Download citation
Download citation
link to html
The title compound, [Ni(C14H10N4)3]4(PO4)2(SO4), consists of [Ni(C14H10N4)3]2+ complex cations (.3. symmetry) and disordered anions ({\overline 4} symmetry) with occupancy factors of two-thirds for PO43− and one-third for SO42−. The Ni2+ centre is chelated by three bidentate 2,2′-bi-1H-benzimidazole mol­ecules in a distorted octa­hedral coordination. N—H...O hydrogen bonds consolidate the building units into a framework structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808032571/at2642sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808032571/at2642Isup2.hkl
Contains datablock I

CCDC reference: 709514

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.006 Å
  • Disorder in solvent or counterion
  • R factor = 0.038
  • wR factor = 0.098
  • Data-to-parameter ratio = 14.4

checkCIF/PLATON results

No syntax errors found



Alert level C Value of measurement temperature given = 296.000 Value of melting point given = 0.000 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 3.02 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for O1 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 5 N3 -NI1 -N1 -C7 41.70 0.70 7.564 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 10 N3 -NI1 -N1 -C1 -138.60 0.60 7.564 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 13 N1 -NI1 -N3 -C14 49.90 0.70 10.655 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 18 N1 -NI1 -N3 -C8 -126.70 0.60 10.655 1.555 1.555 1.555
Alert level G CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G ALERT: check formula stoichiometry or atom site occupancies. From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_sum C168 H120 N48 Ni4 O12 P2 S TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 672.00 672.00 0.00 H 480.00 480.00 0.00 N 192.00 192.00 0.00 Ni 16.00 16.00 0.00 O 48.00 48.00 0.00 P 8.00 8.04 -0.04 S 4.00 3.96 0.04 REFLT03_ALERT_1_G ALERT: Expected hkl max differ from CIF values From the CIF: _diffrn_reflns_theta_max 26.00 From the CIF: _reflns_number_total 2551 From the CIF: _diffrn_reflns_limit_ max hkl 11. 29. 20. From the CIF: _diffrn_reflns_limit_ min hkl -30. -30. -21. TEST1: Expected hkl limits for theta max Calculated maximum hkl 30. 30. 30. Calculated minimum hkl -30. -30. -30. REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.00 From the CIF: _reflns_number_total 2551 Count of symmetry unique reflns 1369 Completeness (_total/calc) 186.34% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1182 Fraction of Friedel pairs measured 0.863 Are heavy atom types Z>Si present yes PLAT302_ALERT_4_G Anion/Solvent Disorder ......................... 17.00 Perc.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 7 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

More attentions have been paid to metal-organic coordination compounds (MOCCs) because of their potential applications in gas absorption and separation, catalysis, nonlinear optics, luminescence and magnetism (Kitagawa & Matsuda 2007, Maspoch et al. 2007). In the field of coordination chemistry, the N,N-bidentate ligands, such as 2,2'-bipyridine, 1,10-phenanthroline and their derivatives act as versatile ligands owing to the stable coordination configuration in the bidentate N-donors chelating manner. Herein, we report the title compound (I).

The title compound (I) consists of four [Ni(C14H10N4)3]2+ complex cations, one [SO4]2- and two [PO4]3- anions. In the mlecular structure, the Ni2+ centre is coordinated by six N atoms from three bidentate 1H,1'H-2,2'-bi-1H-benzimidazole molecules (Fig.1). The 1H,1'H-2,2'-bi-1H-benzimidazole ligand was prepared in situ and coordinated to the Ni2+ cations in hydrothermal reaction. Additionally, the [SO4]2- and [PO4]3- anions statistically distribute in one position with 1/3 probability for S and 2/3 probability for P atoms. The environment of the Ni2+ caion is in a distorted octahedral geometry with the Ni—N distances ranging from 2.088 (3) to 2.122 (3) Å (Table 1).

In addition, the [Ni(C14H10N4)3]2+ complex cations, [SO4]2- and [PO4]3- anions in the complexes are linked together via many N—H···O hydrogen bonds resulting in a three-dimensional structural frameworks (Fig.2 and Table 2).

Related literature top

For the potential applications of metal–organic coordination compounds in gas absorption and separation, catalysis, nonlinear optics, luminescence and magnetism, see: Kitagawa & Matsuda (2007); Maspoch et al. (2007).

Experimental top

All reagents were commercially available and of analytical grade. The mixture of NiSO4.6H2O, H3PO4, oxalic acid, and 1,2-diaminobenzene in the mole ratio of 1: 1.5: 6: 6 was dissolved in 25 ml H2O, which was heated in a Teflon-lined steel autoclave inside a programmable electric furnace at 393 K for five days. After cooling the autoclave to room temperature, green block crystals of (I) were obtained.

Refinement top

H atoms were treated as riding, with C—H = 0.93 Å and N—H = 0.86 Å, and were refined as riding with Uiso(H) = 1.2Ueq(N and C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Three-dimensional structure of (I). Displacement ellipsoids are drawn at the 50% probability level. For clarity, H atoms not involved in hydrogen bonds are omitted.
Tetrakis[tris(2,2'-bi-1H-benzimidazole)nickel(II)] bis(phosphate) sulfate top
Crystal data top
[Ni(C14H10N4)3]4(PO4)2(SO4)Dx = 1.423 Mg m3
Mr = 3331.96Mo Kα radiation, λ = 0.71073 Å
Cubic, I43dCell parameters from 3375 reflections
Hall symbol: I -4bd 2c 3θ = 2.3–19.2°
a = 24.964 (7) ŵ = 0.59 mm1
V = 15558 (8) Å3T = 296 K
Z = 4Block, green
F(000) = 68720.32 × 0.27 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2551 independent reflections
Radiation source: fine-focus sealed tube1782 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 3011
Tmin = 0.834, Tmax = 0.876k = 3029
20222 measured reflectionsl = 2120
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0528P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2551 reflectionsΔρmax = 0.61 e Å3
177 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 1182 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[Ni(C14H10N4)3]4(PO4)2(SO4)Z = 4
Mr = 3331.96Mo Kα radiation
Cubic, I43dµ = 0.59 mm1
a = 24.964 (7) ÅT = 296 K
V = 15558 (8) Å30.32 × 0.27 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2551 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1782 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 0.876Rint = 0.066
20222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.61 e Å3
S = 1.01Δρmin = 0.20 e Å3
2551 reflectionsAbsolute structure: Flack (1983), 1182 Friedel pairs
177 parametersAbsolute structure parameter: 0.02 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.564621 (16)0.435379 (16)0.064621 (16)0.0428 (2)
P10.75000.62501.00000.0427 (4)0.67
S10.75000.62501.00000.0427 (4)0.33
N10.64773 (10)0.44469 (11)0.06574 (11)0.0443 (6)
N20.71668 (10)0.50117 (12)0.06248 (11)0.0498 (7)
H2B0.73400.53090.06040.060*
N30.56297 (10)0.42828 (11)0.02009 (10)0.0444 (6)
N40.55652 (11)0.37290 (12)0.08942 (11)0.0502 (7)
H4B0.55380.34350.10720.060*
C10.69498 (13)0.41559 (13)0.06917 (13)0.0462 (8)
C20.70405 (15)0.36114 (16)0.07434 (15)0.0594 (9)
H20.67580.33700.07630.071*
C30.75637 (17)0.34409 (18)0.07642 (16)0.0744 (13)
H30.76380.30770.07970.089*
C40.79858 (16)0.3808 (2)0.07359 (16)0.0707 (12)
H40.83350.36790.07500.085*
C50.79104 (13)0.43383 (18)0.06895 (15)0.0627 (10)
H50.81970.45760.06700.075*
C60.73810 (12)0.45147 (14)0.06724 (14)0.0473 (8)
C70.66286 (13)0.49523 (14)0.06164 (13)0.0443 (8)
C80.56226 (15)0.45873 (13)0.06673 (14)0.0487 (9)
C90.56566 (17)0.51278 (15)0.07424 (15)0.0645 (11)
H90.56810.53630.04550.077*
C100.5653 (2)0.53090 (18)0.12671 (19)0.0848 (13)
H100.56720.56750.13330.102*
C110.5623 (2)0.49628 (19)0.16920 (17)0.0863 (14)
H110.56270.51020.20370.104*
C120.55859 (18)0.44183 (18)0.16272 (14)0.0698 (11)
H120.55620.41860.19170.084*
C130.55865 (13)0.42369 (14)0.11042 (13)0.0489 (8)
C140.55946 (13)0.37792 (14)0.03571 (13)0.0443 (8)
O10.77314 (11)0.59036 (9)0.95604 (10)0.0629 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0428 (2)0.0428 (2)0.0428 (2)0.00140 (19)0.00140 (19)0.00140 (19)
P10.0469 (6)0.0341 (9)0.0469 (6)0.0000.0000.000
S10.0469 (6)0.0341 (9)0.0469 (6)0.0000.0000.000
N10.0386 (14)0.0485 (17)0.0458 (16)0.0000 (13)0.0006 (13)0.0019 (15)
N20.0447 (17)0.0543 (18)0.0503 (17)0.0083 (14)0.0009 (14)0.0019 (15)
N30.0432 (16)0.0445 (16)0.0456 (15)0.0006 (15)0.0046 (13)0.0007 (13)
N40.0552 (19)0.0518 (18)0.0436 (17)0.0046 (14)0.0034 (14)0.0093 (14)
C10.049 (2)0.0486 (19)0.0411 (18)0.0030 (16)0.0031 (17)0.0036 (15)
C20.054 (2)0.060 (2)0.065 (2)0.0073 (18)0.0023 (19)0.0042 (19)
C30.064 (3)0.076 (3)0.084 (3)0.024 (2)0.003 (2)0.009 (2)
C40.045 (2)0.097 (4)0.070 (3)0.021 (2)0.002 (2)0.014 (2)
C50.0439 (19)0.083 (3)0.061 (3)0.000 (2)0.0050 (18)0.016 (3)
C60.0417 (19)0.064 (2)0.0366 (18)0.0018 (16)0.0048 (16)0.0077 (17)
C70.044 (2)0.048 (2)0.0410 (19)0.0065 (15)0.0027 (15)0.0012 (16)
C80.049 (2)0.052 (2)0.0449 (19)0.0051 (16)0.0042 (18)0.0057 (16)
C90.092 (3)0.050 (2)0.051 (2)0.002 (2)0.009 (2)0.0036 (17)
C100.124 (4)0.065 (3)0.066 (3)0.006 (3)0.010 (3)0.013 (2)
C110.133 (4)0.077 (3)0.049 (3)0.001 (3)0.013 (3)0.017 (2)
C120.093 (3)0.074 (3)0.042 (2)0.006 (3)0.005 (2)0.001 (2)
C130.050 (2)0.055 (2)0.0423 (19)0.0009 (18)0.0050 (16)0.0006 (16)
C140.0315 (18)0.053 (2)0.049 (2)0.0032 (16)0.0021 (15)0.0045 (17)
O10.0818 (18)0.0455 (15)0.0616 (17)0.0077 (13)0.0150 (14)0.0033 (12)
Geometric parameters (Å, º) top
Ni1—N12.088 (3)C1—C61.401 (5)
Ni1—N1i2.088 (3)C2—C31.375 (5)
Ni1—N1ii2.088 (3)C2—H20.9300
Ni1—N3ii2.122 (3)C3—C41.398 (6)
Ni1—N32.122 (3)C3—H30.9300
Ni1—N3i2.122 (3)C4—C51.342 (6)
P1—O1iii1.512 (3)C4—H40.9300
P1—O1iv1.512 (3)C5—C61.394 (4)
P1—O11.512 (3)C5—H50.9300
P1—O1v1.512 (3)C7—C14ii1.435 (5)
N1—C71.321 (4)C8—C91.365 (5)
N1—C11.388 (4)C8—C131.401 (5)
N2—C71.352 (4)C9—C101.386 (6)
N2—C61.356 (4)C9—H90.9300
N2—H2B0.8600C10—C111.370 (6)
N3—C141.319 (4)C10—H100.9300
N3—C81.391 (4)C11—C121.372 (6)
N4—C141.349 (4)C11—H110.9300
N4—C131.373 (4)C12—C131.382 (5)
N4—H4B0.8600C12—H120.9300
C1—C21.384 (5)C14—C7i1.435 (5)
N1—Ni1—N1i95.67 (10)C1—C2—H2121.2
N1—Ni1—N1ii95.67 (10)C2—C3—C4120.7 (4)
N1i—Ni1—N1ii95.67 (10)C2—C3—H3119.6
N1—Ni1—N3ii78.84 (10)C4—C3—H3119.6
N1i—Ni1—N3ii170.67 (9)C5—C4—C3123.0 (4)
N1ii—Ni1—N3ii92.40 (9)C5—C4—H4118.5
N1—Ni1—N392.40 (9)C3—C4—H4118.5
N1i—Ni1—N378.84 (10)C4—C5—C6116.6 (4)
N1ii—Ni1—N3170.67 (9)C4—C5—H5121.7
N3ii—Ni1—N393.75 (9)C6—C5—H5121.7
N1—Ni1—N3i170.67 (9)N2—C6—C5131.7 (3)
N1i—Ni1—N3i92.40 (9)N2—C6—C1106.6 (3)
N1ii—Ni1—N3i78.84 (10)C5—C6—C1121.7 (3)
N3ii—Ni1—N3i93.75 (9)N1—C7—N2112.8 (3)
N3—Ni1—N3i93.75 (9)N1—C7—C14ii118.2 (3)
O1iii—P1—O1iv110.22 (17)N2—C7—C14ii128.9 (3)
O1iii—P1—O1109.10 (9)C9—C8—N3130.9 (3)
O1iv—P1—O1109.10 (9)C9—C8—C13121.0 (3)
O1iii—P1—O1v109.10 (9)N3—C8—C13108.1 (3)
O1iv—P1—O1v109.10 (9)C8—C9—C10116.9 (4)
O1—P1—O1v110.22 (17)C8—C9—H9121.6
C7—N1—C1105.2 (3)C10—C9—H9121.6
C7—N1—Ni1112.9 (2)C11—C10—C9121.7 (4)
C1—N1—Ni1141.9 (2)C11—C10—H10119.1
C7—N2—C6107.0 (3)C9—C10—H10119.1
C7—N2—H2B126.5C10—C11—C12122.5 (4)
C6—N2—H2B126.5C10—C11—H11118.7
C14—N3—C8105.8 (3)C12—C11—H11118.7
C14—N3—Ni1112.0 (2)C11—C12—C13115.8 (4)
C8—N3—Ni1142.1 (2)C11—C12—H12122.1
C14—N4—C13107.0 (3)C13—C12—H12122.1
C14—N4—H4B126.5N4—C13—C12131.5 (3)
C13—N4—H4B126.5N4—C13—C8106.4 (3)
C2—C1—N1131.2 (3)C12—C13—C8122.1 (3)
C2—C1—C6120.4 (3)N3—C14—N4112.7 (3)
N1—C1—C6108.4 (3)N3—C14—C7i117.7 (3)
C3—C2—C1117.6 (4)N4—C14—C7i129.5 (3)
C3—C2—H2121.2
N1i—Ni1—N1—C7168.5 (2)C2—C1—C6—N2179.6 (3)
N1ii—Ni1—N1—C795.2 (3)N1—C1—C6—N20.3 (4)
N3ii—Ni1—N1—C73.9 (2)C2—C1—C6—C51.8 (5)
N3—Ni1—N1—C789.5 (3)N1—C1—C6—C5178.9 (3)
N3i—Ni1—N1—C741.7 (7)C1—N1—C7—N20.4 (4)
N1i—Ni1—N1—C111.1 (4)Ni1—N1—C7—N2179.9 (2)
N1ii—Ni1—N1—C185.2 (3)C1—N1—C7—C14ii177.6 (3)
N3ii—Ni1—N1—C1176.5 (4)Ni1—N1—C7—C14ii2.6 (4)
N3—Ni1—N1—C190.1 (4)C6—N2—C7—N10.2 (4)
N3i—Ni1—N1—C1138.6 (6)C6—N2—C7—C14ii177.1 (3)
N1—Ni1—N3—C14100.0 (2)C14—N3—C8—C9178.8 (4)
N1i—Ni1—N3—C144.7 (2)Ni1—N3—C8—C94.5 (7)
N1ii—Ni1—N3—C1449.9 (7)C14—N3—C8—C130.5 (4)
N3ii—Ni1—N3—C14178.9 (2)Ni1—N3—C8—C13177.2 (3)
N3i—Ni1—N3—C1487.1 (3)N3—C8—C9—C10178.2 (4)
N1—Ni1—N3—C883.5 (4)C13—C8—C9—C100.0 (6)
N1i—Ni1—N3—C8178.8 (4)C8—C9—C10—C110.7 (7)
N1ii—Ni1—N3—C8126.7 (6)C9—C10—C11—C121.0 (8)
N3ii—Ni1—N3—C84.5 (4)C10—C11—C12—C130.6 (8)
N3i—Ni1—N3—C889.5 (3)C14—N4—C13—C12178.1 (4)
C7—N1—C1—C2179.6 (4)C14—N4—C13—C80.8 (4)
Ni1—N1—C1—C20.7 (7)C11—C12—C13—N4178.7 (4)
C7—N1—C1—C60.4 (4)C11—C12—C13—C80.0 (6)
Ni1—N1—C1—C6180.0 (3)C9—C8—C13—N4179.3 (3)
N1—C1—C2—C3179.6 (3)N3—C8—C13—N40.8 (4)
C6—C1—C2—C31.2 (5)C9—C8—C13—C120.3 (6)
C1—C2—C3—C40.3 (6)N3—C8—C13—C12178.2 (4)
C2—C3—C4—C50.2 (6)C8—N3—C14—N40.0 (4)
C3—C4—C5—C60.3 (6)Ni1—N3—C14—N4177.9 (2)
C7—N2—C6—C5178.5 (4)C8—N3—C14—C7i177.4 (3)
C7—N2—C6—C10.0 (4)Ni1—N3—C14—C7i4.8 (3)
C4—C5—C6—N2179.5 (4)C13—N4—C14—N30.5 (4)
C4—C5—C6—C11.3 (6)C13—N4—C14—C7i176.5 (3)
Symmetry codes: (i) z+1/2, x+1, y1/2; (ii) y+1, z+1/2, x+1/2; (iii) z+7/4, y+5/4, x+1/4; (iv) z1/4, y+5/4, x+7/4; (v) x+3/2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O1vi0.861.962.766 (4)156
N2—H2B···O1vii0.861.822.675 (4)170
Symmetry codes: (vi) x1/4, z+5/4, y+3/4; (vii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ni(C14H10N4)3]4(PO4)2(SO4)
Mr3331.96
Crystal system, space groupCubic, I43d
Temperature (K)296
a (Å)24.964 (7)
V3)15558 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.32 × 0.27 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.834, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
20222, 2551, 1782
Rint0.066
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.01
No. of reflections2551
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.20
Absolute structureFlack (1983), 1182 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O1i0.861.962.766 (4)156.1
N2—H2B···O1ii0.861.822.675 (4)170.0
Symmetry codes: (i) x1/4, z+5/4, y+3/4; (ii) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds