Download citation
Download citation
link to html
The title compound [systematic name: (1R,4aS,10aR)-7-iso­prop­yl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octa­hydro­phen­anthrene-1-carboxylic acid], C20H28O2, has been isolated from disproportionated rosin which is obtained by isomerizing gum rosin with a Pd-C catalyst.. Two crystallographically independent mol­ecules exist in the asymmetric unit. In each mol­ecule, there are three six-membered rings, which adopt planar, half-chair and chair conformations. The two cyclo­hexane rings form a trans ring junction with the two methyl groups in axial positions. The crystal structure is stabilized by inter­molecular O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809035600/at2868sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809035600/at2868Isup2.hkl
Contains datablock I

CCDC reference: 750656

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.077
  • wR factor = 0.182
  • Data-to-parameter ratio = 9.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C5 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C13 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C26 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C18 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C31 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C38 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang .. 10 PLAT412_ALERT_2_C Short Intra XH3 .. XHn H39C .. H40C .. 1.87 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference C4 -- C5 .. 0.19 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference C4 -- C9 .. 0.20 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference C16 -- C17 .. 0.16 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.15 From the CIF: _reflns_number_total 3417 Count of symmetry unique reflns 3418 Completeness (_total/calc) 99.97% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT343_ALERT_2_G Check sp3 Angle Range in Main Residue for .. C3 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT791_ALERT_4_G The Model has Chirality at C10 (Verify) .... R PLAT791_ALERT_4_G The Model has Chirality at C11 (Verify) .... S PLAT791_ALERT_4_G The Model has Chirality at C17 (Verify) .... S PLAT791_ALERT_4_G The Model has Chirality at C30 (Verify) .... R PLAT791_ALERT_4_G The Model has Chirality at C31 (Verify) .... S PLAT791_ALERT_4_G The Model has Chirality at C37 (Verify) .... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 11 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 8 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 10 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Dehydroabietic acid is an abietane diterpenic resin acid which can be easily obtained from Pinus resin or commercial disproportionated rosin (Halbrook & Lawrence, 1966). The tri-cyclic hydrophenanthrene structure of dehydroabietic acid has strong hydrophobicity, so it can be used as raw material for the synthesis of surfactants (Piispanen et al., 2001; Jia et al., 2009). Dehydroabietic acid is also widely used as starting material for design and synthesis of biological compounds (Sepulveda et al., 2005; Rao, Song & He, 2008; Rao, Song He & Jia, 2008; Wada et al., 1985). In this work, we describe the crystal structure of the title compound.

The overall geometry of the title compound (Fig. 1) is comparable to that found for dehydroabietic N-methyl anilide (Rao et al., 2006) Two crystallorgraphic independent molecules exist in the asymmetric unit. In each molecule there are three six-membered rings, in which they form plannar, half-chair and chair conformations, respectively. The tricyclo phenanthrene structure of the title compound exhibited the same conformation with dehydroabietic N-methyl anilide. The two cyclohexane rings form a trans ring junction with two methyl groups in the same side of tricyclo phenanthrene structure. There are three chiral centers in each molecule, they exhibited R–, S– and R– configurations, respectively.

The crystal structure is stabilized by intermolecular O—H···O hydrogen bonds.

Related literature top

For the synthesis and uses of dehydroabietic acid, see: Halbrook & Lawrence (1966); Jia et al. (2009); Piispanen et al. (2001); Rao et al. (2006); Rao, Song & He (2008); Rao, Song, He & Jia (2008); Sepulveda et al. (2005); Wada et al. (1985).

Experimental top

The title compound wasere isolated from disproportionated rosin by recrystallization 5 times from acetone. Single crystals were grown from acetone.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97–0.98Å and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme. H atoms are represented by spheres of arbitrary radius and displacement ellipsoids are drawn at the 30% probability level.
(1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl- 1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylic acid top
Crystal data top
C20H28O2F(000) = 656
Mr = 300.42Dx = 1.099 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 11.738 (2) Åθ = 9–13°
b = 11.875 (2) ŵ = 0.07 mm1
c = 13.654 (3) ÅT = 293 K
β = 107.50 (3)°Block, white
V = 1815.1 (6) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2173 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.086
Graphite monochromatorθmax = 25.2°, θmin = 1.6°
ω/2θ scansh = 014
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
k = 014
Tmin = 0.973, Tmax = 0.986l = 1615
3592 measured reflections3 standard reflections every 200 reflections
3417 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.06P)2 + 1.6P]
where P = (Fo2 + 2Fc2)/3
3417 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.24 e Å3
3 restraintsΔρmin = 0.52 e Å3
Crystal data top
C20H28O2V = 1815.1 (6) Å3
Mr = 300.42Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.738 (2) ŵ = 0.07 mm1
b = 11.875 (2) ÅT = 293 K
c = 13.654 (3) Å0.40 × 0.20 × 0.20 mm
β = 107.50 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2173 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
Rint = 0.086
Tmin = 0.973, Tmax = 0.9863 standard reflections every 200 reflections
3592 measured reflections intensity decay: 1%
3417 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0773 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
3417 reflectionsΔρmin = 0.52 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7903 (4)0.0770 (5)0.5980 (5)0.111 (2)
O20.6194 (4)0.0132 (5)0.5509 (4)0.0981 (18)
H2D0.65840.04870.52060.147*
C11.0216 (7)0.7319 (9)0.7227 (6)0.105
H1A1.04730.65920.70680.158*
H1B1.08790.78320.73850.158*
H1C0.95940.75940.66460.158*
C20.9229 (7)0.8140 (7)0.8668 (6)0.094
H2A0.89720.77960.92020.141*
H2B0.85590.84930.81800.141*
H2C0.98270.86970.89610.141*
C30.9762 (7)0.7223 (7)0.8115 (5)0.089
H3A1.04710.69760.86600.107*
C40.8968 (8)0.6219 (7)0.7975 (7)0.094 (2)
C50.9072 (8)0.5624 (8)0.8875 (7)0.104 (3)
H5A0.95430.59130.94990.125*
C60.8482 (6)0.4603 (7)0.8856 (5)0.079 (2)
H6A0.85960.42060.94650.095*
C70.7739 (5)0.4168 (5)0.7964 (4)0.0580 (15)
C80.7635 (6)0.4722 (6)0.7055 (5)0.0660 (16)
C90.8238 (7)0.5731 (6)0.7076 (6)0.085 (2)
H9A0.81510.61010.64570.102*
C100.7026 (5)0.3060 (5)0.7991 (4)0.0554 (15)
C110.6944 (4)0.2442 (5)0.6962 (4)0.0463 (13)
H11A0.77710.23840.69460.056*
C120.6319 (5)0.3137 (6)0.6046 (4)0.0636 (16)
H12A0.55010.32590.60420.076*
H12B0.62990.27220.54290.076*
C130.6904 (7)0.4267 (7)0.6020 (5)0.085 (2)
H13A0.62850.48100.57040.101*
H13B0.74190.42030.55850.101*
C140.7656 (6)0.2326 (6)0.8889 (4)0.0674 (17)
H14A0.76270.26880.95180.081*
H14B0.84890.22550.89170.081*
C150.7105 (7)0.1152 (6)0.8826 (5)0.084 (2)
H15A0.75480.07140.94180.101*
H15B0.62880.12170.88440.101*
C160.7117 (6)0.0560 (6)0.7883 (6)0.081 (2)
H16A0.67430.01700.78690.097*
H16B0.79400.04340.79030.097*
C170.6479 (4)0.1187 (6)0.6895 (4)0.0549 (15)
C190.5766 (5)0.3435 (7)0.8062 (6)0.085 (2)
H19A0.52930.27800.80800.128*
H19B0.53690.38840.74730.128*
H19C0.58670.38690.86750.128*
C180.6865 (5)0.0604 (5)0.6094 (5)0.0623 (16)
C200.5112 (5)0.1113 (6)0.6643 (6)0.082 (2)
H20A0.48740.03360.66090.123*
H20B0.47410.14680.59940.123*
H20C0.48660.14870.71690.123*
O30.2917 (4)0.3532 (5)0.5604 (4)0.0990 (19)
O40.1213 (4)0.4452 (5)0.5126 (4)0.0960 (18)
H4A0.15810.48090.48060.144*
C210.4859 (7)0.2433 (8)1.2965 (6)0.098
H21A0.54080.26281.36200.148*
H21B0.47500.16311.29260.148*
H21C0.41050.27931.28870.148*
C220.6600 (6)0.2601 (9)1.2160 (6)0.107
H22A0.71190.27701.28340.160*
H22B0.68060.30681.16640.160*
H22C0.66890.18241.20040.160*
C230.5353 (6)0.2817 (7)1.2122 (5)0.085
H23A0.53250.36401.21700.102*
C240.4502 (6)0.2576 (9)1.1044 (6)0.093 (2)
C250.4036 (8)0.1542 (8)1.0763 (7)0.112 (3)
H25A0.42190.09581.12390.134*
C260.3299 (7)0.1337 (7)0.9789 (7)0.108 (3)
H26A0.30760.05990.95970.129*
C270.2870 (5)0.2205 (6)0.9074 (5)0.0695 (19)
C280.3299 (6)0.3285 (6)0.9408 (5)0.0709 (18)
C290.4126 (6)0.3443 (6)1.0387 (5)0.0747 (19)
H29A0.44190.41621.05860.090*
C300.1924 (5)0.1988 (6)0.8056 (5)0.0650 (18)
C310.2050 (5)0.2939 (5)0.7340 (4)0.0540 (14)
H31A0.28880.29040.73520.065*
C320.1918 (7)0.4097 (6)0.7754 (5)0.079 (2)
H32A0.11630.41500.79050.095*
H32B0.19270.46650.72460.095*
C330.2942 (7)0.4292 (6)0.8722 (5)0.084 (2)
H33A0.36300.45450.85290.101*
H33B0.27220.48940.91100.101*
C340.2114 (6)0.0853 (6)0.7582 (5)0.0736 (19)
H34A0.29470.07960.76090.088*
H34B0.19530.02520.80040.088*
C350.1367 (6)0.0670 (7)0.6509 (5)0.087 (2)
H35A0.05340.06310.64860.105*
H35B0.15800.00430.62660.105*
C360.1528 (6)0.1607 (7)0.5810 (5)0.078 (2)
H36A0.09860.14770.51270.094*
H36B0.23360.15710.57630.094*
C370.1309 (5)0.2781 (6)0.6151 (5)0.0650 (17)
C390.0057 (5)0.3022 (8)0.5926 (5)0.087 (2)
H39A0.04570.29130.52080.130*
H39B0.01690.37840.61120.130*
H39C0.03840.25160.63200.130*
C380.1848 (5)0.3630 (6)0.5582 (5)0.0688 (19)
C400.0688 (5)0.1971 (8)0.8262 (5)0.090 (3)
H40A0.05680.26720.85670.136*
H40B0.06680.13630.87190.136*
H40C0.00660.18680.76250.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.076 (3)0.120 (5)0.161 (5)0.044 (3)0.070 (3)0.075 (4)
O20.058 (3)0.116 (4)0.124 (4)0.022 (3)0.032 (3)0.060 (4)
C10.1050.1050.1050.0000.0320.000
C20.0940.0940.0940.0000.0280.000
C30.0890.0890.0890.0000.0270.000
C40.131 (7)0.069 (5)0.094 (6)0.045 (5)0.052 (5)0.031 (5)
C50.127 (7)0.088 (6)0.113 (7)0.054 (5)0.060 (5)0.055 (6)
C60.094 (5)0.094 (6)0.060 (4)0.027 (4)0.037 (4)0.015 (4)
C70.066 (4)0.055 (4)0.057 (4)0.007 (3)0.026 (3)0.008 (3)
C80.073 (4)0.057 (4)0.065 (4)0.003 (3)0.015 (3)0.005 (3)
C90.105 (5)0.070 (5)0.092 (5)0.007 (4)0.051 (4)0.022 (4)
C100.048 (3)0.065 (4)0.059 (4)0.000 (3)0.024 (3)0.008 (3)
C110.040 (3)0.056 (3)0.046 (3)0.002 (3)0.017 (2)0.009 (3)
C120.065 (3)0.068 (4)0.053 (3)0.008 (3)0.010 (3)0.006 (3)
C130.084 (5)0.091 (5)0.075 (5)0.004 (4)0.019 (4)0.020 (4)
C140.076 (4)0.075 (4)0.052 (3)0.009 (4)0.020 (3)0.000 (3)
C150.105 (5)0.079 (5)0.070 (4)0.018 (4)0.027 (4)0.005 (4)
C160.081 (5)0.058 (4)0.108 (6)0.008 (4)0.036 (4)0.005 (4)
C170.031 (2)0.079 (4)0.058 (3)0.006 (3)0.018 (2)0.009 (3)
C190.068 (4)0.089 (5)0.115 (6)0.003 (4)0.053 (4)0.025 (5)
C180.050 (3)0.057 (4)0.083 (4)0.001 (3)0.025 (3)0.008 (4)
C200.056 (3)0.086 (5)0.114 (6)0.020 (4)0.041 (4)0.036 (5)
O30.052 (2)0.135 (5)0.122 (4)0.028 (3)0.043 (3)0.071 (4)
O40.062 (3)0.112 (4)0.117 (4)0.016 (3)0.032 (3)0.066 (4)
C210.0980.0980.0980.0000.0300.000
C220.1070.1070.1070.0000.0320.000
C230.0850.0850.0850.0000.0260.000
C240.081 (5)0.107 (7)0.078 (5)0.006 (5)0.006 (4)0.001 (5)
C250.139 (8)0.084 (6)0.081 (5)0.014 (6)0.015 (5)0.021 (5)
C260.102 (6)0.074 (5)0.113 (7)0.022 (5)0.017 (5)0.029 (5)
C270.058 (4)0.076 (5)0.076 (4)0.010 (3)0.023 (3)0.031 (4)
C280.076 (4)0.072 (5)0.067 (4)0.016 (4)0.024 (3)0.002 (4)
C290.091 (5)0.069 (5)0.067 (4)0.008 (4)0.028 (4)0.009 (4)
C300.040 (3)0.088 (5)0.073 (4)0.002 (3)0.025 (3)0.017 (4)
C310.049 (3)0.058 (4)0.060 (3)0.014 (3)0.023 (3)0.010 (3)
C320.089 (5)0.077 (5)0.084 (5)0.020 (4)0.043 (4)0.018 (4)
C330.122 (6)0.055 (4)0.076 (5)0.017 (4)0.031 (4)0.000 (4)
C340.066 (4)0.061 (4)0.090 (5)0.011 (3)0.018 (4)0.011 (4)
C350.079 (5)0.083 (5)0.087 (5)0.027 (4)0.005 (4)0.013 (4)
C360.059 (4)0.094 (6)0.077 (4)0.011 (4)0.015 (3)0.005 (4)
C370.038 (3)0.084 (5)0.070 (4)0.005 (3)0.011 (3)0.019 (4)
C390.039 (3)0.125 (6)0.097 (5)0.010 (4)0.020 (3)0.032 (5)
C380.042 (3)0.099 (5)0.067 (4)0.007 (3)0.019 (3)0.029 (4)
C400.052 (3)0.138 (7)0.088 (4)0.011 (4)0.032 (3)0.042 (5)
Geometric parameters (Å, º) top
O1—C181.289 (7)O3—C381.252 (6)
O2—C181.281 (7)O4—C381.271 (8)
O2—H2D0.8200O4—H4A0.8200
C1—C31.469 (7)C21—C231.507 (10)
C1—H1A0.9600C21—H21A0.9600
C1—H1B0.9600C21—H21B0.9600
C1—H1C0.9600C21—H21C0.9600
C2—C31.559 (10)C22—C231.472 (7)
C2—H2A0.9600C22—H22A0.9600
C2—H2B0.9600C22—H22B0.9600
C2—H2C0.9600C22—H22C0.9600
C3—C41.490 (10)C23—C241.538 (10)
C3—H3A0.9800C23—H23A0.9800
C4—C51.391 (12)C24—C291.350 (10)
C4—C91.395 (10)C24—C251.352 (12)
C5—C61.393 (10)C25—C261.373 (11)
C5—H5A0.9300C25—H25A0.9300
C6—C71.368 (8)C26—C271.405 (9)
C6—H6A0.9300C26—H26A0.9300
C7—C81.377 (8)C27—C281.404 (10)
C7—C101.567 (9)C27—C301.518 (9)
C8—C91.388 (9)C28—C291.408 (9)
C8—C131.516 (9)C28—C331.498 (10)
C9—H9A0.9300C29—H29A0.9300
C10—C141.504 (9)C30—C311.530 (8)
C10—C111.562 (7)C30—C341.540 (10)
C10—C191.576 (7)C30—C401.558 (7)
C11—C121.494 (8)C31—C321.513 (9)
C11—C171.581 (8)C31—C371.605 (8)
C11—H11A0.9800C31—H31A0.9800
C12—C131.511 (10)C32—C331.514 (10)
C12—H12A0.9700C32—H32A0.9700
C12—H12B0.9700C32—H32B0.9700
C13—H13A0.9700C33—H33A0.9700
C13—H13B0.9700C33—H33B0.9700
C14—C151.529 (10)C34—C351.480 (9)
C14—H14A0.9700C34—H34A0.9700
C14—H14B0.9700C34—H34B0.9700
C15—C161.471 (10)C35—C361.515 (10)
C15—H15A0.9700C35—H35A0.9700
C15—H15B0.9700C35—H35B0.9700
C16—C171.524 (9)C36—C371.516 (10)
C16—H16A0.9700C36—H36A0.9700
C16—H16B0.9700C36—H36B0.9700
C17—C181.477 (8)C37—C381.522 (9)
C17—C201.540 (7)C37—C391.566 (7)
C19—H19A0.9600C39—H39A0.9600
C19—H19B0.9600C39—H39B0.9600
C19—H19C0.9600C39—H39C0.9600
C20—H20A0.9600C40—H40A0.9600
C20—H20B0.9600C40—H40B0.9600
C20—H20C0.9600C40—H40C0.9600
C18—O2—H2D109.5C38—O4—H4A109.5
C3—C1—H1A109.5C23—C21—H21A109.5
C3—C1—H1B109.5C23—C21—H21B109.5
H1A—C1—H1B109.5H21A—C21—H21B109.5
C3—C1—H1C109.5C23—C21—H21C109.5
H1A—C1—H1C109.5H21A—C21—H21C109.5
H1B—C1—H1C109.5H21B—C21—H21C109.5
C3—C2—H2A109.5C23—C22—H22A109.5
C3—C2—H2B109.5C23—C22—H22B109.5
H2A—C2—H2B109.5H22A—C22—H22B109.5
C3—C2—H2C109.5C23—C22—H22C109.5
H2A—C2—H2C109.5H22A—C22—H22C109.5
H2B—C2—H2C109.5H22B—C22—H22C109.5
C1—C3—C4108.9 (7)C22—C23—C21121.9 (7)
C1—C3—C2130.1 (7)C22—C23—C24110.7 (6)
C4—C3—C2107.1 (6)C21—C23—C24112.7 (6)
C1—C3—H3A102.4C22—C23—H23A102.9
C4—C3—H3A102.4C21—C23—H23A102.9
C2—C3—H3A102.4C24—C23—H23A102.9
C5—C4—C9115.8 (7)C29—C24—C25118.7 (7)
C5—C4—C3114.1 (7)C29—C24—C23118.8 (8)
C9—C4—C3129.8 (7)C25—C24—C23122.1 (8)
C4—C5—C6121.0 (7)C24—C25—C26121.3 (8)
C4—C5—H5A119.5C24—C25—H25A119.4
C6—C5—H5A119.5C26—C25—H25A119.4
C7—C6—C5121.7 (7)C25—C26—C27122.3 (8)
C7—C6—H6A119.2C25—C26—H26A118.9
C5—C6—H6A119.2C27—C26—H26A118.9
C6—C7—C8118.9 (6)C28—C27—C26115.2 (6)
C6—C7—C10119.9 (6)C28—C27—C30123.0 (6)
C8—C7—C10121.3 (5)C26—C27—C30121.5 (7)
C7—C8—C9119.2 (6)C27—C28—C29120.5 (6)
C7—C8—C13122.8 (6)C27—C28—C33121.4 (6)
C9—C8—C13118.0 (6)C29—C28—C33118.0 (7)
C8—C9—C4123.4 (7)C24—C29—C28121.6 (7)
C8—C9—H9A118.3C24—C29—H29A119.2
C4—C9—H9A118.3C28—C29—H29A119.2
C14—C10—C11110.1 (5)C27—C30—C31105.9 (5)
C14—C10—C7111.7 (5)C27—C30—C34112.0 (5)
C11—C10—C7105.2 (4)C31—C30—C34108.9 (5)
C14—C10—C19110.7 (5)C27—C30—C40107.6 (5)
C11—C10—C19112.5 (5)C31—C30—C40113.5 (5)
C7—C10—C19106.4 (5)C34—C30—C40108.9 (6)
C12—C11—C10112.0 (5)C32—C31—C30113.1 (5)
C12—C11—C17113.5 (4)C32—C31—C37113.5 (5)
C10—C11—C17114.9 (4)C30—C31—C37115.6 (5)
C12—C11—H11A105.1C32—C31—H31A104.4
C10—C11—H11A105.1C30—C31—H31A104.4
C17—C11—H11A105.1C37—C31—H31A104.4
C11—C12—C13113.5 (5)C31—C32—C33108.8 (6)
C11—C12—H12A108.9C31—C32—H32A109.9
C13—C12—H12A108.9C33—C32—H32A109.9
C11—C12—H12B108.9C31—C32—H32B109.9
C13—C12—H12B108.9C33—C32—H32B109.9
H12A—C12—H12B107.7H32A—C32—H32B108.3
C12—C13—C8115.4 (6)C28—C33—C32115.0 (7)
C12—C13—H13A108.4C28—C33—H33A108.5
C8—C13—H13A108.4C32—C33—H33A108.5
C12—C13—H13B108.4C28—C33—H33B108.5
C8—C13—H13B108.4C32—C33—H33B108.5
H13A—C13—H13B107.5H33A—C33—H33B107.5
C10—C14—C15112.8 (5)C35—C34—C30115.2 (6)
C10—C14—H14A109.0C35—C34—H34A108.5
C15—C14—H14A109.0C30—C34—H34A108.5
C10—C14—H14B109.0C35—C34—H34B108.5
C15—C14—H14B109.0C30—C34—H34B108.5
H14A—C14—H14B107.8H34A—C34—H34B107.5
C16—C15—C14111.7 (6)C34—C35—C36111.6 (6)
C16—C15—H15A109.3C34—C35—H35A109.3
C14—C15—H15A109.3C36—C35—H35A109.3
C16—C15—H15B109.3C34—C35—H35B109.3
C14—C15—H15B109.3C36—C35—H35B109.3
H15A—C15—H15B107.9H35A—C35—H35B108.0
C15—C16—C17114.2 (6)C35—C36—C37114.6 (6)
C15—C16—H16A108.7C35—C36—H36A108.6
C17—C16—H16A108.7C37—C36—H36A108.6
C15—C16—H16B108.7C35—C36—H36B108.6
C17—C16—H16B108.7C37—C36—H36B108.6
H16A—C16—H16B107.6H36A—C36—H36B107.6
C18—C17—C16104.4 (5)C36—C37—C38108.5 (5)
C18—C17—C20109.8 (5)C36—C37—C39111.5 (6)
C16—C17—C20111.8 (5)C38—C37—C39109.7 (5)
C18—C17—C11107.9 (4)C36—C37—C31109.2 (5)
C16—C17—C11109.9 (5)C38—C37—C31104.9 (5)
C20—C17—C11112.7 (5)C39—C37—C31112.9 (5)
C10—C19—H19A109.5C37—C39—H39A109.5
C10—C19—H19B109.5C37—C39—H39B109.5
H19A—C19—H19B109.5H39A—C39—H39B109.5
C10—C19—H19C109.5C37—C39—H39C109.5
H19A—C19—H19C109.5H39A—C39—H39C109.5
H19B—C19—H19C109.5H39B—C39—H39C109.5
O2—C18—O1117.1 (6)O3—C38—O4121.3 (6)
O2—C18—C17120.9 (5)O3—C38—C37119.6 (6)
O1—C18—C17121.9 (6)O4—C38—C37119.1 (5)
C17—C20—H20A109.5C30—C40—H40A109.5
C17—C20—H20B109.5C30—C40—H40B109.5
H20A—C20—H20B109.5H40A—C40—H40B109.5
C17—C20—H20C109.5C30—C40—H40C109.5
H20A—C20—H20C109.5H40A—C40—H40C109.5
H20B—C20—H20C109.5H40B—C40—H40C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2D···O3i0.821.822.621 (8)165
O4—H4A···O1ii0.821.792.598 (8)168
C11—H11A···O10.982.362.813 (8)108
C31—H31A···O30.982.512.933 (8)106
C36—H36B···O30.972.452.870 (10)105
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H28O2
Mr300.42
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)11.738 (2), 11.875 (2), 13.654 (3)
β (°) 107.50 (3)
V3)1815.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(XCAD4; Harms & Wocadlo, 1995)
Tmin, Tmax0.973, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
3592, 3417, 2173
Rint0.086
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.182, 1.00
No. of reflections3417
No. of parameters361
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.52

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2D···O3i0.82001.82002.621 (8)165.00
O4—H4A···O1ii0.82001.79002.598 (8)168.00
C11—H11A···O10.98002.36002.813 (8)108.00
C31—H31A···O30.98002.51002.933 (8)106.00
C36—H36B···O30.97002.45002.870 (10)105.00
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds