Download citation
Download citation
link to html
The title compound, [Cd(C6H4NO3)2(H2O)4], was obtained by the reaction of cadmium chloride with 5-hydroxy­nicotinic acid. The CdII atom is located on an inversion centre and is coordinated by two N atoms from two 5-hydroxy­nicotinic acid ligands and four water mol­ecules in a distorted octa­hedral geometry. The structure is stabilized by inter­molecular O—H...O hydrogen bonds, forming a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808035903/at2660sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808035903/at2660Isup2.hkl
Contains datablock I

CCDC reference: 712284

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.016
  • wR factor = 0.042
  • Data-to-parameter ratio = 13.4

checkCIF/PLATON results

No syntax errors found



Alert level C Value of measurement temperature given = 296.000 Value of melting point given = 0.000 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.12 PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 10 Ang. PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_4_C Check Cell Rounding: # of Values Ending with 0 = 6
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 7 PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

There is intense research on the synthesis of the cadmium metal compounds for their interesting photoluminescent properties. A large number of these compounds have been synthesized (He et al., 2008; Zora et al., 2006; Kang et al.,2007; Zhang et al., 2006).

As illustrated in Fig. 1, the Cd(II) atom is coordinated by two nitrogen atoms from two 5-hydroxynicotinic acid ligands and four water molecules. Four coordinated atoms of O1W, O2W, O1WA and O2WA constitute the base of the octahedral, whereas N1 and N1A atoms occupy the apical position. The intermolecular hydrogen bonds play an important role in the formation of the three-dimensional network. As shown in Fig. 2, the intermolecular O—H···O hydrogen bonds link the neighboring molecules to a three-dimensional network.

Related literature top

For cadmium componds and their photoluminescent properties, see: He et al. (2008); Kang et al. (2007); Zhang et al. (2006); Zora et al. (2006).

Experimental top

A mixture of 0.5 mmol 5-hydroxynicotinic acid and 0.5 mmol of cadmium chloride in 10 ml distilled water was stirred for 30 min at 323 K, then the reaction mixture was filtered and well shaped colourless crystals of the title compound was obtained from the mother liquor by slow evaporation at room temperature for several days.

Refinement top

The H atoms bonded to C atoms were positioned geometrically [aromatic C—H = 0.93 Å and aliphatic C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: XPREP (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme, displacement ellipsoids are shown at the 30% probability level. [Symmetry code: (A) -x + 1, -y + 1, -z + 2].
[Figure 2] Fig. 2. A view of the three dimensional framework of the title compound. The O—H···O interactions are depicted by dashed lines.
Tetraaquabis(5-hydroxynicotinato-κN)cadmium(II) top
Crystal data top
[Cd(C6H4NO3)2(H2O)4]Z = 1
Mr = 460.68F(000) = 230
Triclinic, P1Dx = 1.982 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2190 (1) ÅCell parameters from 5615 reflections
b = 7.2510 (1) Åθ = 2.5–27.5°
c = 8.9260 (1) ŵ = 1.48 mm1
α = 70.377 (1)°T = 296 K
β = 68.154 (1)°Sheet, colourless
γ = 65.717 (1)°0.27 × 0.17 × 0.07 mm
V = 385.97 (1) Å3
Data collection top
Bruker APEXII
diffractometer
1759 independent reflections
Radiation source: fine-focus sealed tube1754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.667, Tmax = 0.903k = 99
6067 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0249P)2 + 0.1253P]
where P = (Fo2 + 2Fc2)/3
1759 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.36 e Å3
7 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cd(C6H4NO3)2(H2O)4]γ = 65.717 (1)°
Mr = 460.68V = 385.97 (1) Å3
Triclinic, P1Z = 1
a = 7.2190 (1) ÅMo Kα radiation
b = 7.2510 (1) ŵ = 1.48 mm1
c = 8.9260 (1) ÅT = 296 K
α = 70.377 (1)°0.27 × 0.17 × 0.07 mm
β = 68.154 (1)°
Data collection top
Bruker APEXII
diffractometer
1759 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1754 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 0.903Rint = 0.017
6067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0167 restraints
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.36 e Å3
1759 reflectionsΔρmin = 0.34 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50001.00000.02626 (6)
O10.8938 (2)0.7990 (2)0.32463 (16)0.0427 (3)
O1W0.2684 (3)0.3168 (3)1.07212 (17)0.0482 (4)
H1WA0.287 (5)0.249 (4)1.009 (3)0.072*
H1WB0.209 (5)0.270 (4)1.163 (2)0.072*
O20.6901 (2)0.8709 (2)0.16430 (15)0.0429 (3)
O2W0.7595 (2)0.2074 (2)0.92481 (18)0.0478 (4)
H2WA0.881 (3)0.189 (4)0.865 (3)0.072*
H2WB0.762 (5)0.098 (3)0.994 (3)0.072*
O30.0066 (2)0.7675 (2)0.58671 (17)0.0400 (3)
H30.002 (4)0.785 (4)0.491 (2)0.053 (7)*
N10.4459 (2)0.6297 (2)0.74305 (16)0.0264 (3)
C10.5945 (2)0.6740 (2)0.60554 (19)0.0267 (3)
H1A0.72800.64830.61380.032*
C20.5560 (2)0.7568 (2)0.45137 (18)0.0245 (3)
C30.3595 (3)0.7885 (2)0.43778 (19)0.0263 (3)
H3A0.33100.84020.33540.032*
C40.2061 (2)0.7415 (2)0.5802 (2)0.0270 (3)
C50.2549 (2)0.6655 (3)0.73035 (19)0.0276 (3)
H5A0.15070.63830.82600.033*
C60.7273 (3)0.8123 (2)0.30121 (19)0.0288 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02499 (9)0.03841 (10)0.01604 (8)0.01493 (7)0.00552 (6)0.00099 (6)
O10.0313 (6)0.0688 (9)0.0266 (6)0.0259 (6)0.0010 (5)0.0044 (6)
O1W0.0589 (9)0.0749 (10)0.0276 (6)0.0484 (8)0.0017 (6)0.0091 (7)
O20.0587 (8)0.0592 (8)0.0199 (6)0.0385 (7)0.0088 (5)0.0028 (5)
O2W0.0368 (7)0.0424 (7)0.0347 (7)0.0075 (6)0.0072 (6)0.0013 (6)
O30.0285 (6)0.0620 (8)0.0326 (7)0.0220 (6)0.0135 (5)0.0007 (6)
N10.0258 (6)0.0362 (7)0.0187 (6)0.0141 (5)0.0068 (5)0.0018 (5)
C10.0252 (7)0.0376 (8)0.0208 (7)0.0155 (6)0.0064 (6)0.0037 (6)
C20.0278 (7)0.0271 (7)0.0195 (7)0.0128 (6)0.0046 (6)0.0033 (5)
C30.0312 (7)0.0288 (7)0.0207 (7)0.0120 (6)0.0109 (6)0.0005 (5)
C40.0249 (7)0.0305 (7)0.0281 (7)0.0112 (6)0.0107 (6)0.0026 (6)
C50.0254 (7)0.0358 (8)0.0219 (7)0.0143 (6)0.0053 (6)0.0023 (6)
C60.0340 (8)0.0319 (8)0.0206 (7)0.0166 (6)0.0025 (6)0.0038 (6)
Geometric parameters (Å, º) top
Cd1—O2W2.2830 (14)O3—C41.3543 (19)
Cd1—O2Wi2.2830 (14)O3—H30.830 (17)
Cd1—N1i2.2831 (13)N1—C51.335 (2)
Cd1—N12.2831 (13)N1—C11.3411 (19)
Cd1—O1W2.3291 (13)C1—C21.387 (2)
Cd1—O1Wi2.3291 (13)C1—H1A0.9300
O1—C61.255 (2)C2—C31.385 (2)
O1W—H1WA0.809 (17)C2—C61.517 (2)
O1W—H1WB0.794 (17)C3—C41.389 (2)
O2—C61.244 (2)C3—H3A0.9300
O2W—H2WA0.823 (17)C4—C51.386 (2)
O2W—H2WB0.822 (17)C5—H5A0.9300
O2W—Cd1—O2Wi180.0C5—N1—C1118.64 (13)
O2W—Cd1—N1i87.79 (5)C5—N1—Cd1117.86 (10)
O2Wi—Cd1—N1i92.21 (5)C1—N1—Cd1123.49 (10)
O2W—Cd1—N192.21 (5)N1—C1—C2122.29 (14)
O2Wi—Cd1—N187.79 (5)N1—C1—H1A118.9
N1i—Cd1—N1180.000 (1)C2—C1—H1A118.9
O2W—Cd1—O1W85.72 (6)C3—C2—C1118.97 (14)
O2Wi—Cd1—O1W94.28 (6)C3—C2—C6121.06 (14)
N1i—Cd1—O1W90.57 (5)C1—C2—C6119.96 (14)
N1—Cd1—O1W89.43 (5)C2—C3—C4118.68 (14)
O2W—Cd1—O1Wi94.28 (6)C2—C3—H3A120.7
O2Wi—Cd1—O1Wi85.72 (6)C4—C3—H3A120.7
N1i—Cd1—O1Wi89.43 (5)O3—C4—C5115.78 (14)
N1—Cd1—O1Wi90.57 (5)O3—C4—C3125.40 (14)
O1W—Cd1—O1Wi180.0C5—C4—C3118.81 (14)
Cd1—O1W—H1WA117 (2)N1—C5—C4122.55 (14)
Cd1—O1W—H1WB127 (2)N1—C5—H5A118.7
H1WA—O1W—H1WB110 (2)C4—C5—H5A118.7
Cd1—O2W—H2WA131 (2)O2—C6—O1125.02 (15)
Cd1—O2W—H2WB117 (2)O2—C6—C2117.26 (15)
H2WA—O2W—H2WB105 (2)O1—C6—C2117.71 (14)
C4—O3—H3108.2 (19)
O2W—Cd1—N1—C5119.15 (12)C1—C2—C3—C41.8 (2)
O2Wi—Cd1—N1—C560.85 (12)C6—C2—C3—C4177.83 (14)
O1W—Cd1—N1—C533.45 (13)C2—C3—C4—O3178.81 (15)
O1Wi—Cd1—N1—C5146.55 (13)C2—C3—C4—C50.2 (2)
O2W—Cd1—N1—C161.78 (13)C1—N1—C5—C41.7 (2)
O2Wi—Cd1—N1—C1118.22 (13)Cd1—N1—C5—C4179.16 (12)
O1W—Cd1—N1—C1147.47 (13)O3—C4—C5—N1179.22 (15)
O1Wi—Cd1—N1—C132.53 (13)C3—C4—C5—N12.1 (2)
C5—N1—C1—C20.5 (2)C3—C2—C6—O25.8 (2)
Cd1—N1—C1—C2178.62 (11)C1—C2—C6—O2174.61 (15)
N1—C1—C2—C32.2 (2)C3—C2—C6—O1173.06 (16)
N1—C1—C2—C6177.42 (14)C1—C2—C6—O16.6 (2)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2ii0.81 (2)1.94 (2)2.742 (2)171 (3)
O1W—H1WB···O3iii0.79 (2)2.20 (2)2.9728 (19)164 (3)
O2W—H2WA···O1iv0.82 (2)1.87 (2)2.6556 (18)160 (3)
O2W—H2WB···O2v0.82 (2)1.93 (2)2.7349 (19)165 (3)
O3—H3···O1vi0.83 (2)1.88 (2)2.6637 (19)157 (3)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z+2; (iv) x+2, y+1, z+1; (v) x, y1, z+1; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C6H4NO3)2(H2O)4]
Mr460.68
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.2190 (1), 7.2510 (1), 8.9260 (1)
α, β, γ (°)70.377 (1), 68.154 (1), 65.717 (1)
V3)385.97 (1)
Z1
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.27 × 0.17 × 0.07
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.667, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
6067, 1759, 1754
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.042, 1.09
No. of reflections1759
No. of parameters131
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.34

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), XPREP (Bruker, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.809 (17)1.941 (17)2.742 (2)171 (3)
O1W—H1WB···O3ii0.794 (17)2.201 (18)2.9728 (19)164 (3)
O2W—H2WA···O1iii0.823 (17)1.867 (18)2.6556 (18)160 (3)
O2W—H2WB···O2iv0.822 (17)1.933 (17)2.7349 (19)165 (3)
O3—H3···O1v0.830 (17)1.878 (19)2.6637 (19)157 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+2; (iii) x+2, y+1, z+1; (iv) x, y1, z+1; (v) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds