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20.2-5 PERMISSIBLE INDICES FOR MAXIMAL ISOMORPIflC 
SUBGROUPS OF 2-DIMENSIONAL SPACE GROUPS. Y. Billiet, 
Faoulte des Soienoes et Teohniques, Universite de 
Bretagne Oooidentale, 6, avenue Le Gorgeu, 29283 
Brest, Franoe, et Reoherohes en S~metrie Cristallo­
graphique a Setif, A5, 35, Cite du 8 mai 1945, Setif, 
Algerie. 

In dimensions 2 and 3, maximal "translationengleioh" 
subgroups and maximal non-isomorphio '~lassengleioh" 
subgroups always are finite in number. On the contra­
ry, there exist maximal isomorphio subgroups always 
in infinite number for any 2- or 3-dimensional space 
group. However the permissible values for the-_index 
are limited. As an example, here are given the_.suit­
able values for 2-dimensional maximal isomorphic 'sub-" 
groups, 

pI, p2, pm, pg, p2mm, pZmgl any prime integer. 
om, p2gg, o2mml any odd prime integer. 

P41 1/ any prime integer of the type k~+k~ ; 4k3+1! 

2/ any integer of the type k~+k~ ~ (4k
3
+3)2 where 

4k3+3 is a prime integer. 

p4mms 1/ the number 2; 2/ any integer of the type k 2 

where k is a prime integer. 2 
p4gm. any integer of the type (2k+l) where 2k+l is 
a prime integer. '2 2 
p3, p6, 1/ any prime integer of the type k

l
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2
-k

l
k

2
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2/ any integer of the type k~+k~-klk2 ~ (3k
3
+2)2 

where 3k
3
+2 is a prime integer. 

p3ml, p31ml any integer of the type k 2 where k is a 
prime integer. 
p6mml 1/ the number 31 2/ any integer of the type k2 

where k ia a prime integer. 

20.2-6 ON SUBGROUPS OF SPACE GROUPS. 
P. Engel, Laboratory for crystallography, Freie­
strasse 3, CH-3012 Berne, Switzerland. 

Group-subgroup relations are of interest in 
several fields in crystallography. Tables of 
maximal subgroups of space groups are contained 
in the International Tables, Vol. A (D. Reidel 
publishing company, Dordrecht, 1983). Using 
these Tables however, a systematic determination 
of all subgroups of a space group proves to be 
very tedious. A novel computer program has been 
developed which allows a systematic determina­
tion of all subgroups of the space groups. For 
a space group G with given arithmetic crystal 
subclass and given sublattice the program cal­
culates all possible subgroups H following an 
algorithm proposed by Senechal (Acta Cryst. A36 
(1980) 845-850). Subgroups which are conjugate 
under G or alternatively under L~e Euclidean 
normalizer NE(G) are eliminated. For each Bra­
vais class the transformation laws for the ge­
neration of all possible sub lattices are derive~ 
The space-group type of a subgroup is determined 
using a procedure which takes into account only 
geometric properties of the subgroup which re­
main invariant under affine transformations. 

The subgroups of a space group G are classi­
fied according to their space-group type. Sub­
groups belonging to the same space-group type 
are arranged in series, each serie containing 
an infinite number of subgroups. It will be 
shown that for any space group only a finite 
number of series of subgroups exists. Examples 
will be presented. 

Among the subgroups the normal subgroups are 
of special interest. Every normal subgroup de­
termines the kernel of a possible homomorphism. 
The normal subgroups for all 2- and 3-dimensio­
nal space-group types have been determined. 

Example: The normal subgroups of space-group 
type No. 92 P4 12 12 (equivalence under NE(G); 
d~ 0; a,c ~ 1; the index is given in brackets). 

sub lattice 

1,0,0/0,1,0/0,0,1 

1,O,O/O,1,O/O,O,2d+1 
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20.2-7 PRESENTATION OF CRYSTALLOGRAPHIC 

GROUPS BY FUNDAMENTAL POLYHEDRA. By E. Molnar, 

E6tv6s Lorand University, Budapest, Hungary. 

There is a Poincare's method to present a dis­

crete isometry group G by means of a funda­

mental polyhedron F endowed with a face iden­

tification. The identifying isometries generate 

the group G. The cycle relations, belonging 

to the edge eqUivalence classes of F, together 

",ith the eventual reflection relations give us 

the mentioned presentation of G. The author's 

intention, to give a so-called minimal geometric 

presentation for each space group, has been 

realized in most cases, sometimes only by 

concave topological polyhedra (Molnar, Beitrage 

zur Algebra und Geometrie (1983) li, 33). \,Te 

shall determine these polyhedra presenting 

minimally those 38 space groups which have 

semi-direct decomposition G = G1 0 C2 ' where 

C2 is an invariant Coxeter subgroup generated 

by plane reflections and G1 is a so-called rod 

group leaving a straight line invariant (e.g. 

Koch and Fischer, Z.Kristal1ogr. (1978) lil, 21). 

As a typical example let us consider the space 

group G = R3m. Then G1 = P3 1 (ll), C2 = p3m1, 
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where G
1 

is generated by a 3
1 

screw rotation, 
C2 is generated by plane reflections in the 
side planes of a regular trigonal prisma and 

hence C2 is isomorphic to the plane crystallo­
graphic group above. Combining these, vie get a 
presentation 

R3m = (m, s - 1 
2 

m 

belonging to a concave topological polyhedron 

F. This polyhedron F has only three faces. 
The face 
tion m 

f 
m corresponds to the plane reflec-

fm -. fm and the curved faces f -1 
s 

f s are identified by the 3
1 

screw-rotation 
?­

-0 fs with screw-rotation angle -~' s : f -1 
s 

The presentation is minimal, i.e. F has the 
minimum nQmber of faces. F is a topological 
polyhedron, i·. e. the body of F is homeomorphic 

to a 3-dimensional simplex, each face of F 
to a 2-simplex and so on. 

This geometric presentation of the described 

space groups, illustrated also by Figures, can 
give a more com~lete information on the 

structure of each group. 

20.2-8 ON CONSISTENT SETS OF ASY~IMETRIC UNITS. 
By W. Fischer, Institut fUr Mineralogie, Philipps­
Universtat, 3550 Marburg, FRG 
An asymmetric unit of a space group G is a smallest part 
of 3-dimensional space from \,hich the entire space may 
be generated by the action of G. Therefore, all inner 
pOints of an asymmetric unit are symmetrically inequiva­
lent to each other with respect to G. Different defini­
tions have been used so far concerning points on the 
boundaries. Normally, an asymmetric unit is supposed to 
be simply connected and convex, then it is a polyhedron. 
These additional conditions can always be fulfilled, 
because the asymmetric unit may be constructed as 
Dirichlet domain of a point out of any general point 
configuration of G. In this case, adjacent asymmetric 
units share entire faces (the corresponding space 
tiling is called normal), but tile polyhedron may be 
unnecessarily complicated in shape. 

Two sets of asymmetric units have been published, one for 
all space groups by H. Arnold (in: International Tables 
for Crystallography, Vol. A (1983), D. Reidel), the other 
only for cubic ones by E. Koch & \.1. Fischer (Acta Cryst. 
(1974), A30, 490). Arnold's set is chosen in such a way, 
that FourIer summation can be performed conveniently. 
It contains asymmetric units with non-normal space ti­
lings (cf. e.g. P41). This is not the case with the Koch­
Fischer set which is derived from Dirichlet domains and 
uses polyhedra \,ith minimal numbers of faces. Both sets 
do not take care of group-subgroup relations. 
For comparative studies (e.g. of relations between crys­
tal structures) sets of asymmetric units would be use­
ful where the asymmetric unit of any space group G is 
composed of entire asymmetric units of any supergroup 
H::JG. This, however, seems unachievable because of the 
complexity of subgroup relations between space groups. 
Especially for studies of geometrical properties (for a 

list of references cf. W. Fischer & E. Koch, Acta Cryst. 
(1983), A39, 907), however, a less severe restriction 
is helpfliT: A set of asymmetric units will be called 
consistent, if the asymmetric unit of any G is com-
posed of entire asymmetric units of the Euclidean norma­
lizer (Cheshire group) NE(G). The Euclidean normalizers 
of space groups belong to 30 types either of space groups 
or of their degenerations with continuous translations 
(F.L. Hirshfeld, Acta Cryst. (1968), A24, 301). As a 
space group occuring as Euclidean normaTizer may itself 
have a Euclidean normalizer of another type, consistent 
sets of asymmetric units have to be based on a suitable 
choice for a smaller number of summits (Im1m, Ia3d, 
P6/mmm, P6222-P6422, R3m, P4/mmm, Pmmm, P2/m, P1; 
ZI 6/ mmm , zI 4/ mmm , Zl mmm , ZI 2/ m, Z22/m, Z31). 

Outside the cubic crystal system Arnold's set differs 
from a c£nsistent one only for sp~ce groups P2/m, I41/a, 
P4222, R3, P3 112-P3212, R32 and R3c. Within the cubiC 
system both published sets are far from being consistent. 
Summit Im3m poses no problems: the unique asymmetric 
unit of Pm3m may be subdivided by a plane containing the 
twofold axis at 1/2-x, 1/4, x. Consistent sets for cubic 
space groups other than Ia3d and its subgroups result if 
this plane is chosen either at x+z=I/2 (case 1) or at 
y=I/4 (case 2). In both cases, the asymmetric units of 
some space groups may be selected in different ways. 
Only in case 1 it is possible to restrict to normal space 
tilings. The number of differently shaped asymmetric 
units is smaller for case 1 than for case 2. Two other 
specialized pOSitions of the subdividing plane, i.e. 
x-2y+z=0 (case 3) and x+y+z=3/4 (case 4), do not give 
rise to consistent sets, because the asymmetric units of 
Fd3m, Fd3, and F4 132 cannot be made convex. - For Ia3d 
and its subgroups apparently no consistent set of convex 
asymmetric units can be constructed, but the impossibi­
lity of such a set could not be proved so far. 

20.3-1 THE POLYTYPES OF THE ORTHOROMBIC 
CARBIDE 1'1I7 C 3' By M .Kowalski and W.Dudzinski, 
Institute of Material Science, Technical 
University of Wroc"J:aw, Poland. 

The stacking order of the atomic layers 
in the real crystals of the orthorombic car­
bide /Cr,Fe/7 C3 was studed by means of the 
transmission electron microscopy. The ortho­
rombic carbides of the type M7C3 can be re­
garded as built up of identical layers of 
structure stacked parallel to (110) plane s. 
The information about stacking order of the 
layers is contained in the intensity distri­
bution of diffraction spots observed along 
[110]' direction of the reciprocal lattice. 

In the real crystals regions with completly 
disordere·d structure /fig. 1 / and ordered se­
quence of the layers /fig.2/ can be observed. 
In our earlier paper /XI-th Conference of Ma­
terial Science, 1983, CZestochowa, Poland/ we 
described the s~acking order using the con­
cept of the polytypism, and we presented the 
structure of the 20 polytype. Systematical 
study of the ordered regions in the/Cr,Fe/7 C3 
carbides let us determine the structure of 
the other polytypes. Lattice parsmeters was 
determined by analisys of the geometry of dis 
tribution of the diffraction spots in the 
planes (hk1t of the reciprocal lattice. The 
stacking sequence in the unit cell was iden­
tified by comparision of the observed inten­
sity distribution of diffraction spots with 
the intensity calculated for theoritically 
assumed sequence of the layers. The polyty­
Des found in studed carbides have. a follo­
wing crystalographic dates: 


