In the title compound, [Li
2(C
6H
3N
2O
4)
2(H
2O)
3]
n, the coordination number for both independent Li
+ cations is five. One of the Li
+ ions has a distorted trigonal–bipyramidal geometry, coordinated by one of the carboxyl O atoms of a 3-carboxypyrazine-2-carboxylate ligand, two O atoms from two water molecules, and an N and a carboxylate O atom of a second 3-carboxypyrazine-2-carboxylate ligand. The other Li
+ ion also has a distorted trigonal–bipyramidal geometry, coordinated by one water molecule and two 3-carboxypyrazine-2-carboxylate ligands through an N and a carboxylate O atom from each. One of the carboxyl groups of the two ligands takes part in an intramolecular O—H
O hydrogen bond. The stabilization of the crystal structure is further assisted by O—H
O, O—H
N and C—H
O hydrogen-bonding interactions involving the water molecules and carboxylate O atoms.
Supporting information
CCDC reference: 680616
Key indicators
- Single-crystal X-ray study
- T = 295 K
- Mean (C-C) = 0.003 Å
- R factor = 0.052
- wR factor = 0.144
- Data-to-parameter ratio = 11.3
checkCIF/PLATON results
No syntax errors found
Alert level C
PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.97 Ratio
Alert level G
PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem
0 ALERT level B = Potentially serious problem
1 ALERT level C = Check and explain
1 ALERT level G = General alerts; check
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
0 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
Li2CO3 (220 mg, 3 mmol) was carefully added to an aqueous solution (20 ml)
of pyrazine 2,3-dicarboxylic acid (1008 mg, 6 mmol), until no further bubbles
formed. The reaction mixture gave a colourless and clear solution which was
stirred at 323 K for 10 h, until it solidified. The solid product was then
redissolved in water (5 ml) and allowed to stand for a day at ambient
temperature, after which transparent fine crystals were harvested.
All H atoms were repositioned geometrically. They were initially refined with
soft restraints on the bond lengths and angles to regularize their geometry
(C—H = 0.93 Å, O—H in the range 0.86 - 0.94 Å) and Uiso(H)
(in the range 1.2–1.5 times Ueq of the parent atom), after which the
positions were refined with riding constraints.
Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2008).
Poly[triaquabis(µ
2-3-carboxypyrazine-2-carboxylato)dilithium(I)]
top
Crystal data top
[Li2(C6H3N2O4)2(H2O)3] | F(000) = 824 |
Mr = 402.14 | Dx = 1.656 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 15847 reflections |
a = 15.3413 (9) Å | θ = 1.5–27.2° |
b = 7.9415 (4) Å | µ = 0.15 mm−1 |
c = 14.9097 (9) Å | T = 295 K |
β = 117.371 (4)° | Prism, colourless |
V = 1613.13 (16) Å3 | 0.43 × 0.30 × 0.11 mm |
Z = 4 | |
Data collection top
Stoe IPDSII diffractometer | 3337 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2127 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.083 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.5°, θmin = 1.5° |
rotation method scans | h = −19→19 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −9→9 |
Tmin = 0.947, Tmax = 0.985 | l = −18→18 |
13081 measured reflections | |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.143 | w = 1/[σ2(Fo2) + (0.0627P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.011 |
3337 reflections | Δρmax = 0.38 e Å−3 |
295 parameters | Δρmin = −0.34 e Å−3 |
2 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.019 (3) |
Crystal data top
[Li2(C6H3N2O4)2(H2O)3] | V = 1613.13 (16) Å3 |
Mr = 402.14 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.3413 (9) Å | µ = 0.15 mm−1 |
b = 7.9415 (4) Å | T = 295 K |
c = 14.9097 (9) Å | 0.43 × 0.30 × 0.11 mm |
β = 117.371 (4)° | |
Data collection top
Stoe IPDSII diffractometer | 3337 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 2127 reflections with I > 2σ(I) |
Tmin = 0.947, Tmax = 0.985 | Rint = 0.083 |
13081 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.051 | 2 restraints |
wR(F2) = 0.143 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.38 e Å−3 |
3337 reflections | Δρmin = −0.34 e Å−3 |
295 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | −0.3129 (2) | 0.1510 (3) | 0.0633 (2) | 0.0544 (7) | |
H1 | −0.3343 | 0.2598 | 0.0409 | 0.065* | |
C2 | −0.2287 (2) | 0.1293 (3) | 0.15271 (19) | 0.0483 (6) | |
H2 | −0.1936 | 0.2230 | 0.1886 | 0.058* | |
C3 | −0.24908 (16) | −0.1569 (3) | 0.13584 (16) | 0.0365 (5) | |
C4 | −0.33418 (17) | −0.1336 (3) | 0.04375 (17) | 0.0380 (5) | |
C5 | −0.20414 (17) | −0.3209 (3) | 0.18826 (18) | 0.0430 (6) | |
C6 | −0.40262 (17) | −0.2658 (3) | −0.02839 (17) | 0.0430 (6) | |
C7 | −0.8269 (2) | −0.3841 (3) | −0.4244 (2) | 0.0553 (7) | |
H7 | −0.8155 | −0.4940 | −0.4002 | 0.066* | |
C8 | −0.9085 (2) | −0.3489 (3) | −0.51354 (19) | 0.0509 (7) | |
H8 | −0.9488 | −0.4367 | −0.5512 | 0.061* | |
C9 | −0.87144 (16) | −0.0679 (3) | −0.49270 (16) | 0.0371 (5) | |
C10 | −0.78391 (15) | −0.1039 (3) | −0.40504 (15) | 0.0389 (5) | |
C11 | −0.91273 (18) | 0.1024 (3) | −0.53842 (17) | 0.0412 (6) | |
C12 | −0.70304 (15) | 0.0156 (3) | −0.33600 (16) | 0.0430 (6) | |
Li1 | −0.4924 (3) | 0.0277 (6) | −0.1557 (3) | 0.0524 (10) | |
Li2 | −0.0456 (3) | −0.1053 (5) | 0.3065 (3) | 0.0504 (10) | |
N1 | −0.36462 (15) | 0.0222 (3) | 0.00823 (15) | 0.0479 (5) | |
N2 | −0.19698 (14) | −0.0232 (2) | 0.18818 (14) | 0.0418 (5) | |
N3 | −0.93097 (15) | −0.1938 (3) | −0.54689 (14) | 0.0440 (5) | |
N4 | −0.76397 (16) | −0.2636 (3) | −0.37213 (16) | 0.0501 (6) | |
O1 | −0.53187 (16) | 0.2659 (3) | −0.13886 (16) | 0.0611 (5) | |
O2 | −0.42243 (14) | 0.0653 (2) | −0.23731 (14) | 0.0512 (5) | |
O3 | 0.00554 (13) | 0.1034 (2) | 0.38530 (12) | 0.0490 (5) | |
O4 | 0.02158 (14) | −0.1093 (2) | 0.22662 (14) | 0.0557 (5) | |
O5 | −0.12608 (12) | −0.3144 (2) | 0.26734 (13) | 0.0504 (5) | |
O6 | −0.24547 (15) | −0.4600 (2) | 0.15083 (16) | 0.0669 (6) | |
O7 | −0.38628 (14) | −0.4221 (2) | −0.00814 (14) | 0.0538 (5) | |
O8 | −0.47216 (13) | −0.2138 (2) | −0.10579 (13) | 0.0566 (5) | |
O9 | −0.62851 (13) | −0.0447 (2) | −0.26899 (14) | 0.0584 (5) | |
O10 | −0.71593 (14) | 0.1755 (2) | −0.34880 (15) | 0.0559 (5) | |
O11 | −0.86572 (14) | 0.2348 (2) | −0.49878 (15) | 0.0614 (5) | |
H4A | 0.017 (2) | −0.198 (3) | 0.1844 (19) | 0.063 (9)* | |
H2A | −0.3649 (19) | 0.128 (5) | −0.208 (3) | 0.116 (15)* | |
H10 | −0.767 (2) | 0.195 (7) | −0.405 (2) | 0.15 (2)* | |
H2B | −0.455 (2) | 0.141 (4) | −0.290 (2) | 0.095 (12)* | |
H4B | 0.054 (3) | −0.014 (3) | 0.221 (3) | 0.115 (15)* | |
H7A | −0.294 (4) | −0.453 (11) | 0.091 (2) | 0.23 (4)* | |
H1A | −0.565 (4) | 0.324 (8) | −0.200 (3) | 0.19 (3)* | |
H1B | −0.494 (4) | 0.359 (5) | −0.106 (4) | 0.18 (3)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0642 (18) | 0.0299 (13) | 0.0526 (15) | 0.0022 (11) | 0.0128 (14) | 0.0020 (11) |
C2 | 0.0555 (15) | 0.0325 (12) | 0.0466 (14) | −0.0043 (11) | 0.0145 (12) | −0.0015 (11) |
C3 | 0.0414 (12) | 0.0318 (12) | 0.0338 (11) | −0.0007 (9) | 0.0152 (10) | −0.0009 (9) |
C4 | 0.0425 (12) | 0.0333 (12) | 0.0334 (11) | 0.0004 (10) | 0.0134 (10) | 0.0031 (9) |
C5 | 0.0444 (14) | 0.0357 (12) | 0.0418 (13) | 0.0017 (10) | 0.0139 (11) | 0.0016 (11) |
C6 | 0.0443 (13) | 0.0390 (13) | 0.0363 (12) | 0.0013 (10) | 0.0105 (11) | 0.0009 (10) |
C7 | 0.0664 (17) | 0.0307 (13) | 0.0525 (15) | −0.0025 (12) | 0.0134 (14) | 0.0038 (12) |
C8 | 0.0583 (16) | 0.0382 (14) | 0.0426 (13) | −0.0091 (12) | 0.0116 (12) | −0.0024 (11) |
C9 | 0.0403 (12) | 0.0348 (12) | 0.0324 (11) | 0.0008 (9) | 0.0134 (10) | 0.0006 (9) |
C10 | 0.0435 (13) | 0.0352 (12) | 0.0340 (11) | 0.0012 (10) | 0.0145 (10) | 0.0007 (10) |
C11 | 0.0451 (13) | 0.0382 (13) | 0.0368 (12) | 0.0007 (10) | 0.0158 (11) | −0.0003 (10) |
C12 | 0.0422 (13) | 0.0400 (13) | 0.0418 (12) | 0.0001 (11) | 0.0150 (11) | −0.0011 (11) |
Li1 | 0.052 (2) | 0.047 (2) | 0.047 (2) | 0.000 (2) | 0.0136 (19) | 0.003 (2) |
Li2 | 0.051 (2) | 0.047 (2) | 0.042 (2) | 0.0013 (19) | 0.0126 (19) | 0.0006 (19) |
N1 | 0.0539 (12) | 0.0336 (11) | 0.0427 (11) | 0.0021 (9) | 0.0107 (10) | 0.0024 (9) |
N2 | 0.0445 (11) | 0.0344 (10) | 0.0399 (10) | −0.0040 (9) | 0.0137 (9) | −0.0036 (9) |
N3 | 0.0496 (12) | 0.0379 (11) | 0.0371 (10) | −0.0050 (9) | 0.0136 (9) | −0.0009 (9) |
N4 | 0.0543 (13) | 0.0352 (11) | 0.0466 (12) | 0.0027 (9) | 0.0112 (10) | 0.0017 (9) |
O1 | 0.0730 (14) | 0.0499 (12) | 0.0585 (12) | 0.0091 (10) | 0.0288 (11) | 0.0100 (10) |
O2 | 0.0530 (11) | 0.0438 (10) | 0.0471 (10) | −0.0026 (9) | 0.0147 (9) | 0.0027 (8) |
O3 | 0.0503 (10) | 0.0431 (10) | 0.0405 (9) | 0.0047 (8) | 0.0096 (8) | 0.0015 (8) |
O4 | 0.0657 (12) | 0.0475 (11) | 0.0541 (11) | −0.0138 (9) | 0.0277 (10) | −0.0132 (9) |
O5 | 0.0468 (10) | 0.0426 (10) | 0.0457 (10) | 0.0017 (8) | 0.0076 (8) | 0.0052 (8) |
O6 | 0.0637 (12) | 0.0315 (10) | 0.0664 (13) | −0.0012 (8) | −0.0037 (10) | 0.0030 (9) |
O7 | 0.0620 (11) | 0.0341 (9) | 0.0468 (10) | −0.0019 (8) | 0.0092 (9) | −0.0023 (8) |
O8 | 0.0573 (11) | 0.0441 (10) | 0.0432 (10) | −0.0007 (8) | 0.0015 (9) | −0.0002 (8) |
O9 | 0.0437 (10) | 0.0516 (11) | 0.0562 (11) | −0.0001 (8) | 0.0026 (9) | 0.0031 (9) |
O10 | 0.0527 (11) | 0.0381 (10) | 0.0572 (11) | −0.0038 (8) | 0.0083 (9) | −0.0052 (9) |
O11 | 0.0662 (12) | 0.0322 (9) | 0.0585 (11) | −0.0028 (8) | 0.0053 (9) | −0.0004 (8) |
Geometric parameters (Å, º) top
C1—N1 | 1.323 (3) | C11—O3i | 1.247 (3) |
C1—C2 | 1.376 (4) | C11—O11 | 1.258 (3) |
C1—H1 | 0.9300 | C12—O9 | 1.216 (3) |
C2—N2 | 1.321 (3) | C12—O10 | 1.283 (3) |
C2—H2 | 0.9300 | Li1—O2 | 1.980 (5) |
C3—N2 | 1.342 (3) | Li1—O8 | 2.029 (5) |
C3—C4 | 1.406 (3) | Li1—O1 | 2.037 (5) |
C3—C5 | 1.512 (3) | Li1—O9 | 2.074 (5) |
C4—N1 | 1.342 (3) | Li1—N1 | 2.326 (5) |
C4—C6 | 1.524 (3) | Li2—O4 | 1.901 (5) |
C5—O5 | 1.236 (3) | Li2—O3 | 1.974 (5) |
C5—O6 | 1.268 (3) | Li2—O5 | 1.990 (5) |
C6—O8 | 1.228 (3) | Li2—N3ii | 2.198 (5) |
C6—O7 | 1.275 (3) | Li2—N2 | 2.272 (5) |
C7—N4 | 1.328 (3) | N3—Li2i | 2.198 (5) |
C7—C8 | 1.372 (4) | O1—H1A | 0.94 (5) |
C7—H7 | 0.9300 | O1—H1B | 0.93 (5) |
C8—N3 | 1.313 (3) | O2—H2A | 0.93 (4) |
C8—H8 | 0.9300 | O2—H2B | 0.93 (3) |
C9—N3 | 1.345 (3) | O3—C11ii | 1.247 (3) |
C9—C10 | 1.404 (3) | O4—H4A | 0.926 (10) |
C9—C11 | 1.516 (3) | O4—H4B | 0.93 (4) |
C10—N4 | 1.341 (3) | O6—H7A | 0.86 (3) |
C10—C12 | 1.525 (3) | O10—H10 | 0.86 (3) |
| | | |
N1—C1—C2 | 122.2 (2) | O1—Li1—O9 | 96.5 (2) |
N1—C1—H1 | 118.9 | O2—Li1—N1 | 102.5 (2) |
C2—C1—H1 | 118.9 | O8—Li1—N1 | 71.58 (15) |
N2—C2—C1 | 120.8 (2) | O1—Li1—N1 | 92.45 (19) |
N2—C2—H2 | 119.6 | O9—Li1—N1 | 153.7 (2) |
C1—C2—H2 | 119.6 | O4—Li2—O3 | 101.8 (2) |
N2—C3—C4 | 120.1 (2) | O4—Li2—O5 | 104.1 (2) |
N2—C3—C5 | 111.87 (19) | O3—Li2—O5 | 154.0 (3) |
C4—C3—C5 | 128.1 (2) | O4—Li2—N3ii | 101.6 (2) |
N1—C4—C3 | 120.4 (2) | O3—Li2—N3ii | 76.07 (15) |
N1—C4—C6 | 110.76 (19) | O5—Li2—N3ii | 97.47 (19) |
C3—C4—C6 | 128.9 (2) | O4—Li2—N2 | 99.97 (19) |
O5—C5—O6 | 121.7 (2) | O3—Li2—N2 | 101.89 (19) |
O5—C5—C3 | 117.9 (2) | O5—Li2—N2 | 74.75 (16) |
O6—C5—C3 | 120.4 (2) | N3ii—Li2—N2 | 158.3 (2) |
O8—C6—O7 | 122.7 (2) | C1—N1—C4 | 117.9 (2) |
O8—C6—C4 | 116.8 (2) | C1—N1—Li1 | 127.8 (2) |
O7—C6—C4 | 120.5 (2) | C4—N1—Li1 | 113.84 (18) |
N4—C7—C8 | 121.0 (2) | C2—N2—C3 | 118.8 (2) |
N4—C7—H7 | 119.5 | C2—N2—Li2 | 129.1 (2) |
C8—C7—H7 | 119.5 | C3—N2—Li2 | 110.33 (19) |
N3—C8—C7 | 121.5 (2) | C8—N3—C9 | 118.8 (2) |
N3—C8—H8 | 119.3 | C8—N3—Li2i | 128.8 (2) |
C7—C8—H8 | 119.3 | C9—N3—Li2i | 111.81 (19) |
N3—C9—C10 | 119.9 (2) | C7—N4—C10 | 118.8 (2) |
N3—C9—C11 | 111.43 (19) | Li1—O1—H1A | 114 (4) |
C10—C9—C11 | 128.6 (2) | Li1—O1—H1B | 131 (4) |
N4—C10—C9 | 119.4 (2) | H1A—O1—H1B | 93 (5) |
N4—C10—C12 | 111.14 (19) | Li1—O2—H2A | 117 (3) |
C9—C10—C12 | 129.1 (2) | Li1—O2—H2B | 113 (2) |
O3i—C11—O11 | 122.8 (2) | H2A—O2—H2B | 94 (3) |
O3i—C11—C9 | 116.9 (2) | C11ii—O3—Li2 | 119.70 (19) |
O11—C11—C9 | 120.2 (2) | Li2—O4—H4A | 122.7 (18) |
O9—C12—O10 | 122.2 (2) | Li2—O4—H4B | 120 (3) |
O9—C12—C10 | 118.1 (2) | H4A—O4—H4B | 116 (3) |
O10—C12—C10 | 119.4 (2) | C5—O5—Li2 | 120.9 (2) |
O2—Li1—O8 | 109.5 (2) | C5—O6—H7A | 115 (6) |
O2—Li1—O1 | 102.2 (2) | C6—O8—Li1 | 125.6 (2) |
O8—Li1—O1 | 146.8 (3) | C12—O9—Li1 | 140.4 (2) |
O2—Li1—O9 | 99.7 (2) | C12—O10—H10 | 110 (4) |
O8—Li1—O9 | 87.89 (19) | | |
| | | |
N1—C1—C2—N2 | −1.3 (4) | C5—C3—N2—C2 | −178.5 (2) |
N2—C3—C4—N1 | −0.9 (4) | C4—C3—N2—Li2 | −164.2 (2) |
C5—C3—C4—N1 | 179.3 (2) | C5—C3—N2—Li2 | 15.6 (3) |
N2—C3—C4—C6 | 178.7 (2) | O4—Li2—N2—C2 | −79.5 (3) |
C5—C3—C4—C6 | −1.1 (4) | O3—Li2—N2—C2 | 24.9 (3) |
N2—C3—C5—O5 | −2.9 (3) | O5—Li2—N2—C2 | 178.4 (2) |
C4—C3—C5—O5 | 176.9 (2) | N3ii—Li2—N2—C2 | 107.1 (6) |
N2—C3—C5—O6 | 177.9 (2) | O4—Li2—N2—C3 | 84.5 (2) |
C4—C3—C5—O6 | −2.3 (4) | O3—Li2—N2—C3 | −171.01 (19) |
N1—C4—C6—O8 | 0.7 (3) | O5—Li2—N2—C3 | −17.5 (2) |
C3—C4—C6—O8 | −178.9 (2) | N3ii—Li2—N2—C3 | −88.8 (6) |
N1—C4—C6—O7 | −180.0 (2) | C7—C8—N3—C9 | 1.0 (4) |
C3—C4—C6—O7 | 0.4 (4) | C7—C8—N3—Li2i | 172.1 (3) |
N4—C7—C8—N3 | −4.7 (5) | C10—C9—N3—C8 | 3.6 (3) |
N3—C9—C10—N4 | −4.7 (3) | C11—C9—N3—C8 | −175.8 (2) |
C11—C9—C10—N4 | 174.5 (2) | C10—C9—N3—Li2i | −168.9 (2) |
N3—C9—C10—C12 | 175.9 (2) | C11—C9—N3—Li2i | 11.7 (3) |
C11—C9—C10—C12 | −4.8 (4) | C8—C7—N4—C10 | 3.5 (4) |
N3—C9—C11—O3i | 2.4 (3) | C9—C10—N4—C7 | 1.1 (4) |
C10—C9—C11—O3i | −176.9 (2) | C12—C10—N4—C7 | −179.5 (2) |
N3—C9—C11—O11 | −178.5 (2) | O4—Li2—O3—C11ii | −80.7 (3) |
C10—C9—C11—O11 | 2.1 (4) | O5—Li2—O3—C11ii | 96.8 (6) |
N4—C10—C12—O9 | 7.6 (3) | N3ii—Li2—O3—C11ii | 18.5 (2) |
C9—C10—C12—O9 | −173.1 (2) | N2—Li2—O3—C11ii | 176.33 (19) |
N4—C10—C12—O10 | −171.2 (2) | O6—C5—O5—Li2 | 164.5 (3) |
C9—C10—C12—O10 | 8.2 (4) | C3—C5—O5—Li2 | −14.7 (3) |
C2—C1—N1—C4 | 2.1 (4) | O4—Li2—O5—C5 | −79.1 (3) |
C2—C1—N1—Li1 | −168.8 (3) | O3—Li2—O5—C5 | 103.4 (5) |
C3—C4—N1—C1 | −1.0 (4) | N3ii—Li2—O5—C5 | 176.8 (2) |
C6—C4—N1—C1 | 179.3 (2) | N2—Li2—O5—C5 | 17.6 (2) |
C3—C4—N1—Li1 | 171.2 (2) | O7—C6—O8—Li1 | −169.6 (3) |
C6—C4—N1—Li1 | −8.5 (3) | C4—C6—O8—Li1 | 9.6 (4) |
O2—Li1—N1—C1 | 74.5 (3) | O2—Li1—O8—C6 | 86.4 (3) |
O8—Li1—N1—C1 | −178.9 (3) | O1—Li1—O8—C6 | −75.4 (5) |
O1—Li1—N1—C1 | −28.6 (3) | O9—Li1—O8—C6 | −174.0 (2) |
O9—Li1—N1—C1 | −138.6 (5) | N1—Li1—O8—C6 | −10.7 (3) |
O2—Li1—N1—C4 | −96.8 (2) | O10—C12—O9—Li1 | −4.5 (5) |
O8—Li1—N1—C4 | 9.8 (2) | C10—C12—O9—Li1 | 176.8 (3) |
O1—Li1—N1—C4 | 160.1 (2) | O2—Li1—O9—C12 | −78.6 (4) |
O9—Li1—N1—C4 | 50.1 (6) | O8—Li1—O9—C12 | 172.0 (3) |
C1—C2—N2—C3 | −0.6 (4) | O1—Li1—O9—C12 | 25.1 (4) |
C1—C2—N2—Li2 | 162.3 (3) | N1—Li1—O9—C12 | 134.1 (5) |
C4—C3—N2—C2 | 1.7 (3) | | |
Symmetry codes: (i) x−1, y, z−1; (ii) x+1, y, z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O3iii | 0.93 (1) | 1.83 (1) | 2.743 (3) | 168 (3) |
O4—H4B···O5iv | 0.93 (4) | 1.89 (3) | 2.816 (3) | 171 (4) |
O2—H2A···N4v | 0.93 (4) | 1.98 (4) | 2.898 (3) | 171 (4) |
O2—H2B···O8v | 0.93 (3) | 1.84 (3) | 2.772 (3) | 175 (3) |
O1—H1A···O2v | 0.94 (5) | 2.11 (4) | 2.892 (3) | 141 (6) |
O1—H1B···O7vi | 0.93 (5) | 2.38 (5) | 3.305 (3) | 174 (6) |
C7—H7···O11vii | 0.93 | 2.52 | 3.184 (3) | 129 |
O10—H10···O11 | 0.86 (3) | 1.55 (3) | 2.404 (3) | 174 (5) |
O6—H7A···O7 | 0.86 (3) | 1.53 (4) | 2.380 (3) | 172 (9) |
Symmetry codes: (iii) −x, y−1/2, −z+1/2; (iv) −x, y+1/2, −z+1/2; (v) −x−1, y+1/2, −z−1/2; (vi) x, y+1, z; (vii) x, y−1, z. |
Experimental details
Crystal data |
Chemical formula | [Li2(C6H3N2O4)2(H2O)3] |
Mr | 402.14 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 15.3413 (9), 7.9415 (4), 14.9097 (9) |
β (°) | 117.371 (4) |
V (Å3) | 1613.13 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.15 |
Crystal size (mm) | 0.43 × 0.30 × 0.11 |
|
Data collection |
Diffractometer | Stoe IPDSII diffractometer |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.947, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13081, 3337, 2127 |
Rint | 0.083 |
(sin θ/λ)max (Å−1) | 0.628 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.143, 1.00 |
No. of reflections | 3337 |
No. of parameters | 295 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.38, −0.34 |
Selected geometric parameters (Å, º) topLi1—O2 | 1.980 (5) | Li2—O3 | 1.974 (5) |
Li1—O8 | 2.029 (5) | Li2—O5 | 1.990 (5) |
Li1—O1 | 2.037 (5) | Li2—N3i | 2.198 (5) |
Li1—O9 | 2.074 (5) | Li2—N2 | 2.272 (5) |
Li1—N1 | 2.326 (5) | N3—Li2ii | 2.198 (5) |
Li2—O4 | 1.901 (5) | | |
| | | |
O2—Li1—O8 | 109.5 (2) | O4—Li2—O3 | 101.8 (2) |
O2—Li1—O1 | 102.2 (2) | O4—Li2—O5 | 104.1 (2) |
O8—Li1—O1 | 146.8 (3) | O3—Li2—O5 | 154.0 (3) |
O2—Li1—O9 | 99.7 (2) | O4—Li2—N3i | 101.6 (2) |
O8—Li1—O9 | 87.89 (19) | O3—Li2—N3i | 76.07 (15) |
O1—Li1—O9 | 96.5 (2) | O5—Li2—N3i | 97.47 (19) |
O2—Li1—N1 | 102.5 (2) | O4—Li2—N2 | 99.97 (19) |
O8—Li1—N1 | 71.58 (15) | O3—Li2—N2 | 101.89 (19) |
O1—Li1—N1 | 92.45 (19) | O5—Li2—N2 | 74.75 (16) |
O9—Li1—N1 | 153.7 (2) | N3i—Li2—N2 | 158.3 (2) |
Symmetry codes: (i) x+1, y, z+1; (ii) x−1, y, z−1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O3iii | 0.926 (10) | 1.830 (12) | 2.743 (3) | 168 (3) |
O4—H4B···O5iv | 0.93 (4) | 1.89 (3) | 2.816 (3) | 171 (4) |
O2—H2A···N4v | 0.93 (4) | 1.98 (4) | 2.898 (3) | 171 (4) |
O2—H2B···O8v | 0.93 (3) | 1.84 (3) | 2.772 (3) | 175 (3) |
O1—H1A···O2v | 0.94 (5) | 2.11 (4) | 2.892 (3) | 141 (6) |
O1—H1B···O7vi | 0.93 (5) | 2.38 (5) | 3.305 (3) | 174 (6) |
C7—H7···O11vii | 0.93 | 2.52 | 3.184 (3) | 128.6 |
O10—H10···O11 | 0.86 (3) | 1.55 (3) | 2.404 (3) | 174 (5) |
O6—H7A···O7 | 0.86 (3) | 1.53 (4) | 2.380 (3) | 172 (9) |
Symmetry codes: (iii) −x, y−1/2, −z+1/2; (iv) −x, y+1/2, −z+1/2; (v) −x−1, y+1/2, −z−1/2; (vi) x, y+1, z; (vii) x, y−1, z. |
The systematic design of metal-organic frameworks has became the most fascinating and challenging area of research particularly during the last decade (Lehn, 1995; Haiduc & Edelmann, 1999). Hence, the synthesis of novel coordination polymers has advanced rapidly because of their applications in many areas such as, hydrogen storage (Kitagawa et al., 2004; Mueller et al., 2006), ion-exchange resins (Pancholi & Patel, 1996) and catalysis (Janiak, 2003). Multidendate carboxylic acids are found to be excellent ligands for the synthesis of coordination polymers giving the structures with a diverse range of topologies and conformations, due to the carboxylate groups being able to coordinate to a metal centre as a mono-, bi-, or multidentate ligand (Erxleben, 2003; Ye et al., 2005; Fei, Geldbach et al., 2006). Although most of the studies conducted in this area is primarily focused on coordination polymers containing transition metals as connectors, such as Zn, Ni and Co (Sreenivasulu & Vittal, 2004; Fei, Ang et al., 2006), there is little attention on the Group I metal (López Garzón et al., 2003; Gao et al., 2005; Chen et al., 2007).
Pyrazine-2,3-dicarboxylic acid (Takusagawa & Shimada, 1973) and its dianion (Richard et al., 1973; Nepveu et al., 1993) have been reported to be well suited for the construction of multidimentional frameworks (nD, n = 1–3), owing to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms). In recent years, a variety of metal-organic compound of pyrazine-2,3-dicarboxylic acid have been characterized crystallographically due to growing interest in supramolecular chemistry. Examples are including the calcium (Ptasiewicz-Bak & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005), magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b), sodium (Tombul et al. 2006), caesium (Tombul et al. 2007) and potassium (Tombul et al. 2008) complexes. Continuation our research on Group I dicarboxylates, we present here the synthesis and crystal structure of the hydrated polymeric dinuclear lithium complex, (I), formed with pyrazine-2,3-dicarboxylic acid.
As shown in Fig. 1, compound (I) is a polymeric dinuclear complex with two kinds of Li atoms, two kinds of pyrazine-2,3-dicarboxylate ligands and three water molecules in the asymmetric unit. The geometries of the two independent Li atoms are distorted trigonal-bipyramidal, while the coordination modes of the pyrazine-2,3-dicarboxylate ligands are chelation. The Li1 ion has a five-coordinate geometry and achieves the coordination number by bonding to one of the carboxylate O atom of pyrazine-2,3-dicarboxylate ligand, two O atoms from two water molecules and a chelation pyrazine-2,3-dicarboxylate ligand (through the interactions by utilizing both N and O atoms) of the adjacent molecule. The Li2 ion has also distorted trigonal-bipyramidal geometry, with one water molecule, one chelation ligand molecule (through the interactions by utilizing both N and O atoms of the same ligand) and symmetry related chelation pyrazine-2–3-dicarboxylate ligand. There is no metal to-metal interaction; the Li–Li distance is 7.221 (2) Å. The Li—O distances are in the range 1.980 (5) Å to 2.074 (4) Å (for Li1) and 1.901 (5) Å to 1.974 (4) Å (for Li2), in accordance with the corresponding values reported for other lithium complexes (Chen et al. 2007; Kim et al. 2007). Li—N bond lengths also lie within the normal ranges found for similar bonds in the literature (Grossie et al. 2006). The C—O distances are comparable with structurally similar compounds (Chen et al. 2007). There are appreciable differences between the two carboxyl groups of the each ligand molecule. The C—O distances at C6 and C12 are (1.228 (3) Å, 1.275 and 1.216 (3) Å, 1.283 (3) Å respectively), and these are fairly typical for a carboxylic acid group (Speakman, 1972). On the other hand, those at C5 and C11 are (1.236 (3) Å, 1.268 (3) Å and 1.247 (3) Å, 1.258 (3) Å respectively), giving a strong indication of a carboxylate ion. As is typically the case, the mean value of the four C—O distances in the different carboxyl/carboxylate groups is almost the same, at 1.254 (3) Å, 1.251 (3) Å and 1.252 (3) Å, 1.251 (3) Å, respectively.
In (I), one of the carboxyl groups of each ligand molecule holds its H atom, which takes part in an O—H···O [O···O = 2.380 (3) 2.402 (3) Å respectively] intramolecular hydrogen bonds. Atoms H6A and H10A involved in these bonds and maintain the charge balance within the structure. The dinuclear complexes are linked in a three-dimensional manner by further numerous intermolecular O—H···O··· O—H···N and C—H···O hydrogen bonds (Table 2).