Download citation
Download citation
link to html
The title compound, C12H14N2O3S, adopts a cistrans geometry of the thio­urea group and is stabilized by intra­molecular hydrogen bonds between the carbonyl O atoms and the H atom of the thio­amide group and by a C—H...S interaction. Mol­ecules are linked by two inter­molecular hydrogen bonds (C—H...O and N—H...O), forming a one-dimensional chain parallel to the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808024896/at2606sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808024896/at2606Isup2.hkl
Contains datablock I

CCDC reference: 702486

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C)= 0.003 Å
  • R factor = 0.042
  • wR factor = 0.107
  • Data-to-parameter ratio = 15.5

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Some thiourea derivatives of amino acids, such as 2-[3-(4-methoxbenzoyl) thioureido]-3-methylbutyric acid (Ngah et al., 2005), 3-[3-(4-methoxybenzoyl) thioureido]propanoic acid and (Ngah et al., 2005) and 2-(3-benzoylthioureido) ethanoic dimethyl sulfoxide solvate (II) (Ngah et al., 2005) have been synthesized and their structures have been reported. We are interested to synthesize a series of esters containing thiourea moiety by catalytic transesterification. The title compound, (I), is an ester of (II).

The molecule maintains the cis-trans geometry of the thiourea moiety (Fig. 1). The phenyl ring (C1—C6) and (S1/N1/N2/O1/C6/C7/C8/C9) fragments are each planar with maximum deviation of 0.031 (2)Å for C6 atom from the least square plane of the later. The dihedral angle between the two planes is 26.53 (8)°. The bond lengths and angles are in normal ranges (Allen et al., 1987). There are three intramolecular hydrogen bonds, N2—H2···O1, N2—H2···O2 and C9—H9B···S1. As a result, one pseudo-six-membered ring (N2/H2/O1/C7/N1/C8) and two pseudo-five-member ring (N2/H2/O2/C10/C9) and (C9/H9B/S1/C8/N2) are formed, respectively. In the crystal structure, the molecules are linked by N1—H1···O2 and C9—H9B···S1 intermolecular hydrogen bonds to form one dimensional chain along the c axis (Fig. 2).

Related literature top

For related literature, see: Allen et al. (1987); Ngah et al. (2005); Yamin & Hassan (2004); Yamin & Yusof (2003).

Experimental top

2-(3-Benzoylthioureido)ethanoic acid was prepared as reported (Ngah et al., 2005). 2.38 g (10 mmol) of 2-(3-benzoylthioureido)ethanoic acid and 2.45 g (10 mmol) of lanthanum chloride were refluxed in methanol for 17 h. The resulting solution was left for one day at room temperature. Recrystallization of the resulting solid from dichloromethane gave colourless crystals of (I) [yield: 70%]).

Refinement top

All H-atoms attached to C were positioned geometrically and refined using a riding model Uiso=1.2Ueq (C) for aromatic 0.93 Å, Uiso = 1.2Ueq (C) for CH2 0.97 Å and Uiso = 1.5Ueq (C) for CH3 0.97 Å. Hydrogen atoms attached to N were also positioned geometrically and allowed to ride on their parent atoms and with Uiso(H) = 1.2Ueq(N) for N–H 0.86 Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) viewed down the a axis. Hydrogen bonds are shown by dashed lines.
Ethyl 2-(3-benzoylthioureido)acetate top
Crystal data top
C12H14N2O3SF(000) = 560
Mr = 266.31Dx = 1.365 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2409 reflections
a = 11.908 (4) Åθ = 1.7–26.0°
b = 7.795 (3) ŵ = 0.25 mm1
c = 14.024 (5) ÅT = 298 K
β = 95.600 (5)°Block, colourless
V = 1295.5 (8) Å30.46 × 0.36 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2537 independent reflections
Radiation source: fine-focus sealed tube1967 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1413
Tmin = 0.893, Tmax = 0.947k = 99
6762 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.3616P]
where P = (Fo2 + 2Fc2)/3
2537 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H14N2O3SV = 1295.5 (8) Å3
Mr = 266.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.908 (4) ŵ = 0.25 mm1
b = 7.795 (3) ÅT = 298 K
c = 14.024 (5) Å0.46 × 0.36 × 0.22 mm
β = 95.600 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2537 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1967 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.947Rint = 0.021
6762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
2537 reflectionsΔρmin = 0.23 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36516 (4)0.11910 (9)0.60927 (4)0.0632 (2)
O10.01958 (11)0.1765 (2)0.44591 (9)0.0615 (4)
O20.21706 (12)0.0629 (2)0.25554 (10)0.0657 (4)
O30.37578 (11)0.0928 (2)0.25994 (9)0.0626 (4)
N10.15088 (12)0.2028 (2)0.57452 (10)0.0454 (4)
H10.16130.24280.63190.055*
N20.22969 (13)0.0690 (2)0.45050 (11)0.0506 (4)
H20.16500.08210.41830.061*
C10.03537 (15)0.2974 (3)0.68490 (13)0.0482 (5)
H1A0.02420.24120.71960.058*
C20.11815 (16)0.3747 (3)0.73213 (14)0.0540 (5)
H2A0.11450.36960.79860.065*
C30.20575 (16)0.4590 (3)0.68161 (15)0.0545 (5)
H30.26100.51180.71390.065*
C40.21224 (16)0.4658 (3)0.58254 (15)0.0564 (5)
H40.27140.52370.54830.068*
C50.13077 (15)0.3864 (3)0.53472 (14)0.0506 (5)
H50.13610.38870.46810.061*
C60.04087 (14)0.3032 (2)0.58545 (12)0.0417 (4)
C70.04366 (15)0.2218 (3)0.52873 (13)0.0455 (4)
C80.24393 (15)0.1270 (2)0.53931 (13)0.0438 (4)
C90.31818 (16)0.0154 (3)0.40544 (13)0.0530 (5)
H9A0.32340.13420.42600.064*
H9B0.38980.03980.42500.064*
C100.29539 (15)0.0079 (3)0.29841 (13)0.0477 (5)
C110.36926 (19)0.1060 (4)0.15628 (15)0.0689 (6)
H11A0.33490.00350.12700.083*
H11B0.32360.20410.13450.083*
C120.4835 (2)0.1258 (5)0.1294 (2)0.1037 (11)
H12A0.52470.02120.14240.155*
H12B0.48080.15180.06230.155*
H12C0.52050.21760.16580.155*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0420 (3)0.0982 (5)0.0482 (3)0.0141 (3)0.0011 (2)0.0037 (3)
O10.0460 (8)0.0913 (11)0.0454 (8)0.0093 (7)0.0038 (6)0.0176 (7)
O20.0519 (8)0.0904 (12)0.0549 (8)0.0172 (8)0.0059 (7)0.0103 (8)
O30.0517 (8)0.0912 (11)0.0451 (8)0.0174 (8)0.0064 (6)0.0090 (7)
N10.0373 (8)0.0613 (11)0.0374 (8)0.0036 (7)0.0020 (6)0.0044 (7)
N20.0394 (8)0.0679 (11)0.0440 (9)0.0061 (8)0.0027 (7)0.0091 (8)
C10.0392 (9)0.0605 (13)0.0441 (10)0.0027 (9)0.0004 (8)0.0007 (9)
C20.0479 (11)0.0718 (14)0.0423 (10)0.0006 (10)0.0049 (8)0.0038 (10)
C30.0431 (10)0.0649 (14)0.0567 (12)0.0026 (10)0.0109 (9)0.0082 (10)
C40.0413 (10)0.0695 (14)0.0582 (12)0.0115 (10)0.0030 (9)0.0066 (10)
C50.0427 (10)0.0663 (14)0.0420 (10)0.0027 (10)0.0005 (8)0.0031 (9)
C60.0340 (9)0.0472 (11)0.0437 (9)0.0023 (8)0.0020 (7)0.0009 (8)
C70.0403 (9)0.0530 (12)0.0425 (10)0.0013 (8)0.0000 (8)0.0003 (8)
C80.0403 (9)0.0491 (11)0.0426 (10)0.0020 (8)0.0069 (8)0.0048 (8)
C90.0486 (11)0.0632 (14)0.0479 (11)0.0103 (10)0.0078 (9)0.0017 (10)
C100.0407 (10)0.0548 (12)0.0480 (10)0.0036 (9)0.0075 (8)0.0022 (9)
C110.0648 (13)0.0956 (18)0.0464 (12)0.0088 (13)0.0057 (10)0.0100 (12)
C120.0712 (17)0.176 (3)0.0673 (16)0.0198 (19)0.0224 (13)0.0087 (19)
Geometric parameters (Å, º) top
S1—C81.6656 (19)C3—C41.385 (3)
O1—C71.221 (2)C3—H30.9300
O2—C101.194 (2)C4—C51.379 (3)
O3—C101.322 (2)C4—H40.9300
O3—C111.452 (2)C5—C61.387 (3)
N1—C71.380 (2)C5—H50.9300
N1—C81.388 (2)C6—C71.485 (3)
N1—H10.8600C9—C101.500 (3)
N2—C81.320 (2)C9—H9A0.9700
N2—C91.439 (2)C9—H9B0.9700
N2—H20.8600C11—C121.455 (3)
C1—C21.379 (3)C11—H11A0.9700
C1—C61.390 (2)C11—H11B0.9700
C1—H1A0.9300C12—H12A0.9600
C2—C31.370 (3)C12—H12B0.9600
C2—H2A0.9300C12—H12C0.9600
C10—O3—C11118.29 (16)O1—C7—C6121.65 (16)
C7—N1—C8127.91 (15)N1—C7—C6116.19 (15)
C7—N1—H1116.0N2—C8—N1116.61 (15)
C8—N1—H1116.0N2—C8—S1124.54 (14)
C8—N2—C9122.58 (15)N1—C8—S1118.83 (14)
C8—N2—H2118.7N2—C9—C10110.66 (16)
C9—N2—H2118.7N2—C9—H9A109.5
C2—C1—C6120.11 (17)C10—C9—H9A109.5
C2—C1—H1A119.9N2—C9—H9B109.5
C6—C1—H1A119.9C10—C9—H9B109.5
C3—C2—C1120.33 (18)H9A—C9—H9B108.1
C3—C2—H2A119.8O2—C10—O3125.96 (18)
C1—C2—H2A119.8O2—C10—C9125.28 (18)
C2—C3—C4120.14 (18)O3—C10—C9108.75 (16)
C2—C3—H3119.9O3—C11—C12107.9 (2)
C4—C3—H3119.9O3—C11—H11A110.1
C5—C4—C3119.86 (18)C12—C11—H11A110.1
C5—C4—H4120.1O3—C11—H11B110.1
C3—C4—H4120.1C12—C11—H11B110.1
C4—C5—C6120.32 (18)H11A—C11—H11B108.4
C4—C5—H5119.8C11—C12—H12A109.5
C6—C5—H5119.8C11—C12—H12B109.5
C5—C6—C1119.22 (17)H12A—C12—H12B109.5
C5—C6—C7117.04 (16)C11—C12—H12C109.5
C1—C6—C7123.72 (16)H12A—C12—H12C109.5
O1—C7—N1122.16 (17)H12B—C12—H12C109.5
C6—C1—C2—C30.6 (3)C5—C6—C7—N1154.41 (18)
C1—C2—C3—C40.6 (3)C1—C6—C7—N126.8 (3)
C2—C3—C4—C50.5 (3)C9—N2—C8—N1178.79 (17)
C3—C4—C5—C61.5 (3)C9—N2—C8—S12.7 (3)
C4—C5—C6—C11.5 (3)C7—N1—C8—N21.6 (3)
C4—C5—C6—C7179.66 (19)C7—N1—C8—S1179.77 (16)
C2—C1—C6—C50.5 (3)C8—N2—C9—C10158.69 (18)
C2—C1—C6—C7179.21 (19)C11—O3—C10—O21.2 (3)
C8—N1—C7—O13.0 (3)C11—O3—C10—C9178.55 (19)
C8—N1—C7—C6177.93 (17)N2—C9—C10—O22.4 (3)
C5—C6—C7—O124.7 (3)N2—C9—C10—O3177.34 (17)
C1—C6—C7—O1154.1 (2)C10—O3—C11—C12153.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.952.633 (2)135
N2—H2···O20.862.432.724 (2)101
C9—H9B···S10.972.703.045 (2)101
N1—H1···O2i0.862.353.164 (2)158
C2—H2A···O1i0.932.513.298 (3)143
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H14N2O3S
Mr266.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.908 (4), 7.795 (3), 14.024 (5)
β (°) 95.600 (5)
V3)1295.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.46 × 0.36 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.893, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
6762, 2537, 1967
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.06
No. of reflections2537
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.952.633 (2)135
N2—H2···O20.862.432.724 (2)101
C9—H9B···S10.972.703.045 (2)101
N1—H1···O2i0.862.353.164 (2)158
C2—H2A···O1i0.932.513.298 (3)143
Symmetry code: (i) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds