2WA—O2W—H2WB108 (2)
O2Wii—Na1—O1ii78.69 (5)Na1—O1A—Na1iii118.80 (5)
O2W—Na1—O1ii85.03 (4)C1—O1A—Na1iii104.44 (10)
O2Wii—Na1—O2Aiii92.47 (5)C1—O1A—Na1136.60 (10)
O2W—Na1—O2Aiii171.28 (5)Na1—O3W—H3WA116.3 (19)
O2W—Na1—O2Wii90.02 (5)Na1—O3W—H3WB143.4 (19)
O2W—Na1—O1Aiii125.11 (5)H3WA—O3W—H3WB100 (3)
O2W—Na1—O1A76.15 (5)O1—C1—C2115.81 (11)
O2Wii—Na1—O1Aiii113.96 (5)O1A—C1—O1125.71 (13)
O1Aiii—Na1—Na1ii133.89 (4)O1A—C1—C2118.46 (13)
O1A—Na1—Na1ii74.00 (4)O2—C2—C1115.75 (11)
O1A—Na1—O1ii152.43 (5)O2A—C2—O2125.11 (13)
O1A—Na1—O2Aiii112.48 (5)O2A—C2—C1119.13 (12)
O1A—Na1—O2Wii81.32 (5)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
(NaRh-1) top
Crystal data top
C4H8NaO12RhZ = 1
Mr = 374.00F(000) = 184
Triclinic, P1Dx = 2.439 Mg m3
a = 5.2554 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.4584 (2) ÅCell parameters from 5321 reflections
c = 8.2102 (2) Åθ = 3.9–33.2°
α = 97.796 (1)°µ = 1.79 mm1
β = 92.099 (1)°T = 150 K
γ = 112.113 (1)°Block, orange
V = 254.61 (1) Å30.35 × 0.24 × 0.2 mm
Data collection top
Bruker APEX-II CCD
diffractometer
1909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 33.2°, θmin = 3.9°
Absorption correction: multi-scan
SADABS-2012/1 (Bruker,2012) was used for absorption correction. wR2(int) was 0.0452 before and 0.0317 after correction. The Ratio of minimum to maximum transmission is 0.8480. The λ/2 correction factor is 0.0015.
h = 78
Tmin = 0.633, Tmax = 0.747k = 99
5308 measured reflectionsl = 812
1912 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0172P)2 + 0.1339P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1912 reflectionsΔρmax = 0.67 e Å3
85 parametersΔρmin = 1.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.0000000.0000001.0000000.00756 (4)
Na10.5000000.5000000.5000000.01231 (13)
O10.11311 (17)0.04743 (14)0.77586 (11)0.01107 (14)
O1A0.06677 (18)0.24543 (15)0.57680 (11)0.01345 (15)
O1W0.04954 (18)0.28639 (14)0.90209 (11)0.01221 (15)
H1WA0.1509100.2632650.8172450.018*
H1WB0.1217700.3980250.8496050.018*
O20.37559 (17)0.20081 (14)0.94881 (11)0.01078 (14)
O2A0.57540 (18)0.39956 (14)0.75369 (11)0.01248 (15)
O3W0.64269 (18)0.21646 (15)0.35643 (12)0.01398 (16)
H3WA0.4831580.0950910.3281380.021*
H3WB0.7396480.1876510.4282180.021*
C10.0870 (2)0.18476 (17)0.70994 (14)0.00915 (17)
C20.3726 (2)0.27217 (17)0.81136 (14)0.00889 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.00489 (6)0.00923 (5)0.00694 (6)0.00005 (4)0.00054 (3)0.00411 (4)
Na10.0134 (3)0.0131 (3)0.0111 (3)0.0043 (2)0.0037 (2)0.0059 (2)
O10.0071 (3)0.0145 (3)0.0092 (3)0.0000 (3)0.0004 (3)0.0061 (3)
O1A0.0118 (4)0.0161 (3)0.0105 (4)0.0018 (3)0.0005 (3)0.0066 (3)
O1W0.0092 (3)0.0116 (3)0.0136 (4)0.0013 (3)0.0012 (3)0.0025 (3)
O20.0067 (3)0.0141 (3)0.0097 (3)0.0004 (3)0.0010 (3)0.0061 (3)
O2A0.0084 (3)0.0142 (3)0.0120 (4)0.0001 (3)0.0019 (3)0.0058 (3)
O3W0.0099 (3)0.0155 (3)0.0144 (4)0.0028 (3)0.0005 (3)0.0020 (3)
C10.0074 (4)0.0093 (4)0.0094 (4)0.0013 (3)0.0005 (3)0.0025 (3)
C20.0075 (4)0.0090 (4)0.0090 (4)0.0017 (3)0.0006 (3)0.0023 (3)
Geometric parameters (Å, º) top
Rh1—O12.0109 (9)Na1—C1ii3.1186 (11)
Rh1—O1i2.0109 (9)Na1—C2ii3.0907 (11)
Rh1—O1W2.0272 (9)Na1—C23.0906 (11)
Rh1—O1Wi2.0272 (9)O1—C11.2866 (13)
Rh1—O2i2.0090 (8)O1A—C11.2243 (14)
Rh1—O22.0090 (8)O1W—H1WA0.8870
Na1—O1Aii2.4192 (9)O1W—H1WB0.9564
Na1—O1A2.4192 (9)O2—C21.2773 (14)
Na1—O2A2.3272 (9)O2A—C21.2325 (13)
Na1—O2Aii2.3272 (9)O3W—H3WA0.9016
Na1—O3W2.4121 (9)O3W—H3WB0.8490
Na1—O3Wii2.4121 (9)C1—C21.5516 (16)
Na1—C13.1186 (11)
O1—Rh1—O1i180.00 (5)O3Wii—Na1—O1A82.45 (3)
O1—Rh1—O1W91.60 (4)O3Wii—Na1—O1Aii97.55 (3)
O1—Rh1—O1Wi88.40 (4)O3W—Na1—O1Aii82.45 (3)
O1i—Rh1—O1Wi91.61 (4)O3W—Na1—O1A97.55 (3)
O1i—Rh1—O1W88.40 (4)O3W—Na1—O3Wii180.00 (5)
O1Wi—Rh1—O1W180.0O3W—Na1—C1ii83.20 (3)
O2—Rh1—O182.53 (3)O3Wii—Na1—C1ii96.80 (3)
O2i—Rh1—O1i82.53 (3)O3W—Na1—C196.80 (3)
O2—Rh1—O1i97.47 (3)O3Wii—Na1—C183.20 (3)
O2i—Rh1—O197.47 (3)O3Wii—Na1—C2ii94.36 (3)
O2—Rh1—O1Wi87.16 (4)O3Wii—Na1—C285.64 (3)
O2i—Rh1—O1Wi92.84 (4)O3W—Na1—C294.36 (3)
O2i—Rh1—O1W87.16 (4)O3W—Na1—C2ii85.64 (3)
O2—Rh1—O1W92.84 (4)C1—Na1—C1ii180.0
O2—Rh1—O2i180.0C2—Na1—C128.94 (3)
O1Aii—Na1—O1A180.0C2ii—Na1—C1151.06 (3)
O1Aii—Na1—C1158.92 (3)C2ii—Na1—C1ii28.94 (3)
O1A—Na1—C121.08 (3)C2—Na1—C1ii151.06 (3)
O1Aii—Na1—C1ii21.08 (3)C2—Na1—C2ii180.0
O1A—Na1—C1ii158.92 (3)C1—O1—Rh1113.28 (7)
O1Aii—Na1—C2129.98 (3)C1—O1A—Na1113.62 (7)
O1Aii—Na1—C2ii50.02 (3)Rh1—O1W—H1WA110.9
O1A—Na1—C2ii129.98 (3)Rh1—O1W—H1WB110.5
O1A—Na1—C250.02 (3)H1WA—O1W—H1WB101.3
O2A—Na1—O1Aii109.20 (3)C2—O2—Rh1113.24 (7)
O2Aii—Na1—O1A109.20 (3)C2—O2A—Na1117.14 (7)
O2A—Na1—O1A70.80 (3)Na1—O3W—H3WA103.6
O2Aii—Na1—O1Aii70.80 (3)Na1—O3W—H3WB105.7
O2A—Na1—O2Aii180.0H3WA—O3W—H3WB108.9
O2A—Na1—O3Wii88.57 (3)O1—C1—Na1170.44 (8)
O2Aii—Na1—O3W88.57 (3)O1—C1—C2114.98 (10)
O2Aii—Na1—O3Wii91.43 (3)O1A—C1—Na145.29 (6)
O2A—Na1—O3W91.43 (3)O1A—C1—O1125.18 (10)
O2Aii—Na1—C1ii49.72 (3)O1A—C1—C2119.83 (10)
O2Aii—Na1—C1130.28 (3)C2—C1—Na174.53 (6)
O2A—Na1—C1ii130.28 (3)O2—C2—Na1167.65 (8)
O2A—Na1—C149.72 (3)O2—C2—C1115.82 (9)
O2Aii—Na1—C2ii20.79 (3)O2A—C2—Na142.07 (6)
O2A—Na1—C220.79 (3)O2A—C2—O2125.58 (10)
O2A—Na1—C2ii159.21 (3)O2A—C2—C1118.59 (10)
O2Aii—Na1—C2159.21 (3)C1—C2—Na176.53 (6)
Rh1—O1—C1—O1A177.53 (9)Na1—C1—C2—O2179.99 (9)
Rh1—O1—C1—C23.44 (12)Na1—C1—C2—O2A0.99 (9)
Rh1—O2—C2—Na1178.0 (3)O1—C1—C2—Na1179.04 (9)
Rh1—O2—C2—O2A179.01 (9)O1—C1—C2—O20.95 (14)
Rh1—O2—C2—C12.06 (12)O1—C1—C2—O2A178.05 (10)
Na1—O1A—C1—O1178.92 (9)O1A—C1—C2—Na10.05 (9)
Na1—O1A—C1—C20.07 (13)O1A—C1—C2—O2179.96 (10)
Na1—O2A—C2—O2179.67 (8)O1A—C1—C2—O2A1.04 (16)
Na1—O2A—C2—C11.43 (13)
Symmetry codes: (i) x, y, z+2; (ii) x+1, y+1, z+1.
(NaRh-2) top
Crystal data top
C4H8NaO12RhZ = 2
Mr = 374.00F(000) = 368
Triclinic, P1Dx = 2.446 Mg m3
a = 6.2055 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8091 (3) ÅCell parameters from 2269 reflections
c = 10.7762 (4) Åθ = 2.6–28.4°
α = 95.557 (3)°µ = 1.79 mm1
β = 98.352 (3)°T = 295 K
γ = 98.065 (3)°Plate, orange
V = 507.88 (4) Å30.19 × 0.17 × 0.05 mm
Data collection top
New Xcalibur, AtlasS2
diffractometer
2214 independent reflections
Radiation source: fine-focus sealed tube2024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.6 pixels mm-1θmax = 29.0°, θmin = 1.9°
ω scansh = 77
Absorption correction: multi-scan
CrysAlisPro 1.171.38.46 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 98
Tmin = 0.957, Tmax = 1.000l = 1312
3910 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.059Only H-atom coordinates refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0217P)2 + 0.0121P]
where P = (Fo2 + 2Fc2)/3
2214 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.52 e Å3
13 restraintsΔρmin = 0.74 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.25557 (4)0.69752 (3)0.76733 (2)0.01553 (9)
Na10.8339 (2)0.79886 (18)0.42497 (11)0.0340 (3)
O1M0.0411 (3)0.4743 (3)0.69957 (18)0.0190 (4)
H11M0.001 (5)0.431 (4)0.7628 (18)0.023*
H12M0.063 (3)0.512 (4)0.656 (2)0.023*
O2M0.4769 (4)0.9138 (3)0.8244 (2)0.0381 (6)
H21M0.451 (6)1.015 (2)0.820 (3)0.046*
H22M0.564 (5)0.908 (4)0.890 (2)0.046*
O3M1.1219 (4)0.9878 (3)0.37673 (19)0.0278 (5)
H31M1.102 (5)1.019 (4)0.3037 (15)0.033*
H32M1.226 (4)0.930 (4)0.379 (3)0.033*
O4M0.6437 (4)0.7806 (3)0.19877 (19)0.0282 (5)
H41M0.538 (4)0.697 (3)0.192 (3)0.034*
H42M0.709 (4)0.759 (3)0.136 (2)0.034*
O10.2794 (4)0.6357 (3)0.94445 (17)0.0235 (5)
O20.0049 (3)0.8111 (3)0.81852 (17)0.0206 (5)
O30.1834 (4)0.8354 (3)0.97744 (18)0.0262 (5)
O40.1342 (4)0.6815 (3)1.11812 (18)0.0338 (6)
O50.5086 (3)0.5867 (3)0.71829 (17)0.0199 (4)
O60.2343 (3)0.7660 (3)0.59134 (17)0.0209 (5)
O70.4487 (4)0.7911 (3)0.44324 (17)0.0232 (5)
O80.7266 (3)0.6032 (2)0.57151 (17)0.0182 (4)
C10.1396 (5)0.6932 (4)1.0064 (3)0.0206 (7)
C20.0311 (5)0.7882 (4)0.9304 (3)0.0189 (6)
C30.5640 (5)0.6369 (4)0.6165 (2)0.0168 (6)
C40.4051 (5)0.7423 (4)0.5420 (3)0.0179 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01418 (14)0.01987 (15)0.01441 (13)0.00590 (10)0.00346 (9)0.00492 (9)
Na10.0302 (8)0.0414 (8)0.0342 (7)0.0038 (6)0.0155 (6)0.0104 (6)
O1M0.0169 (11)0.0229 (12)0.0184 (11)0.0038 (9)0.0032 (8)0.0076 (8)
O2M0.0284 (15)0.0218 (13)0.0575 (16)0.0041 (11)0.0142 (12)0.0036 (11)
O3M0.0282 (14)0.0334 (14)0.0265 (12)0.0122 (11)0.0059 (10)0.0144 (10)
O4M0.0301 (15)0.0302 (13)0.0273 (12)0.0059 (10)0.0112 (10)0.0067 (9)
O10.0243 (13)0.0321 (13)0.0174 (10)0.0121 (10)0.0026 (9)0.0084 (8)
O20.0210 (12)0.0279 (12)0.0163 (10)0.0119 (9)0.0057 (8)0.0037 (8)
O30.0206 (12)0.0392 (14)0.0215 (11)0.0100 (10)0.0084 (9)0.0024 (9)
O40.0369 (15)0.0494 (15)0.0178 (11)0.0064 (12)0.0079 (10)0.0133 (10)
O50.0166 (12)0.0266 (12)0.0209 (10)0.0100 (9)0.0073 (8)0.0080 (8)
O60.0177 (12)0.0306 (12)0.0200 (10)0.0124 (9)0.0073 (8)0.0115 (8)
O70.0240 (13)0.0304 (12)0.0199 (11)0.0099 (10)0.0086 (9)0.0109 (8)
O80.0149 (11)0.0213 (11)0.0201 (10)0.0062 (9)0.0046 (8)0.0042 (8)
C10.0207 (17)0.0229 (17)0.0174 (15)0.0012 (13)0.0004 (12)0.0061 (11)
C20.0197 (17)0.0174 (15)0.0186 (15)0.0007 (13)0.0034 (12)0.0003 (11)
C30.0168 (16)0.0157 (15)0.0170 (14)0.0035 (12)0.0006 (11)0.0012 (10)
C40.0184 (16)0.0181 (15)0.0181 (15)0.0055 (12)0.0030 (12)0.0034 (11)
Geometric parameters (Å, º) top
Rh1—O1M2.040 (2)O1M—H12M0.843 (10)
Rh1—O2M2.005 (2)O2M—H21M0.833 (9)
Rh1—O12.0037 (19)O2M—H22M0.836 (10)
Rh1—O22.013 (2)O3M—H31M0.844 (10)
Rh1—O52.007 (2)O3M—H32M0.838 (10)
Rh1—O62.0109 (18)O4M—H41M0.849 (10)
Na1—Na1i3.601 (3)O4M—H42M0.852 (10)
Na1—O1Mii2.677 (2)O1—C11.273 (4)
Na1—O3M2.307 (3)O2—C21.283 (3)
Na1—O3Mi2.536 (2)O3—C21.219 (4)
Na1—H32M2.64 (3)O4—C11.221 (3)
Na1—O4M2.531 (3)O5—C31.277 (3)
Na1—O6iii2.903 (2)O6—C41.281 (3)
Na1—O72.419 (3)O7—C41.219 (3)
Na1—O82.400 (2)O8—C31.230 (3)
Na1—C33.095 (3)C1—C21.558 (4)
Na1—C43.101 (3)C3—C41.556 (4)
O1M—H11M0.843 (10)
O2M—Rh1—O1M176.23 (9)O8—Na1—O1Mii86.35 (7)
O2M—Rh1—O293.06 (10)O8—Na1—O3Mi79.91 (8)
O2M—Rh1—O586.17 (10)O8—Na1—H32M131.4 (5)
O2M—Rh1—O687.82 (10)O8—Na1—O4M124.22 (9)
O1—Rh1—O1M91.82 (8)O8—Na1—O6iii73.45 (7)
O1—Rh1—O2M90.84 (10)O8—Na1—O768.98 (8)
O1—Rh1—O282.14 (8)O8—Na1—C321.45 (7)
O1—Rh1—O597.47 (8)O8—Na1—C449.70 (7)
O1—Rh1—O6178.53 (8)C3—Na1—Na1i109.07 (7)
O2—Rh1—O1M89.95 (9)C3—Na1—H32M146.9 (6)
O5—Rh1—O1M90.84 (8)C3—Na1—C429.08 (7)
O5—Rh1—O2179.14 (8)C4—Na1—Na1i108.80 (7)
O5—Rh1—O683.03 (8)C4—Na1—H32M162.4 (6)
O6—Rh1—O1M89.54 (8)Rh1—O1M—Na1ii122.09 (10)
O6—Rh1—O297.34 (8)Rh1—O1M—H11M107 (2)
Na1i—Na1—H32M53.7 (6)Rh1—O1M—H12M103 (2)
O1Mii—Na1—Na1i128.76 (8)Na1ii—O1M—H11M102 (2)
O1Mii—Na1—H32M77.3 (6)Na1ii—O1M—H12M112 (2)
O1Mii—Na1—O6iii79.17 (7)H11M—O1M—H12M112 (2)
O1Mii—Na1—C3104.19 (8)Rh1—O2M—H21M125 (2)
O1Mii—Na1—C4118.98 (8)Rh1—O2M—H22M114 (2)
O3Mi—Na1—Na1i39.58 (6)H21M—O2M—H22M111 (2)
O3M—Na1—Na1i44.46 (6)Na1—O3M—Na1i95.96 (9)
O3M—Na1—O1Mii91.83 (8)Na1—O3M—H31M115 (2)
O3Mi—Na1—O1Mii149.32 (9)Na1i—O3M—H31M122 (2)
O3M—Na1—O3Mi84.04 (9)Na1—O3M—H32M104 (2)
O3M—Na1—H32M17.9 (4)Na1i—O3M—H32M111 (2)
O3Mi—Na1—H32M91.4 (6)H31M—O3M—H32M106 (2)
O3M—Na1—O4M88.89 (8)Na1—O4M—H41M104 (2)
O3Mi—Na1—O6iii70.68 (7)Na1—O4M—H42M122 (2)
O3M—Na1—O6iii71.42 (8)H41M—O4M—H42M106 (2)
O3M—Na1—O7139.07 (10)C1—O1—Rh1113.96 (18)
O3M—Na1—O8144.52 (9)C2—O2—Rh1113.72 (18)
O3Mi—Na1—C370.27 (8)C3—O5—Rh1111.54 (17)
O3M—Na1—C3151.77 (9)Rh1—O6—Na1iv126.56 (9)
O3Mi—Na1—C471.21 (8)C4—O6—Rh1111.93 (17)
O3M—Na1—C4149.00 (9)C4—O6—Na1iv118.36 (16)
O4M—Na1—Na1i119.52 (8)C4—O7—Na1112.74 (19)
O4M—Na1—O1Mii74.20 (7)C3—O8—Na1113.01 (18)
O4M—Na1—O3Mi135.83 (9)O1—C1—C2115.4 (2)
O4M—Na1—H32M94.9 (6)O4—C1—O1125.0 (3)
O4M—Na1—O6iii146.23 (9)O4—C1—C2119.6 (3)
O4M—Na1—C3117.58 (9)O2—C2—C1114.5 (3)
O4M—Na1—C495.93 (9)O3—C2—O2124.8 (3)
O6iii—Na1—Na1i64.08 (6)O3—C2—C1120.7 (2)
O6iii—Na1—H32M58.7 (5)O5—C3—Na1162.3 (2)
O6iii—Na1—C388.69 (7)O5—C3—C4116.3 (2)
O6iii—Na1—C4115.20 (8)O8—C3—Na145.53 (14)
O7—Na1—Na1i112.09 (8)O8—C3—O5125.3 (3)
O7—Na1—O1Mii119.14 (9)O8—C3—C4118.4 (2)
O7—Na1—O3Mi81.18 (8)C4—C3—Na175.69 (16)
O7—Na1—H32M156.9 (4)O6—C4—Na1163.7 (2)
O7—Na1—O4M76.13 (8)O6—C4—C3115.1 (2)
O7—Na1—O6iii136.19 (8)O7—C4—Na146.01 (15)
O7—Na1—C349.66 (7)O7—C4—O6126.0 (3)
O7—Na1—C421.24 (7)O7—C4—C3118.9 (3)
O8—Na1—Na1i113.47 (7)C3—C4—Na175.23 (16)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x1, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds