Download citation
Download citation
link to html
Structural and theoretical studies of four novel 5,6-de­hydro­norcantharidine (DNCA)/norcantharidine (NCA) derivatives, namely (3aR,4S,7R,7aS)-2-phenyl-3a,4,7,7a-tetra­hydro-4,7-ep­oxy-1H-iso­indole-1,3(2H)-dione, C14H11NO3 (DNCA-A), (3aR,4S,7R,7aS)-2-(4-nitro­phen­yl)-3a,4,7,7a-tetra­hydro-4,7-ep­oxy-1H-iso­indole-1,3(2H)-dione, C14H10N2O5 (DNCA-NA), (3aR,4S,7R,7aS)-2-(4-nitro­phen­yl)-3a,4,5,6,7,7a-hexa­hydro-1H-4,7-ep­oxy­iso­indole-1,3(2H)-dione, C14H12N2O5 (NCA-NA), and (3aR,4S,7R,7aS)-2-(2-hy­droxy­eth­yl)-3a,4,5,6,7,7a-hexa­hydro-1H-4,7-ep­oxy­iso­indole-1,3(2H)-dione, C10H13NO4 (NCA-AE), are reported. The supra­molecular inter­actions and single-crystal structural characteristics of these mol­ecules, together with the crystal structures of four other similar mol­ecules, i.e. NCA-A (the 4-phenyl derivative of NCA-NA), DNCA-AE (the 5,6-unsaturated derivative of NCA-AE), DNCA and NCA, were analysed. Surprisingly, DNCA-A and NCA-A, as well as DNCA–NA and NCA-NA, proved to be isomorphic, while DNCA-AE and NCA-AE, as well as DNCA and NCA, have very different crystal structures. These are very rare iso­structural examples between unsaturated and saturated oxanorbornene/oxanorbornane derivatives. To further explore how noncovalent inter­actions (NCIs) affect the degree of isomorphism in this particular series of rigid mol­ecules where there is a fairly limited conformational degree of freedom, all four pairs of crystal structures were analyzed in parallel. The differentiation in NCIs which entails the packing mode of similar mol­ecules is supported by energy calculations based on real or exchanged crystal structures. Our results show that minor structural differences may result in very different supra­molecular inter­actions, and so lead to altered packing modes in the crystalline solids. Even if isostructurality sometimes occurs, the possibility of various mol­ecular packing types cannot be ruled out. On the other hand, isomorphism may just be the result of kinetic possibilities instead of relative thermodynamic stabilities. Though crystal structure prediction is formidable, the com­parison method based on existing crystal structures and quantum calculations can be used to predict the probability of isomorphism. This understanding will help us to design new norbornene derivatives with specified structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619016164/yo3069sup1.cif
Contains datablocks DNCA-A, DNCA-NA, NCA-NA, NCA-AE, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619016164/yo3069DNCA-Asup2.hkl
Contains datablock DNCA-A

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619016164/yo3069DNCA-NAsup3.hkl
Contains datablock DNCA-NA

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619016164/yo3069NCA-NAsup4.hkl
Contains datablock NCA-NA

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619016164/yo3069NCA-AEsup5.hkl
Contains datablock NCA-AE

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619016164/yo3069sup6.pdf
Additional tables and figures

CCDC references: 1969302; 1969301; 1969300; 1969299

Computing details top

For all structures, data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Bruker, 2000), PLATON (Spek, 2009), WinGX2014 (Farrugia, 2012), DIAMOND (Brandenburg & Putz, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

\ (3aR,4S,7R,7aS)-2-Phenyl-3a,4,7,7a-\ tetrahydro-4,7-epoxy-1H-isoindole-1,3(2H)-dione (DNCA-A) top
Crystal data top
C14H11NO3F(000) = 504
Mr = 241.24Dx = 1.428 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.419 (4) ÅCell parameters from 380 reflections
b = 8.322 (3) Åθ = 2.5–26.0°
c = 14.342 (6) ŵ = 0.10 mm1
β = 93.612 (6)°T = 298 K
V = 1121.9 (8) Å3Block, colorless
Z = 40.37 × 0.31 × 0.20 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
2498 independent reflections
Radiation source: fine-focus sealed tube1620 reflections with I > 2σ(I)
Detector resolution: 10.13 pixels mm-1Rint = 0.056
phi and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1112
Tmin = 0.976, Tmax = 0.991k = 1010
6354 measured reflectionsl = 1718
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052All H-atom parameters refined
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0598P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
2498 reflectionsΔρmax = 0.22 e Å3
207 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2306 (2)0.1220 (2)0.88484 (14)0.0432 (5)
C21.14269 (19)0.2622 (2)0.83934 (12)0.0364 (4)
C31.06189 (19)0.3229 (2)0.92097 (12)0.0373 (5)
C41.1133 (2)0.2008 (2)0.99827 (13)0.0432 (5)
C51.2662 (2)0.2435 (3)1.02428 (15)0.0509 (5)
C61.3382 (2)0.1953 (3)0.95473 (15)0.0495 (5)
C71.03048 (19)0.1956 (2)0.77127 (12)0.0380 (4)
C80.90755 (19)0.3013 (2)0.89211 (12)0.0369 (4)
C90.76820 (18)0.1594 (2)0.76295 (12)0.0348 (4)
C100.7349 (2)0.1809 (2)0.66837 (13)0.0404 (5)
C110.6142 (2)0.1096 (3)0.62805 (15)0.0490 (5)
C120.5270 (2)0.0191 (3)0.68042 (16)0.0532 (6)
C130.5606 (2)0.0009 (3)0.77439 (17)0.0524 (6)
C140.6814 (2)0.0693 (2)0.81635 (15)0.0431 (5)
N10.89732 (15)0.22295 (18)0.80558 (9)0.0359 (4)
O11.12796 (14)0.05692 (15)0.94413 (9)0.0466 (4)
O21.04890 (14)0.12507 (19)0.69955 (9)0.0559 (4)
O30.80753 (14)0.34008 (17)0.93462 (9)0.0527 (4)
H11.2612 (19)0.040 (2)0.8401 (12)0.045 (5)*
H21.1997 (18)0.341 (2)0.8103 (11)0.032 (5)*
H31.0782 (18)0.430 (2)0.9383 (12)0.042 (5)*
H41.0499 (19)0.187 (2)1.0489 (13)0.045 (5)*
H51.293 (2)0.305 (3)1.0770 (16)0.076 (8)*
H61.440 (2)0.210 (3)0.9424 (14)0.063 (6)*
H100.7988 (19)0.244 (2)0.6321 (12)0.043 (5)*
H110.594 (2)0.118 (3)0.5633 (15)0.057 (6)*
H120.443 (3)0.036 (3)0.6498 (15)0.071 (7)*
H130.497 (2)0.065 (3)0.8105 (13)0.056 (6)*
H140.706 (2)0.057 (2)0.8824 (14)0.055 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0384 (11)0.0388 (11)0.0525 (12)0.0012 (9)0.0045 (9)0.0031 (10)
C20.0380 (10)0.0349 (10)0.0365 (10)0.0066 (8)0.0032 (8)0.0002 (8)
C30.0435 (11)0.0301 (11)0.0380 (10)0.0022 (8)0.0004 (8)0.0064 (8)
C40.0465 (12)0.0472 (12)0.0358 (10)0.0047 (9)0.0018 (9)0.0008 (9)
C50.0542 (13)0.0528 (14)0.0439 (12)0.0076 (11)0.0116 (10)0.0040 (11)
C60.0402 (12)0.0519 (13)0.0551 (13)0.0041 (10)0.0058 (10)0.0081 (10)
C70.0407 (11)0.0401 (11)0.0336 (10)0.0031 (8)0.0053 (8)0.0024 (8)
C80.0436 (11)0.0341 (10)0.0328 (9)0.0050 (8)0.0018 (8)0.0041 (8)
C90.0340 (10)0.0313 (10)0.0387 (10)0.0037 (8)0.0003 (8)0.0048 (8)
C100.0449 (11)0.0366 (11)0.0392 (11)0.0052 (9)0.0006 (9)0.0012 (8)
C110.0469 (12)0.0507 (13)0.0470 (13)0.0110 (10)0.0163 (10)0.0055 (10)
C120.0350 (11)0.0502 (13)0.0726 (15)0.0064 (10)0.0111 (11)0.0112 (12)
C130.0397 (12)0.0456 (12)0.0727 (15)0.0011 (9)0.0089 (11)0.0015 (12)
C140.0417 (11)0.0454 (12)0.0422 (12)0.0016 (9)0.0032 (9)0.0001 (9)
N10.0364 (8)0.0391 (9)0.0322 (8)0.0008 (7)0.0023 (6)0.0066 (7)
O10.0474 (8)0.0348 (8)0.0575 (8)0.0069 (6)0.0030 (6)0.0060 (6)
O20.0486 (9)0.0772 (11)0.0426 (8)0.0045 (7)0.0074 (6)0.0219 (8)
O30.0488 (9)0.0623 (10)0.0477 (8)0.0086 (7)0.0075 (7)0.0161 (7)
Geometric parameters (Å, º) top
C1—O11.433 (2)C7—O21.206 (2)
C1—C61.509 (3)C7—N11.394 (2)
C1—C21.551 (3)C8—O31.198 (2)
C1—H10.990 (19)C8—N11.400 (2)
C2—C71.499 (3)C9—C141.377 (3)
C2—C31.522 (2)C9—C101.384 (3)
C2—H20.960 (18)C9—N11.428 (2)
C3—C81.497 (3)C10—C111.377 (3)
C3—C41.558 (3)C10—H100.972 (19)
C3—H30.93 (2)C11—C121.372 (3)
C4—O11.438 (2)C11—H110.94 (2)
C4—C51.507 (3)C12—C131.375 (3)
C4—H40.976 (17)C12—H120.99 (2)
C5—C61.304 (3)C13—C141.383 (3)
C5—H50.93 (2)C13—H130.97 (2)
C6—H60.99 (2)C14—H140.97 (2)
O1—C1—C6102.04 (16)C1—C6—H6123.0 (12)
O1—C1—C299.89 (14)O2—C7—N1124.13 (17)
C6—C1—C2107.10 (17)O2—C7—C2127.00 (17)
O1—C1—H1111.1 (10)N1—C7—C2108.83 (15)
C6—C1—H1119.8 (11)O3—C8—N1124.35 (17)
C2—C1—H1114.5 (10)O3—C8—C3127.44 (17)
C7—C2—C3104.91 (15)N1—C8—C3108.20 (15)
C7—C2—C1109.36 (16)C14—C9—C10120.64 (18)
C3—C2—C1101.85 (15)C14—C9—N1118.88 (17)
C7—C2—H2111.2 (10)C10—C9—N1120.38 (16)
C3—C2—H2115.2 (10)C11—C10—C9119.0 (2)
C1—C2—H2113.6 (10)C11—C10—H10122.0 (10)
C8—C3—C2105.75 (15)C9—C10—H10119.0 (11)
C8—C3—C4111.81 (15)C12—C11—C10120.9 (2)
C2—C3—C4100.55 (15)C12—C11—H11119.1 (13)
C8—C3—H3109.2 (11)C10—C11—H11119.9 (13)
C2—C3—H3116.0 (11)C11—C12—C13119.6 (2)
C4—C3—H3113.1 (11)C11—C12—H12119.9 (12)
O1—C4—C5101.97 (16)C13—C12—H12120.4 (12)
O1—C4—C3101.23 (14)C12—C13—C14120.5 (2)
C5—C4—C3105.75 (16)C12—C13—H13118.4 (12)
O1—C4—H4112.7 (11)C14—C13—H13121.1 (12)
C5—C4—H4117.7 (11)C9—C14—C13119.3 (2)
C3—C4—H4115.5 (11)C9—C14—H14119.3 (12)
C6—C5—C4105.83 (19)C13—C14—H14121.4 (12)
C6—C5—H5131.1 (14)C7—N1—C8112.06 (15)
C4—C5—H5122.6 (14)C7—N1—C9123.31 (14)
C5—C6—C1105.82 (19)C8—N1—C9124.15 (14)
C5—C6—H6130.9 (12)C1—O1—C495.56 (14)
\ (3aR,4S,7R,7aS)-2-(4-Nitrophenyl)-3a,4,7,7a-\ tetrahydro-4,7-epoxy-1H-isoindole-1,3(2H)-dione (DNCA-NA) top
Crystal data top
C14H10N2O5F(000) = 296
Mr = 286.24Dx = 1.481 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.285 (3) ÅCell parameters from 380 reflections
b = 18.418 (9) Åθ = 2.5–26.0°
c = 6.699 (3) ŵ = 0.12 mm1
β = 100.105 (7)°T = 298 K
V = 642.0 (6) Å3Block, colorless
Z = 20.33 × 0.28 × 0.18 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
2191 independent reflections
Radiation source: fine-focus sealed tube1541 reflections with I > 2σ(I)
Detector resolution: 10.13 pixels mm-1Rint = 0.051
phi and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 65
Tmin = 0.976, Tmax = 0.991k = 1923
3815 measured reflectionsl = 88
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullOnly H-atom displacement parameters refined
R[F2 > 2σ(F2)] = 0.067 w = 1/[σ2(Fo2) + (0.102P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.168(Δ/σ)max < 0.001
S = 0.97Δρmax = 0.32 e Å3
2191 reflectionsΔρmin = 0.36 e Å3
224 parametersAbsolute structure: Flack x determined using 381 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.4 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3179 (11)0.3910 (3)0.0715 (10)0.0508 (14)
C20.5903 (10)0.4140 (3)0.0360 (8)0.0409 (12)
C30.5217 (9)0.4617 (3)0.1547 (7)0.0408 (11)
C40.2286 (10)0.4538 (3)0.2019 (8)0.0479 (12)
C50.1666 (11)0.3760 (3)0.2614 (10)0.0643 (17)
H50.1026980.3587330.3909420.08 (2)*
C60.2202 (11)0.3377 (3)0.0959 (9)0.0568 (16)
H60.2020800.2877340.0833420.059 (17)*
C70.7219 (9)0.4641 (3)0.1978 (8)0.0467 (12)
C80.6040 (9)0.5366 (3)0.0860 (7)0.0416 (11)
C90.8574 (9)0.5930 (3)0.2274 (7)0.0422 (12)
C100.7976 (11)0.6095 (3)0.4159 (8)0.0517 (14)
C110.9424 (13)0.6614 (3)0.5333 (10)0.0584 (16)
C121.1333 (12)0.6955 (3)0.4603 (10)0.0571 (15)
C131.1917 (12)0.6809 (3)0.2715 (11)0.0584 (15)
C141.0504 (11)0.6282 (3)0.1545 (9)0.0514 (13)
N10.7245 (8)0.5338 (2)0.1175 (6)0.0412 (9)
N21.2952 (15)0.7485 (3)0.5922 (13)0.087 (2)
O10.1724 (7)0.4551 (2)0.0023 (6)0.0528 (10)
O20.8097 (9)0.4487 (3)0.3704 (6)0.0730 (14)
O30.5735 (9)0.5923 (2)0.1820 (5)0.0628 (11)
O41.2474 (15)0.7575 (3)0.7650 (11)0.119 (3)
O51.4660 (14)0.7777 (4)0.5304 (12)0.120 (2)
H10.292 (11)0.382 (3)0.208 (10)0.053 (16)*
H20.684 (10)0.374 (3)0.030 (8)0.043 (15)*
H30.600 (9)0.450 (3)0.266 (7)0.027 (10)*
H40.149 (10)0.496 (3)0.284 (7)0.039 (13)*
H100.663 (12)0.585 (4)0.462 (9)0.055 (16)*
H110.886 (12)0.670 (3)0.644 (10)0.054 (17)*
H131.323 (13)0.701 (4)0.226 (9)0.061 (18)*
H141.108 (12)0.620 (3)0.029 (9)0.057 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (3)0.050 (3)0.048 (3)0.005 (2)0.007 (3)0.004 (2)
C20.043 (3)0.034 (3)0.042 (3)0.003 (2)0.003 (2)0.004 (2)
C30.044 (3)0.047 (3)0.032 (2)0.004 (2)0.009 (2)0.001 (2)
C40.048 (3)0.050 (3)0.041 (3)0.004 (2)0.004 (2)0.003 (3)
C50.057 (3)0.061 (4)0.065 (4)0.005 (3)0.018 (3)0.011 (3)
C60.050 (3)0.049 (3)0.065 (4)0.008 (2)0.009 (3)0.001 (3)
C70.045 (3)0.051 (3)0.041 (3)0.005 (2)0.004 (2)0.006 (2)
C80.041 (3)0.055 (3)0.030 (2)0.002 (2)0.0085 (19)0.005 (2)
C90.045 (3)0.042 (3)0.037 (3)0.005 (2)0.001 (2)0.003 (2)
C100.059 (3)0.055 (4)0.041 (3)0.001 (3)0.009 (3)0.004 (3)
C110.077 (4)0.056 (4)0.041 (3)0.007 (3)0.007 (3)0.009 (3)
C120.063 (4)0.041 (3)0.061 (4)0.005 (2)0.007 (3)0.008 (3)
C130.059 (4)0.042 (3)0.074 (4)0.006 (3)0.010 (3)0.001 (3)
C140.058 (3)0.051 (3)0.047 (3)0.000 (3)0.013 (3)0.001 (3)
N10.046 (2)0.044 (2)0.0327 (19)0.0019 (18)0.0031 (17)0.0003 (19)
N20.084 (4)0.054 (4)0.114 (6)0.001 (3)0.008 (4)0.020 (4)
O10.046 (2)0.058 (2)0.056 (2)0.0049 (17)0.0126 (17)0.0003 (19)
O20.101 (3)0.059 (3)0.046 (2)0.010 (2)0.024 (2)0.0123 (19)
O30.086 (3)0.057 (2)0.042 (2)0.008 (2)0.0018 (19)0.0139 (19)
O40.176 (7)0.084 (4)0.089 (4)0.024 (4)0.001 (4)0.042 (4)
O50.109 (5)0.097 (4)0.149 (6)0.040 (4)0.014 (4)0.058 (4)
Geometric parameters (Å, º) top
C1—O11.441 (7)C7—N11.393 (7)
C1—C61.512 (8)C8—O31.205 (6)
C1—C21.558 (8)C8—N11.401 (6)
C1—H10.96 (6)C9—C141.369 (8)
C2—C71.499 (7)C9—C101.388 (7)
C2—C31.540 (7)C9—N11.430 (6)
C2—H20.89 (6)C10—C111.380 (9)
C3—C81.495 (8)C10—H100.94 (7)
C3—C41.532 (7)C11—C121.351 (10)
C3—H30.94 (5)C11—H110.86 (7)
C4—O11.450 (7)C12—C131.380 (9)
C4—C51.508 (9)C12—N21.484 (8)
C4—H41.00 (5)C13—C141.381 (9)
C5—C61.303 (9)C13—H130.89 (7)
C5—H50.9300C14—H140.95 (6)
C6—H60.9300N2—O51.186 (9)
C7—O21.202 (6)N2—O41.238 (10)
O1—C1—C6101.6 (4)O2—C7—C2127.1 (5)
O1—C1—C2100.6 (4)N1—C7—C2108.8 (4)
C6—C1—C2105.5 (5)O3—C8—N1123.1 (5)
O1—C1—H1107 (4)O3—C8—C3128.0 (4)
C6—C1—H1120 (3)N1—C8—C3108.9 (4)
C2—C1—H1119 (3)C14—C9—C10121.6 (5)
C7—C2—C3105.1 (4)C14—C9—N1120.5 (5)
C7—C2—C1112.4 (5)C10—C9—N1117.8 (5)
C3—C2—C1101.1 (4)C11—C10—C9118.5 (6)
C7—C2—H2110 (3)C11—C10—H10121 (4)
C3—C2—H2119 (3)C9—C10—H10120 (4)
C1—C2—H2109 (3)C12—C11—C10119.4 (6)
C8—C3—C4112.4 (4)C12—C11—H11128 (4)
C8—C3—C2104.9 (4)C10—C11—H11112 (4)
C4—C3—C2101.5 (4)C11—C12—C13122.8 (6)
C8—C3—H3108 (3)C11—C12—N2118.7 (6)
C4—C3—H3113 (3)C13—C12—N2118.4 (7)
C2—C3—H3117 (3)C12—C13—C14118.2 (6)
O1—C4—C5101.2 (5)C12—C13—H13123 (4)
O1—C4—C399.8 (4)C14—C13—H13118 (4)
C5—C4—C3108.0 (5)C9—C14—C13119.5 (6)
O1—C4—H4112 (3)C9—C14—H14127 (4)
C5—C4—H4123 (3)C13—C14—H14113 (4)
C3—C4—H4111 (3)C7—N1—C8112.1 (4)
C6—C5—C4106.6 (5)C7—N1—C9122.8 (4)
C6—C5—H5126.7C8—N1—C9124.8 (4)
C4—C5—H5126.7O5—N2—O4123.9 (7)
C5—C6—C1105.9 (5)O5—N2—C12119.0 (8)
C5—C6—H6127.0O4—N2—C12117.0 (8)
C1—C6—H6127.0C1—O1—C496.0 (4)
O2—C7—N1124.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.89 (6)2.55 (6)3.228 (8)134 (4)
C10—H10···O3ii0.94 (7)2.51 (6)3.143 (8)124 (5)
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x, y, z+1.
(3aR,4S,7R,7aS)-2-(4-nitrophenyl)-3a,4,5,6,7,7a-hexahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione (NCA-NA) top
Crystal data top
C14H12N2O5F(000) = 300
Mr = 288.26Dx = 1.467 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 5.3661 (4) ÅCell parameters from 380 reflections
b = 18.6171 (16) Åθ = 2.5–26.0°
c = 6.6116 (5) ŵ = 0.96 mm1
β = 98.918 (7)°T = 293 K
V = 652.52 (9) Å3Plate, light yellow
Z = 20.33 × 0.30 × 0.12 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
1717 independent reflections
Radiation source: fine-focus sealed tube1549 reflections with I > 2σ(I)
Detector resolution: 10.12 pixels mm-1Rint = 0.022
phi and ω scansθmax = 71.4°, θmin = 4.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 65
Tmin = 0.070, Tmax = 0.080k = 2222
2121 measured reflectionsl = 78
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0546P)2 + 0.0162P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.040(Δ/σ)max < 0.001
wR(F2) = 0.109Δρmax = 0.18 e Å3
S = 1.06Δρmin = 0.16 e Å3
1717 reflectionsExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
239 parametersExtinction coefficient: 0.0126 (19)
1 restraintAbsolute structure: Flack x determined using 354 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: difference Fourier mapAbsolute structure parameter: 0.5 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2048 (7)0.0320 (2)0.3085 (6)0.0522 (9)
C20.4905 (6)0.0221 (2)0.3598 (5)0.0462 (8)
C30.5522 (6)0.0685 (2)0.5521 (6)0.0463 (8)
C40.2911 (7)0.0940 (2)0.5848 (6)0.0511 (9)
C50.2009 (9)0.1524 (3)0.4287 (7)0.0614 (11)
C60.1478 (10)0.1092 (3)0.2305 (7)0.0623 (11)
C70.5688 (6)0.0531 (2)0.4279 (5)0.0450 (8)
C80.6741 (7)0.0186 (2)0.7166 (6)0.0506 (9)
C90.8205 (7)0.1075 (2)0.7397 (5)0.0462 (8)
C101.0152 (7)0.1396 (2)0.6584 (6)0.0537 (9)
C111.1593 (8)0.1921 (2)0.7694 (8)0.0600 (11)
C121.1059 (8)0.2092 (2)0.9628 (7)0.0569 (10)
C130.9130 (8)0.1787 (2)1.0427 (7)0.0572 (10)
C140.7661 (8)0.1270 (2)0.9291 (6)0.0527 (9)
N10.6843 (5)0.05002 (18)0.6321 (4)0.0439 (6)
N21.2669 (9)0.2618 (2)1.0877 (9)0.0792 (13)
O10.1353 (4)0.03368 (16)0.5106 (4)0.0554 (7)
O20.5347 (6)0.10763 (18)0.3318 (4)0.0652 (8)
O30.7507 (7)0.0326 (2)0.8918 (4)0.0778 (10)
O41.4352 (8)0.2897 (2)1.0136 (9)0.1062 (15)
O51.2275 (10)0.2727 (3)1.2621 (8)0.1155 (18)
H10.116 (8)0.007 (3)0.230 (7)0.054 (11)*
H20.580 (7)0.033 (2)0.258 (6)0.047 (10)*
H30.647 (8)0.107 (2)0.537 (6)0.052 (11)*
H40.280 (8)0.103 (3)0.724 (7)0.062 (13)*
H5A0.042 (10)0.175 (3)0.460 (8)0.077 (15)*
H5B0.320 (9)0.184 (3)0.429 (7)0.064 (13)*
H6A0.008 (13)0.112 (3)0.170 (9)0.10 (2)*
H6B0.269 (10)0.123 (3)0.136 (9)0.082 (16)*
H101.061 (7)0.128 (2)0.526 (6)0.046 (10)*
H111.282 (10)0.214 (3)0.713 (8)0.077 (16)*
H130.895 (9)0.192 (3)1.177 (8)0.064 (14)*
H140.641 (8)0.102 (2)0.992 (6)0.047 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0469 (17)0.053 (2)0.0524 (19)0.0052 (17)0.0061 (15)0.0012 (18)
C20.0426 (16)0.060 (2)0.0371 (16)0.0046 (16)0.0090 (13)0.0020 (16)
C30.0420 (16)0.048 (2)0.0478 (19)0.0066 (15)0.0035 (14)0.0036 (16)
C40.0517 (19)0.052 (2)0.049 (2)0.0032 (17)0.0056 (16)0.0003 (17)
C50.054 (2)0.055 (2)0.073 (3)0.004 (2)0.002 (2)0.005 (2)
C60.060 (2)0.061 (2)0.061 (2)0.003 (2)0.010 (2)0.010 (2)
C70.0419 (16)0.056 (2)0.0389 (15)0.0007 (17)0.0106 (13)0.0040 (17)
C80.0452 (17)0.053 (2)0.0504 (19)0.0027 (17)0.0016 (14)0.0090 (18)
C90.0477 (18)0.0430 (18)0.0468 (17)0.0039 (15)0.0035 (15)0.0066 (16)
C100.0510 (19)0.053 (2)0.059 (2)0.0016 (18)0.0128 (17)0.0036 (19)
C110.0492 (19)0.046 (2)0.085 (3)0.0008 (18)0.011 (2)0.005 (2)
C120.054 (2)0.043 (2)0.068 (3)0.0050 (17)0.0058 (19)0.0033 (18)
C130.060 (2)0.055 (2)0.054 (2)0.0036 (19)0.0016 (18)0.0042 (19)
C140.054 (2)0.056 (2)0.0483 (19)0.0023 (18)0.0076 (16)0.0044 (18)
N10.0441 (14)0.0470 (15)0.0395 (13)0.0007 (14)0.0028 (11)0.0053 (14)
N20.066 (2)0.048 (2)0.118 (4)0.0001 (19)0.003 (2)0.014 (2)
O10.0432 (12)0.0569 (15)0.0671 (16)0.0020 (12)0.0113 (11)0.0072 (14)
O20.084 (2)0.0622 (17)0.0470 (14)0.0069 (16)0.0018 (13)0.0164 (14)
O30.107 (2)0.0626 (19)0.0518 (15)0.011 (2)0.0247 (15)0.0169 (14)
O40.077 (2)0.073 (2)0.167 (4)0.024 (2)0.012 (3)0.036 (3)
O50.131 (4)0.101 (3)0.110 (3)0.026 (3)0.003 (3)0.056 (3)
Geometric parameters (Å, º) top
C1—O11.442 (5)C7—O21.197 (5)
C1—C21.529 (5)C7—N11.397 (4)
C1—C61.540 (6)C8—O31.197 (4)
C1—H10.98 (5)C8—N11.399 (5)
C2—C71.510 (6)C9—C141.378 (5)
C2—C31.530 (5)C9—C101.383 (5)
C2—H20.91 (4)C9—N11.422 (5)
C3—C81.501 (5)C10—C111.385 (6)
C3—C41.526 (5)C10—H100.97 (4)
C3—H30.90 (5)C11—C121.390 (7)
C4—O11.440 (5)C11—H110.90 (6)
C4—C51.525 (6)C12—C131.358 (6)
C4—H40.94 (5)C12—N21.471 (6)
C5—C61.527 (7)C13—C141.389 (6)
C5—H5A1.00 (5)C13—H130.94 (5)
C5—H5B0.87 (5)C14—H140.97 (4)
C6—H6A0.87 (7)N2—O41.209 (7)
C6—H6B1.00 (6)N2—O51.221 (7)
O1—C1—C2101.1 (3)C1—C6—H6B110 (3)
O1—C1—C6102.9 (4)H6A—C6—H6B112 (5)
C2—C1—C6109.1 (4)O2—C7—N1123.8 (4)
O1—C1—H1109 (3)O2—C7—C2128.0 (3)
C2—C1—H1115 (3)N1—C7—C2108.2 (3)
C6—C1—H1118 (3)O3—C8—N1123.9 (4)
C7—C2—C1113.6 (3)O3—C8—C3127.7 (4)
C7—C2—C3105.1 (3)N1—C8—C3108.4 (3)
C1—C2—C3101.3 (3)C14—C9—C10121.2 (4)
C7—C2—H2106 (3)C14—C9—N1119.2 (3)
C1—C2—H2116 (2)C10—C9—N1119.4 (3)
C3—C2—H2115 (3)C9—C10—C11119.5 (4)
C8—C3—C4113.4 (3)C9—C10—H10125 (2)
C8—C3—C2105.5 (3)C11—C10—H10116 (2)
C4—C3—C2102.0 (3)C10—C11—C12118.2 (4)
C8—C3—H3113 (3)C10—C11—H11119 (4)
C4—C3—H3108 (3)C12—C11—H11123 (4)
C2—C3—H3114 (3)C13—C12—C11122.7 (4)
O1—C4—C5102.6 (3)C13—C12—N2118.4 (4)
O1—C4—C3101.9 (3)C11—C12—N2118.8 (4)
C5—C4—C3109.1 (3)C12—C13—C14118.8 (4)
O1—C4—H4110 (3)C12—C13—H13117 (3)
C5—C4—H4118 (3)C14—C13—H13124 (3)
C3—C4—H4113 (3)C9—C14—C13119.5 (4)
C4—C5—C6101.7 (4)C9—C14—H14121 (3)
C4—C5—H5A111 (3)C13—C14—H14119 (2)
C6—C5—H5A110 (3)C7—N1—C8112.6 (3)
C4—C5—H5B109 (3)C7—N1—C9124.7 (3)
C6—C5—H5B114 (3)C8—N1—C9122.4 (3)
H5A—C5—H5B111 (4)O4—N2—O5124.1 (5)
C5—C6—C1101.7 (3)O4—N2—C12118.0 (5)
C5—C6—H6A113 (4)O5—N2—C12117.9 (5)
C1—C6—H6A110 (4)C4—O1—C196.5 (3)
C5—C6—H6B110 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O3i0.87 (7)2.55 (7)3.179 (6)130 (5)
C6—H6B···O4ii1.00 (6)2.57 (6)3.504 (7)154 (5)
C14—H14···O2iii0.97 (4)2.40 (4)3.128 (5)131 (3)
C13—H13···O50.94 (5)2.33 (5)2.693 (6)102 (3)
Symmetry codes: (i) x1, y, z1; (ii) x+2, y1/2, z+1; (iii) x, y, z+1.
(3aR,4S,7R,7aS)-2-(2-Hydroxyethyl)-3a,4,5,6,7,7a-hexahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione (NCA-AE) top
Crystal data top
C10H13NO4Dx = 1.394 Mg m3
Mr = 211.21Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pmn21Cell parameters from 380 reflections
a = 10.0350 (17) Åθ = 2.5–26.0°
b = 5.5937 (13) ŵ = 0.91 mm1
c = 8.9634 (17) ÅT = 293 K
V = 503.14 (17) Å3Plate, colorless
Z = 20.38 × 0.35 × 0.12 mm
F(000) = 224
Data collection top
Bruker SMART CCD area detector
diffractometer
731 independent reflections
Radiation source: fine-focus sealed tube594 reflections with I > 2σ(I)
Detector resolution: 10.12 pixels mm-1Rint = 0.027
phi and ω scansθmax = 71.7°, θmin = 6.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 128
Tmin = 0.719, Tmax = 0.885k = 66
1569 measured reflectionsl = 1011
Refinement top
Refinement on F2Only H-atom displacement parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0317P)2 + 0.0793P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.045(Δ/σ)max < 0.001
wR(F2) = 0.099Δρmax = 0.14 e Å3
S = 1.07Δρmin = 0.12 e Å3
731 reflectionsExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
113 parametersExtinction coefficient: 0.0122 (19)
4 restraintsAbsolute structure: Flack x determined using 120 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: mixedAbsolute structure parameter: 0.6 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0762 (5)0.5419 (9)0.3893 (5)0.0636 (13)
C20.1072 (4)0.5946 (8)0.5513 (5)0.0544 (12)
C30.0763 (3)0.8593 (7)0.5839 (4)0.0454 (10)
C40.1143 (4)0.9308 (7)0.7394 (5)0.0498 (10)
C50.0000001.0237 (13)0.9811 (8)0.067 (2)
C60.028 (3)1.289 (2)1.0039 (12)0.080 (10)0.5
N10.0000000.9642 (8)0.8213 (5)0.0478 (12)
O10.0000000.4758 (7)0.6294 (5)0.0588 (12)
O20.2271 (3)0.9512 (6)0.7872 (5)0.0842 (13)
O30.0717 (9)1.4328 (12)0.9424 (10)0.076 (2)0.5
H70.0960571.3844270.8605060.29 (16)*0.5
H1A0.113 (5)0.393 (10)0.360 (6)0.081 (16)*
H1B0.121 (4)0.655 (8)0.316 (6)0.070 (13)*
H20.198 (5)0.538 (8)0.591 (6)0.084 (16)*
H30.121 (4)0.960 (7)0.520 (6)0.055 (12)*
H50.086 (5)0.951 (11)1.037 (8)0.12 (2)*
H6A0.014 (11)1.307 (13)1.110 (3)0.08 (3)*0.5
H6B0.123 (4)1.29 (2)0.986 (12)0.08 (4)*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.083 (3)0.057 (3)0.050 (3)0.005 (2)0.011 (3)0.016 (3)
C20.058 (3)0.054 (2)0.051 (3)0.011 (2)0.001 (2)0.005 (2)
C30.0441 (19)0.046 (2)0.046 (2)0.0034 (16)0.0037 (19)0.003 (2)
C40.051 (2)0.046 (2)0.052 (2)0.0005 (16)0.007 (2)0.0077 (19)
C50.092 (5)0.067 (5)0.042 (4)0.0000.0000.006 (3)
C60.11 (3)0.095 (7)0.041 (4)0.015 (10)0.008 (7)0.031 (5)
N10.059 (3)0.044 (3)0.040 (3)0.0000.0000.006 (2)
O10.085 (3)0.044 (2)0.047 (2)0.0000.0000.001 (2)
O20.0531 (19)0.108 (3)0.091 (3)0.0125 (15)0.0223 (19)0.038 (2)
O30.097 (5)0.060 (4)0.070 (5)0.009 (4)0.008 (4)0.003 (4)
Geometric parameters (Å, º) top
C1—C21.514 (7)C5—N11.470 (8)
C1—C1i1.530 (10)C5—C6i1.523 (15)
C1—H1A0.95 (6)C5—C61.523 (15)
C1—H1B1.02 (5)C5—H51.08 (5)
C2—O11.445 (5)C6—C6i0.57 (6)
C2—C31.540 (5)C6—O3i1.069 (16)
C2—H21.03 (5)C6—O31.40 (2)
C3—C41.500 (6)C6—H6A0.966 (13)
C3—C3i1.532 (7)C6—H6B0.962 (13)
C3—H30.92 (5)O3—O3i1.439 (18)
C4—O21.215 (5)O3—H70.8200
C4—N11.374 (5)
C2—C1—C1i101.8 (3)C6—C5—H5117 (4)
C2—C1—H1A111 (3)C6i—C6—O3i114.0 (14)
C1i—C1—H1A113 (3)C6i—C6—O344.2 (10)
C2—C1—H1B114 (3)O3i—C6—O369.8 (12)
C1i—C1—H1B116 (3)C6i—C6—C579.2 (10)
H1A—C1—H1B101 (4)O3i—C6—C5137.8 (11)
O1—C2—C1102.8 (4)O3—C6—C5111.9 (16)
O1—C2—C3101.6 (3)C6i—C6—H6A81 (7)
C1—C2—C3109.1 (4)O3i—C6—H6A119 (5)
O1—C2—H2110 (3)O3—C6—H6A103 (6)
C1—C2—H2117 (3)C5—C6—H6A102 (5)
C3—C2—H2114 (3)C6i—C6—H6B170 (7)
C4—C3—C3i104.7 (2)O3i—C6—H6B60 (7)
C4—C3—C2112.4 (3)O3—C6—H6B129 (8)
C3i—C3—C2101.6 (2)C5—C6—H6B100 (7)
C4—C3—H3107 (3)H6A—C6—H6B108 (3)
C3i—C3—H3119 (3)C4—N1—C4i113.1 (5)
C2—C3—H3112 (3)C4—N1—C5123.4 (2)
O2—C4—N1125.2 (4)C4i—N1—C5123.4 (2)
O2—C4—C3126.1 (4)C2—O1—C2i96.2 (5)
N1—C4—C3108.7 (3)C6i—O3—C622 (2)
N1—C5—C6i110.6 (7)C6i—O3—O3i66.0 (14)
N1—C5—C6110.6 (7)C6—O3—O3i44.2 (10)
C6i—C5—C622 (2)C6i—O3—H7109.5
N1—C5—H5111 (4)C6—O3—H7112.1
C6i—C5—H599 (4)O3i—O3—H7107.3
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H7···O1ii0.822.342.906 (10)127
C1—H1A···O2iii0.95 (6)2.59 (6)3.513 (6)165 (4)
O3—H7···N10.822.562.927 (8)108
Symmetry codes: (ii) x, y+1, z; (iii) x+1/2, y+1, z1/2.
Dihedral angles (°) in five DNCA derivatives top
Dihedral anglesaDNCA-ANCA-A (GOLKAU)b1DNCA-NANCA-NADNCA-AE) (LAQWEHb2NCA-AEDNCA (OXHEPA02)b3NCA (QIWJEM)b3
AB114.604 (15)115.715 (63)116.707 (11)118.207 (11)114.605 (90)116.704 (26)114.940 (62)115.923 (85)
[116.740]c[117.401]c[116.695]c[116.422]c[116.288]c[117.630]c[115.985]c[116.808]c
BD119.800 (13)122.885 (105)119.522 (14)122.490 (11)119.601 (140)122.505 (61)119.054 (83)122.299 (105)
[119.847]c[122.907]c[119.769]c[122.781]c[119.834]c[123.212]c[119.634]c[122.948]c
CD129.353 (12)124.720 (109)129.093 (15)124.901 (12)129.843 (124)124.917 (17)131.006 (88)125.346 (115)
[129.555]c[124.661]c[129.677]c[124.760]c[129.552]c[124.483]c[129.878]c[124.771]c
BC110.844 (11)112.395 (89)111.379 (12)112.594 (13)110.556 (118)112.578 (38)109.939 (78)112.355 (102)
[110.598]c[112.431]c[110.554]c[112.065]c[110.614]c[112.193]c[110.477]c[112.288]c
AE50.364 (8)49.337 (45)55.931 (9)56.807 (11)
[83.349]c[83.275]c[57.912]c[44.268]c
Notes: (a) The definition of the five planes can be found in Fig. 2. (b) CSD refcodes are placed in the brackets and the references are: (b1) Zhu & Lin (2009), (b2) Tan et al. (2012) and (b3) Goh et al. (2008). It should be noted that the endo structure of NCA-AE was also reported (Discekici et al., 2018; FEYVOX), which has a quite different molecular and crystal structure than exo-DNCA-AE. (c) Calculated results [using the B3LYP/6-311+g(d,p)/pcm method] are placed in the square brackets.
The intermolecular interaction energies (ΔE) in various molecule dimersi (kJ mol-1) top
MoleculeMolecular pairingsiiInteraction notationiiiInteraction typeiiiΔE [DFT/B3LYP/6-311++g(3d,3p)]ΔE [MP2/6-311++g(3d,3p)]
DNCA-AA and Bc, ec: ππ; e: C—H···π-1.59-12.79
B and Ca, b, da, b: ππ; d: C—H···π1.77-34.02
B and D2fiv[H-bond]iv-10.95-11.32
NCA-A (GOLKAU)A and Bc, ec: ππ; e: C—H···π-1.67-12.85
B and Ca, b, da, b: ππ; d: C—H···π-0.83-39.73
B and D2fH-bond-14.18-27.24
DNCA-NAC and Daππ-2.42-19.41
B and DbH-bond-9.16-24.26
B and C (or D and E)c, d, eππ7.62-34.23
A and DfH-bond-10.47-16.63
NCA-NAC and DaH-bond-1.55-17.41
B and DbH-bond-7.55-25.42
B and C (or D and E)c, d, eππ8.18-33.31
A and DfH-bond-4.14-9.30
DNCA-AE (LAQWEH)A and Bdππ3.50-23.76
A and CaH-bond-21.55-33.49
A and DbH-bond-2.42-7.64
A and EcH-bond-3.63-16.99
NCA-AEA and Ba, ca: H-bond; c: ππ3.87-21.49
A and CbH-bond-1.11-6.97
DNCA (OXHEPA02)A and Bd, ed: ππ; e: C—O···π6.54-11.53 (-11.18v)
A and CcH-bond-2.25-11.73 (-10.83v)
B and CbH-bond6.40-1.01 (-2.06iv)
C and DaH-bond-11.89-23.39 (-23.83v)
NCA (QIWJEM)A and Bdππ1.66-23.01 (-26.42vi)
B and CbH-bond-7.59-19.49 (-15.96vi)
B and DaH-bond1.32-10.24 (-8.90vi)
C and DcH-bond-0.99-9.51 (-8.40vi)
Notes: (i) The interaction energy ΔE is defined as the difference between the energy of the dimer AB and the energy of the isolated molecules [i.e. ΔE = E(AB) - E(A) - E(B)]. The positive ΔE indicates that the intermolecular interactions in this system are repulsive while the negative value corresponds to a favourable binding energy. (ii) The definition of molecular pairings can be found in corresponding packing figures, i.e. Figs. 4 and 5. (iii) The definition of interaction notation and corresponding type is detailed in the interaction geometry tables for these DNCA/NCA derivatives, i.e. Tables S2–S19 in the supporting information. (iv) `[H-bond] [f]' between B and D in DNCA-A are established according to that in NCA-A and not really hydrogen bonds, so `f' and `H-bond' are placed in square brackets. (v) The crystal structure and molecule positions are identical to DNCA (OXHEPA02), but all molecules are changed into NCA (QIWJEM). (vi) The crystal structure and molecule positions are identical to NCA (QIWJEM), but all molecules are changed into DNCA (OXHEPA02).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds