

Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808036465/at2672sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536808036465/at2672Isup2.hkl |
CCDC reference: 712295
Key indicators
- Single-crystal X-ray study
- T = 173 K
- Mean
(C-C) = 0.006 Å
- R factor = 0.025
- wR factor = 0.062
- Data-to-parameter ratio = 15.2
checkCIF/PLATON results
No syntax errors found
Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Ti -- Cl .. 15.96 su
Alert level C Value of measurement temperature given = 173.000 Value of melting point given = 0.000 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) W -- C2 .. 5.74 su PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.92 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT180_ALERT_4_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT234_ALERT_4_C Large Hirshfeld Difference W -- C5 .. 0.10 Ang.
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.917 Tmax scaled 0.497 Tmin scaled 0.402
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
A solution of LiCH3 (31.0 ml, 1.6M, 50.2 mmol) in 50 ml of diethylether was added to a well stirred suspension of W(CO)6 (17.80 g, 50.6 mmol) in 100 ml of diethylether. After solvent removal in vacuo, dissolution of the residue in 150 ml of cold water and filtration, a solution of Et4NCl (8.72 g, 52.6 mmol) in 50 ml of cold water was added to the filtrate. Upon further filtration 1.13 g (2.0 mmol) of the product {[W(CO)5C(C6H5)O][NEt4]} was dissolved in 70 ml of dichloromethane and added to a solution of Cp2TiCl2 (0.51 g, 2.0 mmol) in 40 ml of dichloromethane. After stirring for 30 min at -40°C AgBF4 (0.39 g, 2.0 mmol) was added. The red concentrate, stripped of solvent, was purified by chromatography at -20°C on silica with 400 ml of dichloromethane-pentane (2:1) followed by 200 ml of diethyl ether-hexane (2:1) (column 15 × 2 cm). The eluent was dried in vacuo, and the residue dissolved in toluene, layered with pentane and kept at -6°C, whereupon brown crystals of the title compound suitable for X-ray diffraction analysis were obtained in 38% yield.
H atoms were positioned geometrically, with C—H = 0.95 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks were located 1.05 and 0.86 Å, respectively from the W atom.
Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN(Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: publCIF (Westrip, 2008).
![]() | Fig. 1. The molecular structure of (I) showing the atomic labelling scheme and displacement ellipsoids drawn at the 50% probability level. |
[TiW(C5H5)2(C7H5O)Cl(CO)5] | F(000) = 1232 |
Mr = 642.54 | Dx = 1.967 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3701 reflections |
a = 8.553 (1) Å | θ = 1.9–26.0° |
b = 12.268 (1) Å | µ = 5.83 mm−1 |
c = 20.789 (3) Å | T = 173 K |
β = 95.903 (1)° | Prism, brown |
V = 2169.8 (3) Å3 | 0.17 × 0.14 × 0.12 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 4270 independent reflections |
Radiation source: fine-focus sealed tube | 3701 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
ϕ and ω scans to fill Ewald sphere | θmax = 26.0°, θmin = 1.9° |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | h = −10→10 |
Tmin = 0.438, Tmax = 0.542 | k = −12→15 |
12664 measured reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0268P)2 + 1.3791P] where P = (Fo2 + 2Fc2)/3 |
4270 reflections | (Δ/σ)max = 0.001 |
280 parameters | Δρmax = 1.05 e Å−3 |
0 restraints | Δρmin = −1.28 e Å−3 |
[TiW(C5H5)2(C7H5O)Cl(CO)5] | V = 2169.8 (3) Å3 |
Mr = 642.54 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.553 (1) Å | µ = 5.83 mm−1 |
b = 12.268 (1) Å | T = 173 K |
c = 20.789 (3) Å | 0.17 × 0.14 × 0.12 mm |
β = 95.903 (1)° |
Nonius KappaCCD diffractometer | 4270 independent reflections |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | 3701 reflections with I > 2σ(I) |
Tmin = 0.438, Tmax = 0.542 | Rint = 0.048 |
12664 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.04 | Δρmax = 1.05 e Å−3 |
4270 reflections | Δρmin = −1.28 e Å−3 |
280 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
W | −0.040028 (18) | 0.614346 (12) | 0.673068 (7) | 0.02272 (7) | |
Ti | 0.30368 (8) | 0.78191 (5) | 0.53935 (3) | 0.02177 (16) | |
Cl | 0.55600 (14) | 0.83949 (10) | 0.58007 (5) | 0.0410 (3) | |
O1 | 0.2431 (3) | 0.7285 (2) | 0.62039 (11) | 0.0245 (6) | |
O2 | −0.1363 (4) | 0.6408 (3) | 0.52255 (14) | 0.0404 (8) | |
O3 | −0.3832 (4) | 0.5174 (3) | 0.67496 (16) | 0.0509 (9) | |
O4 | −0.0034 (5) | 0.6032 (3) | 0.82667 (14) | 0.0521 (10) | |
O5 | 0.0917 (5) | 0.3753 (3) | 0.65428 (18) | 0.0569 (10) | |
O6 | −0.1413 (5) | 0.8615 (3) | 0.69147 (17) | 0.0505 (9) | |
C1 | 0.1989 (4) | 0.6800 (3) | 0.66995 (16) | 0.0207 (8) | |
C2 | −0.0937 (5) | 0.6307 (3) | 0.5758 (2) | 0.0282 (9) | |
C3 | −0.2601 (5) | 0.5542 (3) | 0.67555 (19) | 0.0326 (10) | |
C4 | −0.0115 (5) | 0.6062 (3) | 0.7719 (2) | 0.0331 (10) | |
C5 | 0.0453 (5) | 0.4607 (4) | 0.66182 (19) | 0.0340 (10) | |
C6 | −0.1093 (5) | 0.7727 (4) | 0.68423 (19) | 0.0332 (10) | |
C21 | 0.3261 (4) | 0.6812 (3) | 0.72524 (16) | 0.0227 (8) | |
C22 | 0.3483 (5) | 0.5921 (3) | 0.76655 (17) | 0.0261 (9) | |
H22 | 0.2780 | 0.5321 | 0.7615 | 0.031* | |
C23 | 0.4726 (5) | 0.5901 (4) | 0.81522 (19) | 0.0337 (10) | |
H23 | 0.4888 | 0.5281 | 0.8424 | 0.040* | |
C24 | 0.5731 (5) | 0.6791 (4) | 0.82394 (18) | 0.0359 (11) | |
H24 | 0.6580 | 0.6779 | 0.8572 | 0.043* | |
C25 | 0.5499 (5) | 0.7688 (4) | 0.7844 (2) | 0.0378 (10) | |
H25 | 0.6173 | 0.8302 | 0.7912 | 0.045* | |
C26 | 0.4280 (5) | 0.7699 (3) | 0.73471 (17) | 0.0300 (9) | |
H26 | 0.4141 | 0.8314 | 0.7070 | 0.036* | |
C31 | 0.0676 (5) | 0.8817 (3) | 0.5469 (2) | 0.0321 (10) | |
H31 | −0.0155 | 0.8518 | 0.5683 | 0.039* | |
C32 | 0.0882 (5) | 0.8697 (3) | 0.4812 (2) | 0.0337 (10) | |
H32 | 0.0225 | 0.8290 | 0.4503 | 0.040* | |
C33 | 0.2228 (5) | 0.9284 (4) | 0.4690 (2) | 0.0362 (10) | |
H33 | 0.2646 | 0.9343 | 0.4285 | 0.043* | |
C34 | 0.2847 (5) | 0.9768 (3) | 0.5274 (2) | 0.0335 (10) | |
H34 | 0.3745 | 1.0227 | 0.5330 | 0.040* | |
C35 | 0.1924 (5) | 0.9463 (3) | 0.57560 (19) | 0.0319 (10) | |
H35 | 0.2101 | 0.9654 | 0.6200 | 0.038* | |
C41 | 0.2059 (6) | 0.6425 (4) | 0.4682 (2) | 0.0424 (12) | |
H41 | 0.0960 | 0.6397 | 0.4555 | 0.051* | |
C42 | 0.2865 (7) | 0.5904 (4) | 0.5223 (2) | 0.0439 (12) | |
H42 | 0.2405 | 0.5442 | 0.5519 | 0.053* | |
C43 | 0.4452 (7) | 0.6184 (3) | 0.5251 (2) | 0.0458 (13) | |
H43 | 0.5260 | 0.5968 | 0.5573 | 0.055* | |
C44 | 0.4629 (6) | 0.6842 (4) | 0.4713 (2) | 0.0432 (12) | |
H44 | 0.5593 | 0.7138 | 0.4604 | 0.052* | |
C45 | 0.3183 (6) | 0.6991 (4) | 0.43667 (19) | 0.0399 (11) | |
H45 | 0.2983 | 0.7406 | 0.3981 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
W | 0.02340 (10) | 0.02525 (10) | 0.01927 (9) | −0.00116 (7) | 0.00104 (7) | 0.00126 (6) |
Ti | 0.0253 (4) | 0.0243 (4) | 0.0157 (3) | 0.0017 (3) | 0.0022 (3) | 0.0023 (3) |
Cl | 0.0411 (7) | 0.0424 (6) | 0.0388 (6) | −0.0064 (5) | 0.0013 (5) | 0.0034 (5) |
O1 | 0.0297 (16) | 0.0257 (14) | 0.0179 (12) | −0.0016 (12) | 0.0008 (11) | 0.0041 (11) |
O2 | 0.045 (2) | 0.0505 (19) | 0.0231 (15) | −0.0082 (16) | −0.0072 (14) | 0.0014 (13) |
O3 | 0.0308 (19) | 0.066 (2) | 0.057 (2) | −0.0159 (18) | 0.0105 (16) | −0.0051 (18) |
O4 | 0.060 (2) | 0.075 (3) | 0.0213 (17) | 0.0082 (19) | 0.0064 (15) | 0.0073 (15) |
O5 | 0.072 (3) | 0.037 (2) | 0.056 (2) | 0.0205 (18) | −0.018 (2) | −0.0063 (16) |
O6 | 0.065 (2) | 0.0354 (19) | 0.051 (2) | 0.0102 (17) | 0.0045 (18) | −0.0071 (16) |
C1 | 0.024 (2) | 0.0187 (19) | 0.0199 (17) | 0.0039 (16) | 0.0048 (15) | 0.0006 (15) |
C2 | 0.026 (2) | 0.028 (2) | 0.030 (2) | −0.0050 (17) | 0.0034 (18) | −0.0016 (17) |
C3 | 0.033 (3) | 0.034 (3) | 0.030 (2) | 0.000 (2) | 0.0032 (19) | 0.0010 (19) |
C4 | 0.034 (3) | 0.039 (3) | 0.028 (2) | −0.0027 (19) | 0.0086 (19) | 0.0048 (18) |
C5 | 0.035 (3) | 0.036 (3) | 0.028 (2) | 0.001 (2) | −0.0089 (18) | 0.0017 (19) |
C6 | 0.036 (3) | 0.037 (3) | 0.026 (2) | 0.000 (2) | 0.0020 (18) | −0.0027 (19) |
C21 | 0.024 (2) | 0.027 (2) | 0.0166 (16) | 0.0010 (17) | 0.0020 (15) | 0.0004 (15) |
C22 | 0.028 (2) | 0.028 (2) | 0.0224 (18) | 0.0026 (17) | 0.0045 (16) | 0.0019 (16) |
C23 | 0.033 (2) | 0.044 (3) | 0.024 (2) | 0.008 (2) | 0.0022 (18) | 0.0088 (19) |
C24 | 0.027 (2) | 0.058 (3) | 0.022 (2) | 0.007 (2) | −0.0016 (17) | −0.004 (2) |
C25 | 0.031 (2) | 0.047 (3) | 0.034 (2) | −0.011 (2) | −0.0023 (19) | 0.001 (2) |
C26 | 0.032 (2) | 0.038 (2) | 0.0194 (18) | −0.0063 (19) | 0.0004 (17) | 0.0061 (17) |
C31 | 0.029 (2) | 0.031 (2) | 0.038 (2) | 0.0088 (19) | 0.0072 (19) | 0.0127 (18) |
C32 | 0.035 (3) | 0.036 (3) | 0.027 (2) | 0.010 (2) | −0.0108 (19) | 0.0062 (17) |
C33 | 0.041 (3) | 0.040 (3) | 0.029 (2) | 0.006 (2) | 0.0071 (19) | 0.0161 (19) |
C34 | 0.037 (3) | 0.021 (2) | 0.043 (2) | −0.0007 (19) | 0.004 (2) | 0.0065 (18) |
C35 | 0.041 (3) | 0.024 (2) | 0.031 (2) | 0.0067 (19) | 0.0072 (19) | −0.0009 (17) |
C41 | 0.049 (3) | 0.044 (3) | 0.035 (2) | −0.003 (2) | 0.004 (2) | −0.022 (2) |
C42 | 0.070 (4) | 0.027 (2) | 0.038 (2) | −0.003 (2) | 0.018 (2) | −0.010 (2) |
C43 | 0.063 (4) | 0.034 (3) | 0.041 (3) | 0.021 (2) | 0.007 (2) | −0.005 (2) |
C44 | 0.046 (3) | 0.049 (3) | 0.038 (2) | 0.012 (2) | 0.018 (2) | −0.007 (2) |
C45 | 0.055 (3) | 0.043 (3) | 0.023 (2) | 0.010 (2) | 0.010 (2) | −0.0064 (19) |
W—C3 | 2.028 (5) | C22—H22 | 0.9500 |
W—C2 | 2.038 (4) | C23—C24 | 1.389 (7) |
W—C5 | 2.043 (5) | C23—H23 | 0.9500 |
W—C4 | 2.047 (4) | C24—C25 | 1.375 (6) |
W—C6 | 2.051 (5) | C24—H24 | 0.9500 |
W—C1 | 2.204 (4) | C25—C26 | 1.391 (5) |
Ti—O1 | 1.927 (2) | C25—H25 | 0.9500 |
Ti—Cl | 2.3446 (14) | C26—H26 | 0.9500 |
Ti—C41 | 2.358 (4) | C31—C32 | 1.404 (6) |
Ti—C32 | 2.358 (4) | C31—C35 | 1.411 (6) |
Ti—C33 | 2.374 (4) | C31—H31 | 0.9500 |
Ti—C43 | 2.377 (4) | C32—C33 | 1.402 (6) |
Ti—C42 | 2.378 (4) | C32—H32 | 0.9500 |
Ti—C45 | 2.379 (4) | C33—C34 | 1.406 (6) |
Ti—C31 | 2.381 (4) | C33—H33 | 0.9500 |
Ti—C35 | 2.385 (4) | C34—C35 | 1.389 (5) |
Ti—C44 | 2.385 (4) | C34—H34 | 0.9500 |
Ti—C34 | 2.408 (4) | C35—H35 | 0.9500 |
O1—C1 | 1.280 (4) | C41—C45 | 1.403 (6) |
O2—C2 | 1.135 (5) | C41—C42 | 1.410 (7) |
O3—C3 | 1.144 (5) | C41—H41 | 0.9500 |
O4—C4 | 1.134 (5) | C42—C43 | 1.395 (7) |
O5—C5 | 1.138 (5) | C42—H42 | 0.9500 |
O6—C6 | 1.137 (5) | C43—C44 | 1.399 (6) |
C1—C21 | 1.499 (5) | C43—H43 | 0.9500 |
C21—C22 | 1.391 (5) | C44—C45 | 1.377 (7) |
C21—C26 | 1.396 (5) | C44—H44 | 0.9500 |
C22—C23 | 1.390 (6) | C45—H45 | 0.9500 |
C3—W—C2 | 86.90 (16) | C21—C1—W | 125.7 (2) |
C3—W—C5 | 90.63 (17) | O2—C2—W | 174.3 (4) |
C2—W—C5 | 91.35 (16) | O3—C3—W | 177.2 (4) |
C3—W—C4 | 88.38 (17) | O4—C4—W | 176.6 (4) |
C2—W—C4 | 173.19 (17) | O5—C5—W | 178.6 (4) |
C5—W—C4 | 93.62 (16) | O6—C6—W | 177.1 (4) |
C3—W—C6 | 93.55 (17) | C22—C21—C26 | 118.8 (4) |
C2—W—C6 | 88.91 (16) | C22—C21—C1 | 120.5 (3) |
C5—W—C6 | 175.82 (17) | C26—C21—C1 | 120.6 (3) |
C4—W—C6 | 86.47 (16) | C23—C22—C21 | 120.6 (4) |
C3—W—C1 | 179.75 (15) | C23—C22—H22 | 119.7 |
C2—W—C1 | 92.86 (14) | C21—C22—H22 | 119.7 |
C5—W—C1 | 89.45 (15) | C24—C23—C22 | 119.8 (4) |
C4—W—C1 | 91.85 (15) | C24—C23—H23 | 120.1 |
C6—W—C1 | 86.37 (15) | C22—C23—H23 | 120.1 |
O1—Ti—Cl | 96.14 (8) | C25—C24—C23 | 120.1 (4) |
O1—Ti—C41 | 101.07 (14) | C25—C24—H24 | 120.0 |
Cl—Ti—C41 | 134.35 (14) | C23—C24—H24 | 120.0 |
O1—Ti—C32 | 109.71 (14) | C24—C25—C26 | 120.2 (4) |
Cl—Ti—C32 | 133.57 (12) | C24—C25—H25 | 119.9 |
C41—Ti—C32 | 78.56 (17) | C26—C25—H25 | 119.9 |
O1—Ti—C33 | 135.06 (13) | C25—C26—C21 | 120.5 (4) |
Cl—Ti—C33 | 101.17 (12) | C25—C26—H26 | 119.8 |
C41—Ti—C33 | 95.76 (17) | C21—C26—H26 | 119.8 |
C32—Ti—C33 | 34.46 (15) | C32—C31—C35 | 107.7 (4) |
O1—Ti—C43 | 90.49 (14) | C32—C31—Ti | 71.9 (2) |
Cl—Ti—C43 | 80.67 (15) | C35—C31—Ti | 72.9 (2) |
C41—Ti—C43 | 57.43 (19) | C32—C31—H31 | 126.1 |
C32—Ti—C43 | 134.63 (17) | C35—C31—H31 | 126.1 |
C33—Ti—C43 | 132.96 (16) | Ti—C31—H31 | 120.8 |
O1—Ti—C42 | 77.09 (13) | C33—C32—C31 | 108.0 (4) |
Cl—Ti—C42 | 113.08 (15) | C33—C32—Ti | 73.4 (2) |
C41—Ti—C42 | 34.65 (17) | C31—C32—Ti | 73.6 (2) |
C32—Ti—C42 | 109.99 (18) | C33—C32—H32 | 126.0 |
C33—Ti—C42 | 130.25 (17) | C31—C32—H32 | 126.0 |
C43—Ti—C42 | 34.13 (18) | Ti—C32—H32 | 118.9 |
O1—Ti—C45 | 133.08 (14) | C32—C33—C34 | 107.7 (4) |
Cl—Ti—C45 | 108.73 (13) | C32—C33—Ti | 72.1 (2) |
C41—Ti—C45 | 34.45 (16) | C34—C33—Ti | 74.2 (2) |
C32—Ti—C45 | 81.11 (16) | C32—C33—H33 | 126.2 |
C33—Ti—C45 | 79.00 (16) | C34—C33—H33 | 126.2 |
C43—Ti—C45 | 56.85 (17) | Ti—C33—H33 | 119.4 |
C42—Ti—C45 | 56.82 (16) | C35—C34—C33 | 108.5 (4) |
O1—Ti—C31 | 79.09 (13) | C35—C34—Ti | 72.3 (2) |
Cl—Ti—C31 | 125.21 (12) | C33—C34—Ti | 71.6 (2) |
C41—Ti—C31 | 99.57 (17) | C35—C34—H34 | 125.8 |
C32—Ti—C31 | 34.47 (14) | C33—C34—H34 | 125.8 |
C33—Ti—C31 | 57.05 (14) | Ti—C34—H34 | 122.1 |
C43—Ti—C31 | 152.69 (18) | C34—C35—C31 | 108.0 (4) |
C42—Ti—C31 | 118.56 (17) | C34—C35—Ti | 74.1 (2) |
C45—Ti—C31 | 113.73 (16) | C31—C35—Ti | 72.6 (2) |
O1—Ti—C35 | 81.89 (12) | C34—C35—H35 | 126.0 |
Cl—Ti—C35 | 90.79 (11) | C31—C35—H35 | 126.0 |
C41—Ti—C35 | 133.17 (17) | Ti—C35—H35 | 119.2 |
C32—Ti—C35 | 57.28 (15) | C45—C41—C42 | 107.1 (5) |
C33—Ti—C35 | 56.94 (15) | C45—C41—Ti | 73.6 (3) |
C43—Ti—C35 | 167.92 (17) | C42—C41—Ti | 73.5 (3) |
C42—Ti—C35 | 149.50 (17) | C45—C41—H41 | 126.4 |
C45—Ti—C35 | 134.76 (15) | C42—C41—H41 | 126.4 |
C31—Ti—C35 | 34.43 (14) | Ti—C41—H41 | 118.5 |
O1—Ti—C44 | 124.66 (14) | C43—C42—C41 | 108.4 (4) |
Cl—Ti—C44 | 78.77 (13) | C43—C42—Ti | 72.9 (2) |
C41—Ti—C44 | 56.67 (18) | C41—C42—Ti | 71.9 (3) |
C32—Ti—C44 | 112.91 (16) | C43—C42—H42 | 125.8 |
C33—Ti—C44 | 99.40 (16) | C41—C42—H42 | 125.8 |
C43—Ti—C44 | 34.17 (16) | Ti—C42—H42 | 121.1 |
C42—Ti—C44 | 56.31 (17) | C42—C43—C44 | 107.1 (5) |
C45—Ti—C44 | 33.62 (16) | C42—C43—Ti | 73.0 (3) |
C31—Ti—C44 | 146.91 (16) | C44—C43—Ti | 73.2 (2) |
C35—Ti—C44 | 152.05 (16) | C42—C43—H43 | 126.5 |
O1—Ti—C34 | 113.94 (12) | C44—C43—H43 | 126.5 |
Cl—Ti—C34 | 77.75 (11) | Ti—C43—H43 | 119.3 |
C41—Ti—C34 | 129.81 (17) | C45—C44—C43 | 109.2 (5) |
C32—Ti—C34 | 56.81 (15) | C45—C44—Ti | 72.9 (2) |
C33—Ti—C34 | 34.20 (15) | C43—C44—Ti | 72.6 (2) |
C43—Ti—C34 | 148.78 (17) | C45—C44—H44 | 125.4 |
C42—Ti—C34 | 164.43 (16) | C43—C44—H44 | 125.4 |
C45—Ti—C34 | 109.94 (15) | Ti—C44—H44 | 120.7 |
C31—Ti—C34 | 56.44 (14) | C44—C45—C41 | 108.1 (4) |
C35—Ti—C34 | 33.69 (13) | C44—C45—Ti | 73.4 (2) |
C44—Ti—C34 | 118.36 (16) | C41—C45—Ti | 72.0 (2) |
C1—O1—Ti | 171.7 (2) | C44—C45—H45 | 125.9 |
O1—C1—C21 | 111.2 (3) | C41—C45—H45 | 125.9 |
O1—C1—W | 123.0 (3) | Ti—C45—H45 | 120.4 |
Experimental details
Crystal data | |
Chemical formula | [TiW(C5H5)2(C7H5O)Cl(CO)5] |
Mr | 642.54 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 8.553 (1), 12.268 (1), 20.789 (3) |
β (°) | 95.903 (1) |
V (Å3) | 2169.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.83 |
Crystal size (mm) | 0.17 × 0.14 × 0.12 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.438, 0.542 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12664, 4270, 3701 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.062, 1.04 |
No. of reflections | 4270 |
No. of parameters | 280 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.05, −1.28 |
Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN(Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003), publCIF (Westrip, 2008).
Anionic Fischer-type carbene ligands are known to act as monodentate ligands towards transition metals like Ti and Zr (Barluenga and Fañanás, 2000). We have shown that such zirconocene complexes, Cp2Zr(Cl)OC(R)W(CO)5, catalyze the oligomerization of 1-pentene, as well as the copolymerization of ethene and 1-pentene, in the presence of MAO (Luruli et al., 2004; Luruli et al., 2006). Since Cp2TiCl2 has been shown to polymerize ethylene when activated by methylaluminoxane, MAO (Sinn et al., 1980), the title complex (I) was synthesized as part of our investigation into improved Ziegler-Natta catalysts for polymerization of ethene.
In the title compound (Fig. 1), the W=Ccarbene and Ccarbene—C distances are similar to those found in the equivalent hafnocene complex [2.177 (6) and 1.291 (6) Å, respectively; Esterhuysen et al., 2008], while the Ti—O distance is similar to the related compound Cp2Ti(Cl)OC(C6H5)Mn(CO)2(C5H4CH3) (Balzer et al., 1992). The Ti—O—C angle deviates slightly from linearity, which is similar to the related hafnocene complex [171.4 (3)°], but more linear than the manganese complex [160.8 (5)°]. These results are indicative of π delocalization through the Ti—O—C=W unit. As a result, the Cl/Ti/O1/C1/W/C3/O3 moiety is approximately planar, with the phenyl ring (C21/C22/C23/C24/C25/C26) twisted at an angle of 39.1 (2)° with respect to this plane.
The C31/C32/C33/C34/C35 Cp ring [with centroid Cg(1)] undergoes offset face-to-face π–π interactions with the symmetry related Cp ring on a neighbouring molecule [Cg(1)···Cg(1)i = 3.544 (6) Å; Symmetry code: (i) - x, 2 - y, 1 - z)].