Download citation
Download citation
link to html
The dissolution of 6-amino­thio­cytosine in common solvents (such as methanol, dimethyl sulfoxide and di­chloro­methane) under alkaline conditions is shown to afford new com­pounds with a 6-amino­thio­cytosine skeleton: 2,2′-disulfanediylbis(pyrimidine-4,6-di­amine) (1), C8H10N8S2, 2,2′-[methane­diylbis(sulfanedi­yl)]bis­(pyrimidine-4,6-di­amine) (2), C9H12N8S2, 2-[(meth­oxy­meth­yl)sul­fan­yl]pyrimidine-4,6-di­amine (3), C6H10N4OS, and poly[(μ-4,6-di­amino­pyrimidine-2-sulfinato)potassium(I)] (4), [K(C4H5N4O2S)]n. The crystal architectures of these com­pounds are found to be strongly influenced by extensive hydrogen-bond networks, although some individual features are also observed. Specifically, 1 is characterized by very short C—H...N hydrogen bonds, 2 features apparently weak and long C—H...π, C—H...S and π–π contacts as the greatest contributors to stabilization energy, while 3 contains ribbons of mol­ecules formed by centrosymmetric dimers of two types, and 4 is characterized by layers with principal structural units com­prising distorted six-mol­ecule rings. The inter­molecular inter­actions in 14 are characterized in terms of their geometry, topology and energy, and the corresponding results are confirmed and visualized using Hirshfeld surface analysis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620012504/zo3006sup1.cif
Contains datablocks 1, 2, 3, 4, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620012504/zo30061sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620012504/zo30062sup3.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620012504/zo30063sup4.hkl
Contains datablock 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620012504/zo30064sup5.hkl
Contains datablock 4

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229620012504/zo3006sup6.pdf
Additional figures and tables

CCDC references: 2031554; 1920746; 1972276; 1972275

Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

2,2'-Disulfanediylbis(pyrimidine-4,6-diamine) (1) top
Crystal data top
C8H10N8S2F(000) = 584
Mr = 282.36Dx = 1.580 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54184 Å
a = 12.3766 (3) ÅCell parameters from 4768 reflections
b = 10.7745 (2) Åθ = 5.5–75.9°
c = 9.2050 (2) ŵ = 4.06 mm1
β = 104.777 (2)°T = 130 K
V = 1186.90 (5) Å3Block, colourless
Z = 40.1 × 0.05 × 0.05 mm
Data collection top
Rigaku SuperNova Single Source
diffractometer with an Atlas detector
1888 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1877 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.5357 pixels mm-1θmax = 76.1°, θmin = 5.5°
ω scansh = 1215
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1313
Tmin = 0.745, Tmax = 1.000l = 1110
5026 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.7075P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.17 e Å3
1888 reflectionsΔρmin = 0.23 e Å3
163 parametersAbsolute structure: Flack x determined using 640 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.009 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39810 (18)0.3677 (2)0.7728 (2)0.0200 (5)
C20.4850 (2)0.3070 (2)0.7476 (3)0.0168 (5)
N30.59186 (18)0.3384 (2)0.7809 (2)0.0188 (5)
C40.6147 (2)0.4502 (2)0.8530 (3)0.0200 (5)
N40.72210 (19)0.4869 (2)0.8878 (3)0.0271 (5)
H4A0.73810.54990.94150.051*
H4B0.77480.43660.87150.041*
C50.5316 (2)0.5212 (3)0.8914 (3)0.0222 (5)
H50.55190.59560.95120.024*
C60.4227 (2)0.4764 (3)0.8498 (3)0.0216 (5)
N60.3364 (2)0.5349 (3)0.8837 (3)0.0304 (6)
H6A0.27390.49870.86570.065*
H6B0.34140.60720.92840.047*
S70.43925 (5)0.15767 (6)0.66919 (6)0.02028 (15)
S80.56246 (5)0.09561 (5)0.57967 (6)0.01759 (14)
C90.5211 (2)0.1481 (2)0.3882 (3)0.0153 (5)
N100.60815 (18)0.15691 (19)0.3296 (2)0.0173 (4)
C110.5831 (2)0.1969 (2)0.1838 (3)0.0188 (5)
N110.66782 (19)0.2082 (2)0.1191 (3)0.0245 (5)
H11A0.72920.19030.16640.032*
H11B0.64780.24390.02300.037*
C120.4727 (2)0.2237 (2)0.1063 (3)0.0204 (5)
H120.45880.25030.00090.022*
C130.3900 (2)0.2067 (2)0.1810 (3)0.0179 (5)
N130.27969 (18)0.2211 (2)0.1104 (3)0.0216 (5)
H13A0.26370.26880.03580.026*
H13B0.23650.22270.16900.019*
N140.41375 (18)0.1695 (2)0.3267 (2)0.0172 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0160 (11)0.0260 (11)0.0175 (11)0.0002 (8)0.0031 (8)0.0021 (9)
C20.0183 (12)0.0209 (12)0.0103 (11)0.0003 (9)0.0018 (9)0.0008 (9)
N30.0165 (11)0.0207 (10)0.0185 (11)0.0009 (8)0.0032 (9)0.0011 (8)
C40.0200 (13)0.0191 (12)0.0188 (13)0.0003 (10)0.0009 (10)0.0005 (10)
N40.0186 (12)0.0242 (11)0.0369 (14)0.0016 (9)0.0043 (10)0.0096 (10)
C50.0196 (13)0.0204 (12)0.0253 (14)0.0013 (10)0.0033 (10)0.0029 (10)
C60.0204 (13)0.0232 (13)0.0201 (13)0.0053 (11)0.0033 (10)0.0027 (10)
N60.0223 (12)0.0318 (14)0.0375 (14)0.0046 (10)0.0082 (10)0.0066 (11)
S70.0183 (3)0.0246 (3)0.0193 (3)0.0059 (2)0.0073 (2)0.0033 (2)
S80.0163 (3)0.0194 (3)0.0163 (3)0.0008 (2)0.0028 (2)0.0014 (2)
C90.0160 (12)0.0136 (11)0.0154 (12)0.0017 (8)0.0026 (9)0.0009 (9)
N100.0143 (10)0.0195 (10)0.0175 (11)0.0004 (7)0.0028 (8)0.0009 (8)
C110.0173 (12)0.0194 (11)0.0201 (12)0.0004 (9)0.0054 (10)0.0008 (9)
N110.0157 (11)0.0355 (13)0.0236 (11)0.0018 (9)0.0071 (9)0.0075 (10)
C120.0184 (12)0.0242 (12)0.0176 (11)0.0021 (11)0.0029 (9)0.0024 (10)
C130.0173 (12)0.0159 (11)0.0187 (12)0.0009 (8)0.0015 (9)0.0018 (9)
N130.0163 (11)0.0291 (11)0.0186 (10)0.0045 (9)0.0030 (8)0.0026 (9)
N140.0154 (10)0.0195 (10)0.0171 (10)0.0009 (8)0.0048 (8)0.0006 (8)
Geometric parameters (Å, º) top
N1—C21.329 (3)S8—C91.797 (2)
N1—C61.362 (4)C9—N141.325 (3)
C2—N31.323 (3)C9—N101.325 (3)
C2—S71.795 (3)N10—C111.368 (3)
N3—C41.370 (3)C11—N111.337 (4)
C4—N41.345 (3)C11—C121.402 (3)
C4—C51.398 (4)N11—H11A0.7975
N4—H4A0.8334N11—H11B0.9377
N4—H4B0.8901C12—C131.383 (4)
C5—C61.390 (4)C12—H120.9996
C5—H50.9688C13—N141.358 (3)
C6—N61.345 (4)C13—N131.363 (3)
N6—H6A0.8441N13—H13A0.8403
N6—H6B0.8756N13—H13B0.8503
S7—S82.0231 (9)
C2—N1—C6115.5 (2)C9—S8—S7103.87 (9)
N3—C2—N1129.8 (2)N14—C9—N10130.1 (2)
N3—C2—S7121.1 (2)N14—C9—S8118.5 (2)
N1—C2—S7108.96 (19)N10—C9—S8111.33 (17)
C2—N3—C4114.0 (2)C9—N10—C11114.7 (2)
N4—C4—N3116.3 (2)N11—C11—N10117.3 (2)
N4—C4—C5121.7 (2)N11—C11—C12121.9 (2)
N3—C4—C5122.0 (2)N10—C11—C12120.8 (2)
C4—N4—H4A116.8C11—N11—H11A118.8
C4—N4—H4B120.2C11—N11—H11B114.1
H4A—N4—H4B121.5H11A—N11—H11B126.9
C6—C5—C4117.7 (2)C13—C12—C11117.9 (2)
C6—C5—H5122.5C13—C12—H12124.5
C4—C5—H5119.7C11—C12—H12117.5
N6—C6—N1116.0 (2)N14—C13—N13116.3 (2)
N6—C6—C5123.0 (3)N14—C13—C12121.9 (2)
N1—C6—C5121.0 (2)N13—C13—C12121.7 (2)
C6—N6—H6A118.7C13—N13—H13A117.2
C6—N6—H6B124.2C13—N13—H13B114.5
H6A—N6—H6B117.1H13A—N13—H13B116.8
C2—S7—S8105.47 (9)C9—N14—C13114.5 (2)
C6—N1—C2—N33.0 (4)S7—S8—C9—N1424.5 (2)
C6—N1—C2—S7172.07 (18)S7—S8—C9—N10156.64 (15)
N1—C2—N3—C40.5 (4)N14—C9—N10—C111.6 (4)
S7—C2—N3—C4174.02 (19)S8—C9—N10—C11179.77 (17)
C2—N3—C4—N4179.3 (2)C9—N10—C11—N11179.6 (2)
C2—N3—C4—C52.0 (4)C9—N10—C11—C120.8 (3)
N4—C4—C5—C6179.5 (2)N11—C11—C12—C13178.5 (3)
N3—C4—C5—C61.9 (4)N10—C11—C12—C131.0 (4)
C2—N1—C6—N6176.2 (2)C11—C12—C13—N142.4 (4)
C2—N1—C6—C52.9 (4)C11—C12—C13—N13174.7 (2)
C4—C5—C6—N6178.3 (3)N10—C9—N14—C130.3 (4)
C4—C5—C6—N10.7 (4)S8—C9—N14—C13178.87 (17)
N3—C2—S7—S820.8 (2)N13—C13—N14—C9175.5 (2)
N1—C2—S7—S8163.70 (15)C12—C13—N14—C91.8 (4)
2,2'-[Methanediylbis(sulfanediyl)]bis(pyrimidine-4,6-diamine) (2) top
Crystal data top
C9H12N8S2Dx = 1.621 Mg m3
Mr = 296.39Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Fdd2Cell parameters from 3186 reflections
a = 36.9868 (10) Åθ = 4.8–75.1°
b = 15.5842 (4) ŵ = 4.00 mm1
c = 4.2131 (1) ÅT = 130 K
V = 2428.47 (11) Å3Needle, colourless
Z = 80.2 × 0.02 × 0.02 mm
F(000) = 1232
Data collection top
Rigaku SuperNova Single Source
diffractometer with an Atlas detector
1171 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1153 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.5357 pixels mm-1θmax = 75.8°, θmin = 4.8°
ω scansh = 4646
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1913
Tmin = 0.593, Tmax = 1.000l = 55
4267 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0386P)2 + 2.5037P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.18 e Å3
1171 reflectionsΔρmin = 0.16 e Å3
88 parametersAbsolute structure: Flack x determined using 436 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.001 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.33494 (5)0.31726 (11)0.3752 (5)0.0233 (4)
C20.30593 (6)0.32157 (14)0.5623 (6)0.0224 (5)
N30.28855 (5)0.38998 (11)0.6691 (7)0.0244 (4)
C40.30253 (6)0.46631 (13)0.5759 (6)0.0243 (5)
N40.28395 (6)0.53599 (11)0.6790 (8)0.0319 (4)
H4A0.29220.58570.66800.038*
H4B0.26960.52120.83000.038*
C50.33268 (6)0.47186 (13)0.3806 (6)0.0250 (5)
H50.34220.52570.31580.030*
C60.34835 (6)0.39450 (14)0.2836 (6)0.0238 (4)
N60.37774 (5)0.39304 (13)0.0935 (5)0.0290 (5)
H6A0.38720.34370.03530.035*
H6B0.38740.44150.02780.035*
S70.28927 (2)0.21932 (3)0.67621 (18)0.02388 (16)
C80.25000.25000.9038 (9)0.0241 (6)
H8A0.24340.20241.04000.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0224 (8)0.0201 (8)0.0273 (11)0.0009 (7)0.0023 (7)0.0001 (8)
C20.0210 (10)0.0206 (10)0.0256 (11)0.0012 (8)0.0040 (8)0.0004 (8)
N30.0231 (8)0.0215 (8)0.0285 (9)0.0007 (7)0.0018 (8)0.0003 (12)
C40.0246 (11)0.0197 (11)0.0288 (13)0.0000 (8)0.0070 (9)0.0002 (9)
N40.0369 (10)0.0194 (9)0.0393 (11)0.0029 (7)0.0025 (11)0.0020 (11)
C50.0257 (10)0.0200 (9)0.0293 (13)0.0026 (8)0.0033 (9)0.0027 (10)
C60.0213 (10)0.0242 (10)0.0260 (10)0.0021 (8)0.0041 (8)0.0008 (9)
N60.0272 (9)0.0247 (9)0.0350 (13)0.0020 (7)0.0057 (8)0.0004 (8)
S70.0259 (2)0.0174 (2)0.0284 (3)0.00188 (17)0.0009 (2)0.0008 (2)
C80.0255 (13)0.0236 (14)0.0232 (14)0.0039 (11)0.0000.000
Geometric parameters (Å, º) top
N1—C21.333 (3)C5—C61.398 (3)
N1—C61.358 (3)C5—H50.9500
C2—N31.324 (3)C6—N61.351 (3)
C2—S71.775 (2)N6—H6A0.8800
N3—C41.355 (3)N6—H6B0.8800
C4—N41.356 (3)S7—C81.805 (2)
C4—C51.389 (4)C8—S7i1.805 (2)
N4—H4A0.8337C8—H8A0.9700
N4—H4B0.8606
C2—N1—C6114.67 (19)C4—C5—H5121.6
N3—C2—N1129.2 (2)C6—C5—H5121.6
N3—C2—S7117.56 (17)N6—C6—N1116.6 (2)
N1—C2—S7113.21 (16)N6—C6—C5121.4 (2)
C2—N3—C4115.0 (2)N1—C6—C5122.0 (2)
N3—C4—N4114.6 (2)C6—N6—H6A120.0
N3—C4—C5122.2 (2)C6—N6—H6B120.0
N4—C4—C5123.1 (2)H6A—N6—H6B120.0
C4—N4—H4A122.8C2—S7—C8100.67 (8)
C4—N4—H4B109.6S7i—C8—S7115.8 (2)
H4A—N4—H4B121.0S7i—C8—H8A108.3
C4—C5—C6116.9 (2)S7—C8—H8A108.3
C6—N1—C2—N30.2 (4)C2—N1—C6—N6179.9 (2)
C6—N1—C2—S7179.97 (16)C2—N1—C6—C50.1 (3)
N1—C2—N3—C40.5 (4)C4—C5—C6—N6180.0 (2)
S7—C2—N3—C4179.73 (18)C4—C5—C6—N10.1 (4)
C2—N3—C4—N4178.2 (3)N3—C2—S7—C82.5 (2)
C2—N3—C4—C50.5 (4)N1—C2—S7—C8177.34 (18)
N3—C4—C5—C60.3 (4)C2—S7—C8—S7i78.08 (8)
N4—C4—C5—C6177.8 (3)
Symmetry code: (i) x+1/2, y+1/2, z.
2-[(Methoxymethyl)sulfanyl]pyrimidine-4,6-diamine (3) top
Crystal data top
C6H10N4OSF(000) = 392
Mr = 186.24Dx = 1.372 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.6783 (4) ÅCell parameters from 921 reflections
b = 9.1691 (6) Åθ = 4.2–26.5°
c = 11.4391 (6) ŵ = 0.32 mm1
β = 97.846 (4)°T = 295 K
V = 901.71 (9) Å3Block, colourless
Z = 40.6 × 0.5 × 0.3 mm
Data collection top
Rigaku Xcalibur Eos
diffractometer
1315 reflections with I > 2σ(I)
Detector resolution: 16.1544 pixels mm-1Rint = 0.018
ω scansθmax = 28.3°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 107
Tmin = 0.847, Tmax = 1.000k = 116
3394 measured reflectionsl = 1411
1852 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.3948P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1852 reflectionsΔρmax = 0.35 e Å3
118 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8830 (2)0.4430 (2)0.36011 (17)0.0470 (5)
C20.8219 (3)0.4554 (3)0.2483 (2)0.0478 (6)
N30.7011 (2)0.3863 (3)0.19090 (18)0.0541 (6)
C40.6305 (3)0.2910 (3)0.2572 (2)0.0529 (7)
N40.5052 (3)0.2211 (3)0.1999 (2)0.0780 (8)
H4A0.47540.23850.12640.094*
H4B0.45520.15930.23690.094*
C50.6844 (3)0.2665 (3)0.3740 (2)0.0513 (7)
H50.63550.20010.41820.062*
C60.8135 (3)0.3437 (3)0.4236 (2)0.0464 (6)
N60.8784 (3)0.3259 (3)0.53582 (19)0.0598 (6)
H6A0.95910.37600.56330.072*
H6B0.83950.26440.58040.072*
S70.92576 (8)0.57972 (10)0.17073 (6)0.0655 (3)
C80.7892 (4)0.6153 (4)0.0397 (3)0.0614 (8)
H8A0.851 (3)0.649 (3)0.015 (2)0.060 (8)*
H8B0.744 (3)0.523 (4)0.012 (3)0.075 (10)*
O90.6652 (2)0.7049 (2)0.05835 (17)0.0638 (6)
C100.7096 (4)0.8527 (4)0.0823 (3)0.0832 (10)
H10A0.76510.88840.02100.125*
H10B0.77540.85830.15680.125*
H10C0.61840.91110.08510.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0442 (10)0.0452 (13)0.0521 (12)0.0017 (10)0.0089 (9)0.0011 (10)
C20.0426 (12)0.0507 (16)0.0515 (14)0.0004 (12)0.0118 (10)0.0018 (12)
N30.0498 (12)0.0621 (15)0.0517 (12)0.0102 (11)0.0110 (9)0.0020 (11)
C40.0456 (13)0.0530 (17)0.0618 (16)0.0060 (13)0.0129 (12)0.0064 (13)
N40.0707 (16)0.088 (2)0.0743 (16)0.0360 (15)0.0059 (13)0.0019 (15)
C50.0465 (13)0.0472 (16)0.0621 (17)0.0027 (12)0.0139 (12)0.0060 (12)
C60.0449 (13)0.0428 (15)0.0531 (14)0.0077 (12)0.0123 (11)0.0024 (12)
N60.0608 (13)0.0595 (15)0.0582 (13)0.0068 (12)0.0048 (10)0.0123 (12)
S70.0517 (4)0.0788 (6)0.0660 (5)0.0137 (4)0.0081 (3)0.0163 (4)
C80.0635 (18)0.068 (2)0.0550 (16)0.0069 (17)0.0160 (14)0.0036 (15)
O90.0513 (11)0.0575 (13)0.0821 (13)0.0093 (10)0.0068 (9)0.0057 (10)
C100.077 (2)0.056 (2)0.117 (3)0.0129 (18)0.0170 (19)0.006 (2)
Geometric parameters (Å, º) top
N1—C21.321 (3)C6—N61.339 (3)
N1—C61.357 (3)N6—H6A0.8600
C2—N31.321 (3)N6—H6B0.8600
C2—S71.766 (3)S7—C81.809 (3)
N3—C41.357 (3)C8—O91.393 (4)
C4—N41.352 (3)C8—H8A0.93 (3)
C4—C51.373 (4)C8—H8B0.97 (3)
N4—H4A0.8600O9—C101.426 (4)
N4—H4B0.8600C10—H10A0.9600
C5—C61.380 (3)C10—H10B0.9600
C5—H50.9300C10—H10C0.9600
C2—N1—C6115.3 (2)C6—N6—H6A120.0
N1—C2—N3128.8 (2)C6—N6—H6B120.0
N1—C2—S7112.16 (18)H6A—N6—H6B120.0
N3—C2—S7119.00 (19)C2—S7—C8102.18 (14)
C2—N3—C4114.8 (2)O9—C8—S7114.3 (2)
N4—C4—N3115.4 (2)O9—C8—H8A115.7 (18)
N4—C4—C5122.6 (3)S7—C8—H8A104.3 (17)
N3—C4—C5122.0 (2)O9—C8—H8B106.3 (18)
C4—N4—H4A120.0S7—C8—H8B107.9 (18)
C4—N4—H4B120.0H8A—C8—H8B108 (2)
H4A—N4—H4B120.0C8—O9—C10113.3 (2)
C4—C5—C6117.8 (2)O9—C10—H10A109.5
C4—C5—H5121.1O9—C10—H10B109.5
C6—C5—H5121.1H10A—C10—H10B109.5
N6—C6—N1115.8 (2)O9—C10—H10C109.5
N6—C6—C5122.9 (2)H10A—C10—H10C109.5
N1—C6—C5121.3 (2)H10B—C10—H10C109.5
C6—N1—C2—N31.3 (4)C2—N1—C6—N6177.4 (2)
C6—N1—C2—S7176.83 (17)C2—N1—C6—C52.4 (3)
N1—C2—N3—C40.7 (4)C4—C5—C6—N6178.3 (2)
S7—C2—N3—C4178.76 (19)C4—C5—C6—N11.5 (4)
C2—N3—C4—N4179.0 (2)N1—C2—S7—C8163.8 (2)
C2—N3—C4—C51.7 (4)N3—C2—S7—C817.9 (2)
N4—C4—C5—C6179.9 (3)C2—S7—C8—O974.3 (3)
N3—C4—C5—C60.7 (4)S7—C8—O9—C1070.4 (3)
Poly[(µ-4,6-diaminopyrimidine-2-sulfinato)potassium(I)] (4) top
Crystal data top
[K(C4H5N4O2S)]Z = 2
Mr = 212.28F(000) = 216
Triclinic, P1Dx = 1.872 Mg m3
a = 6.9631 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.035 (1) ÅCell parameters from 1084 reflections
c = 8.0886 (10) Åθ = 3.3–26.6°
α = 103.021 (10)°µ = 0.94 mm1
β = 111.568 (11)°T = 295 K
γ = 106.007 (10)°Plate, yellow
V = 376.56 (9) Å30.25 × 0.2 × 0.06 mm
Data collection top
Rigaku Xcalibur Eos
diffractometer
1507 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1321 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 16.2413 pixels mm-1θmax = 27.0°, θmin = 3.2°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1010
Tmin = 0.853, Tmax = 1.000l = 910
2466 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.2579P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1507 reflectionsΔρmax = 0.32 e Å3
109 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.70120 (9)0.16473 (8)0.44579 (9)0.03648 (19)
N10.6643 (3)0.3677 (3)0.4567 (3)0.0254 (4)
C20.8070 (4)0.2858 (3)0.5049 (3)0.0236 (5)
S20.90525 (10)0.29667 (9)0.75330 (8)0.02673 (18)
O211.1022 (3)0.2428 (3)0.7880 (3)0.0401 (5)
O220.7085 (3)0.1347 (3)0.7254 (3)0.0429 (5)
N30.8766 (3)0.1928 (3)0.3987 (3)0.0254 (4)
C40.7961 (4)0.1866 (3)0.2148 (3)0.0248 (5)
N40.8684 (4)0.0945 (3)0.1045 (3)0.0357 (5)
H410.95940.04450.15150.043*
H420.82330.08600.01250.043*
C50.6507 (4)0.2704 (3)0.1483 (3)0.0284 (5)
H50.60170.27060.02470.034*
C60.5800 (4)0.3542 (3)0.2707 (3)0.0250 (5)
N60.4250 (4)0.4277 (3)0.2136 (3)0.0336 (5)
H610.38490.47920.29310.040*
H620.36660.42280.09770.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0296 (3)0.0424 (4)0.0442 (4)0.0181 (3)0.0207 (3)0.0162 (3)
N10.0270 (10)0.0333 (11)0.0210 (10)0.0179 (9)0.0117 (8)0.0104 (8)
C20.0240 (11)0.0302 (12)0.0186 (11)0.0121 (10)0.0099 (9)0.0105 (9)
S20.0285 (3)0.0390 (4)0.0172 (3)0.0195 (3)0.0105 (2)0.0104 (2)
O210.0369 (11)0.0691 (13)0.0300 (10)0.0350 (10)0.0166 (8)0.0254 (9)
O220.0364 (11)0.0623 (13)0.0321 (10)0.0160 (10)0.0161 (9)0.0247 (9)
N30.0292 (11)0.0348 (11)0.0217 (10)0.0194 (9)0.0145 (8)0.0132 (8)
C40.0264 (12)0.0314 (12)0.0214 (11)0.0127 (10)0.0135 (10)0.0116 (9)
N40.0477 (13)0.0539 (14)0.0262 (11)0.0347 (12)0.0245 (10)0.0191 (10)
C50.0331 (13)0.0375 (13)0.0195 (11)0.0179 (11)0.0123 (10)0.0133 (10)
C60.0250 (12)0.0268 (12)0.0244 (11)0.0119 (10)0.0105 (10)0.0111 (9)
N60.0360 (12)0.0462 (13)0.0246 (10)0.0286 (11)0.0104 (9)0.0142 (9)
Geometric parameters (Å, º) top
K1—O21i2.7729 (19)S2—O221.510 (2)
K1—O22ii2.782 (2)S2—K1ii3.6484 (10)
K1—N3i2.837 (2)O21—K1i2.7729 (19)
K1—O222.881 (2)O22—K1ii2.782 (2)
K1—N32.965 (2)N3—C41.366 (3)
K1—N6iii3.009 (2)N3—K1i2.837 (2)
K1—N1ii3.086 (2)C4—N41.355 (3)
K1—C23.372 (2)C4—C51.380 (3)
K1—O213.372 (2)N4—H410.8600
K1—S23.5059 (11)N4—H420.8600
K1—C6iii3.538 (2)C5—C61.385 (3)
K1—S2ii3.6484 (10)C5—H50.9300
N1—C21.328 (3)C6—N61.355 (3)
N1—C61.364 (3)C6—K1iv3.538 (2)
N1—K1ii3.086 (2)N6—K1iv3.009 (2)
C2—N31.322 (3)N6—H610.8600
C2—S21.842 (2)N6—H620.8600
S2—O211.4982 (18)
O21i—K1—O22ii116.17 (6)N3—K1—S2ii105.02 (4)
O21i—K1—N3i60.51 (5)N6iii—K1—S2ii65.50 (4)
O22ii—K1—N3i176.53 (6)N1ii—K1—S2ii45.61 (4)
O21i—K1—O22142.94 (6)C2—K1—S2ii93.18 (4)
O22ii—K1—O2273.93 (6)O21—K1—S2ii126.34 (4)
N3i—K1—O22108.03 (6)S2—K1—S2ii101.55 (2)
O21i—K1—N376.44 (6)C6iii—K1—S2ii86.65 (4)
O22ii—K1—N382.65 (6)C2—N1—C6114.61 (19)
N3i—K1—N395.30 (5)C2—N1—K1ii101.64 (14)
O22—K1—N369.48 (5)C6—N1—K1ii112.74 (14)
O21i—K1—N6iii77.36 (6)N3—C2—N1129.4 (2)
O22ii—K1—N6iii83.27 (6)N3—C2—S2117.31 (17)
N3i—K1—N6iii96.67 (6)N1—C2—S2113.22 (16)
O22—K1—N6iii139.40 (6)N3—C2—K160.98 (12)
N3—K1—N6iii140.74 (6)N1—C2—K1129.51 (16)
O21i—K1—N1ii139.71 (6)S2—C2—K178.53 (8)
O22ii—K1—N1ii64.92 (5)O21—S2—O22108.96 (12)
N3i—K1—N1ii118.14 (6)O21—S2—C2103.00 (10)
O22—K1—N1ii77.35 (5)O22—S2—C299.05 (10)
N3—K1—N1ii138.85 (5)O21—S2—K172.48 (9)
N6iii—K1—N1ii62.53 (6)O22—S2—K153.69 (8)
O21i—K1—C299.39 (6)C2—S2—K170.48 (8)
O22ii—K1—C272.06 (6)O21—S2—K1ii149.90 (9)
N3i—K1—C2107.01 (6)O22—S2—K1ii44.55 (8)
O22—K1—C247.50 (5)C2—S2—K1ii73.75 (7)
N3—K1—C222.95 (5)K1—S2—K1ii78.45 (2)
N6iii—K1—C2150.79 (6)S2—O21—K1i130.27 (10)
N1ii—K1—C2117.25 (5)S2—O21—K182.46 (9)
O21i—K1—O21101.64 (5)K1i—O21—K178.36 (5)
O22ii—K1—O21111.39 (6)S2—O22—K1ii113.08 (10)
N3i—K1—O2169.19 (5)S2—O22—K1101.33 (9)
O22—K1—O2145.25 (5)K1ii—O22—K1106.07 (6)
N3—K1—O2152.51 (5)C2—N3—C4114.94 (19)
N6iii—K1—O21163.40 (5)C2—N3—K1i122.60 (15)
N1ii—K1—O21115.57 (5)C4—N3—K1i115.99 (14)
C2—K1—O2145.76 (5)C2—N3—K196.07 (14)
O21i—K1—S2118.06 (5)C4—N3—K1115.55 (14)
O22ii—K1—S286.64 (5)K1i—N3—K184.70 (5)
N3i—K1—S294.13 (5)N4—C4—N3115.8 (2)
O22—K1—S224.97 (4)N4—C4—C5122.8 (2)
N3—K1—S248.75 (4)N3—C4—C5121.3 (2)
N6iii—K1—S2164.28 (5)C4—N4—H41120.0
N1ii—K1—S2102.21 (4)C4—N4—H42120.0
C2—K1—S230.98 (4)H41—N4—H42120.0
O21—K1—S225.06 (3)C4—C5—C6118.1 (2)
O21i—K1—C6iii68.84 (6)C4—C5—H5121.0
O22ii—K1—C6iii105.28 (6)C6—C5—H5121.0
N3i—K1—C6iii74.78 (6)N6—C6—N1116.3 (2)
O22—K1—C6iii146.15 (6)N6—C6—C5122.2 (2)
N3—K1—C6iii144.35 (6)N1—C6—C5121.5 (2)
N6iii—K1—C6iii22.04 (5)N6—C6—K1iv56.44 (13)
N1ii—K1—C6iii72.25 (5)N1—C6—K1iv86.70 (13)
C2—K1—C6iii165.77 (6)C5—C6—K1iv125.28 (16)
O21—K1—C6iii142.22 (5)C6—N6—K1iv101.52 (15)
S2—K1—C6iii162.28 (4)C6—N6—H61120.0
O21i—K1—S2ii120.97 (5)K1iv—N6—H6163.6
O22ii—K1—S2ii22.37 (4)C6—N6—H62120.0
N3i—K1—S2ii159.43 (5)K1iv—N6—H62104.1
O22—K1—S2ii82.55 (4)H61—N6—H62120.0
C6—N1—C2—N30.6 (4)K1ii—S2—O22—K1113.09 (10)
K1ii—N1—C2—N3121.3 (2)N1—C2—N3—C42.8 (4)
C6—N1—C2—S2176.98 (16)S2—C2—N3—C4179.02 (16)
K1ii—N1—C2—S255.09 (16)K1—C2—N3—C4121.9 (2)
C6—N1—C2—K182.8 (2)N1—C2—N3—K1i153.4 (2)
K1ii—N1—C2—K139.12 (18)S2—C2—N3—K1i30.4 (2)
N3—C2—S2—O2117.3 (2)K1—C2—N3—K1i87.58 (12)
N1—C2—S2—O21165.91 (18)N1—C2—N3—K1119.1 (2)
K1—C2—S2—O2165.82 (10)S2—C2—N3—K157.16 (16)
N3—C2—S2—O2294.73 (19)C2—N3—C4—N4179.0 (2)
N1—C2—S2—O2282.10 (19)K1i—N3—C4—N426.4 (3)
K1—C2—S2—O2246.17 (9)K1—N3—C4—N470.5 (2)
N3—C2—S2—K148.56 (17)C2—N3—C4—C50.8 (3)
N1—C2—S2—K1128.27 (19)K1i—N3—C4—C5153.39 (19)
N3—C2—S2—K1ii131.78 (19)K1—N3—C4—C5109.8 (2)
N1—C2—S2—K1ii45.05 (16)N4—C4—C5—C6177.3 (2)
K1—C2—S2—K1ii83.22 (4)N3—C4—C5—C62.9 (4)
O22—S2—O21—K1i107.82 (15)C2—N1—C6—N6176.7 (2)
C2—S2—O21—K1i3.35 (18)K1ii—N1—C6—N661.1 (2)
K1—S2—O21—K1i67.73 (13)C2—N1—C6—C53.5 (3)
K1ii—S2—O21—K1i83.3 (2)K1ii—N1—C6—C5119.2 (2)
O22—S2—O21—K140.09 (9)C2—N1—C6—K1iv133.56 (18)
C2—S2—O21—K164.38 (9)K1ii—N1—C6—K1iv110.81 (9)
K1ii—S2—O21—K115.58 (15)C4—C5—C6—N6175.0 (2)
O21—S2—O22—K1ii162.75 (9)C4—C5—C6—N15.2 (4)
C2—S2—O22—K1ii55.56 (11)C4—C5—C6—K1iv115.7 (2)
K1—S2—O22—K1ii113.09 (10)N1—C6—N6—K1iv66.1 (2)
O21—S2—O22—K149.65 (10)C5—C6—N6—K1iv113.7 (2)
C2—S2—O22—K157.54 (10)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1; (iii) x, y1, z; (iv) x, y+1, z.
Hydrogen-bond data (Å, °).
Electron density at the bond critical point [ρ(BCP)] is given in e Å-3 anf Lapρ(BCP) in e Å-5.
top
D—H···AD—HH···AD···AD—H···Aρ(BCP)Lapρ(BCP)
1
N4—H4A···N13i0.832.383.213 (3)1760.1051.11
N4—H4B···N14ii0.892.193.076 (3)1740.1451.47
N6—H6A···N10iii0.842.603.432 (3)1670.0630.71
N11—H11A···N1iv0.802.162.956 (3)1740.1561.61
N11—H11B···N3v0.942.393.324 (3)1780.1051.10
N13—H13A···N10vi0.842.473.181 (3)1430.0870.98
N13—H13B···N3vi0.852.383.184 (3)1590.1011.09
C12—H12···N1vi1.002.393.352 (3)1620.1181.19
2
N4—H4A···S7vii0.85 (3)2.89 (4)3.563 (3)137 (4)0.0570.55
N4—H4B···N4viii0.84 (3)2.64 (3)3.465 (4)165 (3)0.0700.76
N6—H6B···N1ix0.83 (4)2.27 (4)3.049 (3)156 (3)0.1301.37
3
N4—H4A···O9x0.862.353.190 (3)1660.0991.17
N6—H6A···N1xi0.862.253.086 (3)1630.1291.35
N6—H6B···N3xii0.862.323.170 (3)1720.1171.23
4
N4—H4A···O21xiii0.862.423.063 (3)132
N4—H4B···O22v0.862.142.980 (3)165
N6—H6A···N1x0.862.313.164 (3)171
N6—H6B···O21xiv0.862.293.045 (13)146
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, -y+1/2, z+1/2; (iii) x-1/2, -y+1/2, z+1/2; (iv) x+1/2, -y+1/2, z-1/2; (v) x, y, z-1; (vi) x-1/2, -y+1/2, z-1/2; (vii) x, y+1/2, z-1/2; (viii) -x+1/2, -y+1, z+1/2; (ix) -x+1/2, y+1/4, z-1/4; (x) -x+1, -y+1, -z+1; (xi) -x+2, -y-1, -z+1; (xii) x, -y+1/2, z+1/2; (xiii) -x+2, -y, -z+1; (xiv) x-1, y, z-1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds