Download citation
Download citation
link to html
The structure consists of two crystallographically independent and differently solvated binuclear complexes, {[Cu2Cl2(C11H14NO2)2]·CH4O}·{[Cu2Cl2(C11H14NO2)2]·H2O}. The water and methanol solvate mol­ecules are similarly connected with the complex mol­ecules by two hydrogen bonds. The asymmetrical system of hydrogen bonds breaks up the potential centrosymmetricity of both chelate mol­ecules. All copper(II) centres are in a square-pyramidal environment, with four short bonds in the basal plane formed by two trans O atoms and one N atom of the tridentate ligand, and a bridge chloride ion. The fifth axial long bond is formed by a chloride ligand which lies in the basal plane of the neighbouring copper(II) ion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100002559/av1033sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100002559/av1033Isup2.hkl
Contains datablock I

CCDC reference: 145531

Comment top

The stereochemistry of bis(µ-halide) bridged copper(II) dimers has attracted our attention in recent years (Bukowska-Strzyżewska et al., 1997). The present study on the title compound, (I), forms part of our work on the structure of dimeric copper(II) complexes with Schiff bases obtained from aromatic aldehyde and aliphatic amino-alcohols. We have previously reported several such compounds and studied their structural features (Bukowska-Strzyżewska et al., 1992; Maniukiewicz et al., 1994, 1995, 1996). It seems interesting to compare the influence of the solvation or hydration on the shape of dimeric molecules. \sch

The view of the two crystallographically independent binuclear complexes (molecules A and B) with the atom-labelling scheme is shown in Fig. 1a and 1 b. Each copper(II) ion is five-coordinated with approximate square-pyramidal geometry. Apart from small changes in the chemically equivalent bond lengths and angles of the molecules A and B, the largest dissimilarities exist in the geometry of Cu2Cl2 cores. The individual Cu–Cl–Cu bridges formed by one short Cu–Cl and one long Cu–Cl bonds have distinctly differentiated bond lengths. The short Cu–Cl bonds vary from 2.2550 (11) to 2.2645 (11) Å and the long Cu–Cl bonds from 2.6662 (12) to 2.9112 (13) Å. The Cu···Cu nonbonding distances are 3.450 (1) and 3.422 (1) Å for Cu1···Cu2 and Cu1'···Cu2', respectively. The central CuCl2Cu rings are not planar. The dihedral angles change from 21.9 (1) to 23.1 (1)° for Cu1'–Cl1'–Cl2'–Cu2' and Cu1–Cl1–Cl2–Cu2, respectively.

The asymmetrical system of hydrogen bonds of molecules A and B is shown in Fig. 1a and 1 b. It spoils the potential centrosymmetricity of the binuclear molecules and induces the deformation of the core CuCl2Cu rings and of CuII polyhedra. As we can see from Table 2 all three hydrogen bonds formed by methanol solvated complex B are distinctly shorter than the bonds formed by molecule A. The observed deformation of CuII coordination polyhedra from idealized square-pyramidal geometry toward the trigonal-bipyramidal is also on average greater in molecule B, than A. The deformation parameter τ computed on the basis of the two maximal valency angles of Cu atom as (α1 - α2)/60 (Adison et al., 1985) is 21.9 and 12.6% for CuII centres in A and 20.9 and 17.3% in B.

Experimental top

The title compound was prepared by modification of a previously described procedure (Samus et al., 1987). The complex was prepared by addition of CuCl2·2H2O (0.001 mol) to a warm solution containing the ligand (0.001 mol) in methanol (50 ml). The resulting solution was filtered and allowed to cool. Slow evaporation deposited dark green crystals analysed as [Cu2Cl2(C11H14NO2)2]·H2O·CH3OH. Analysis found: C 43.55, N 4.56, H 5.46%; calculated C 43.64, N 4.43, H 5.37%.

Refinement top

The structure of the title compound was solved by direct methods. Refinement was based on full-matrix least-squares calculations, with anisotropic displacement parameters for all non-H atoms and isotropic displacement parameters for H atoms. H atoms attached to O atoms were located directly from the difference map. The remaining H atoms were placed at their calculated position and refined using a riding model.

Computing details top

Data collection: P3 Software (Siemens, 1990); cell refinement: P3 Software; data reduction: SHELXTL/PC XDISK (Sheldrick, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1993); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1]
Fig. 1a. View of the hydrated A molecule with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 1 b. A perspective drawing of the B molecule solvated by CH3OH with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Di-µ-chlorobis[N-2-hydroxybuthyl)salicylideneiminato-N,O,O'copper(II)] methanol hydrate (1/1/1). top
Crystal data top
[Cu2Cl2(C11H14NO2)2].CH4O·[Cu2Cl2(C11H14NO2)2].H2OZ = 2
Mr = 1214.94F(000) = 1248
Triclinic, P1Dx = 1.535 Mg m3
Dm = 1.55 (3) Mg m3
Dm measured by flotation in CH3I/CCl4
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.877 (1) ÅCell parameters from 15 reflections
b = 15.079 (2) Åθ = 10–20°
c = 16.212 (3) ŵ = 1.86 mm1
α = 65.10 (2)°T = 295 K
β = 71.71 (2)°Prism, dark green
γ = 69.93 (2)°0.40 × 0.35 × 0.30 mm
V = 2628.4 (6) Å3
Data collection top
Siemens P3
diffractometer
7583 reflections with I > 2σ(I)
Radiation source: FK60-10 Siemens Mo tubeRint = 0.018
Graphite monochromatorθmax = 25.1°, θmin = 2.0°
ω–2θ scansh = 015
Absorption correction: ψ scan
North et al., 1968
k = 1617
Tmin = 0.495, Tmax = 0.573l = 1819
9070 measured reflections2 standard reflections every 100 reflections
8666 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.10Calculated w = 1/[σ2(Fo2) + (0.0604P)2 + 2.9616P]
where P = (Fo2 + 2Fc2)/3
8666 reflections(Δ/σ)max = 0.022
604 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu2Cl2(C11H14NO2)2].CH4O·[Cu2Cl2(C11H14NO2)2].H2Oγ = 69.93 (2)°
Mr = 1214.94V = 2628.4 (6) Å3
Triclinic, P1Z = 2
a = 12.877 (1) ÅMo Kα radiation
b = 15.079 (2) ŵ = 1.86 mm1
c = 16.212 (3) ÅT = 295 K
α = 65.10 (2)°0.40 × 0.35 × 0.30 mm
β = 71.71 (2)°
Data collection top
Siemens P3
diffractometer
7583 reflections with I > 2σ(I)
Absorption correction: ψ scan
North et al., 1968
Rint = 0.018
Tmin = 0.495, Tmax = 0.5732 standard reflections every 100 reflections
9070 measured reflections intensity decay: none
8666 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.10Δρmax = 0.72 e Å3
8666 reflectionsΔρmin = 0.48 e Å3
604 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25470 (3)0.65369 (3)0.15637 (3)0.04031 (10)
Cu20.31012 (4)0.44825 (3)0.35362 (3)0.04856 (12)
Cl10.41110 (8)0.52512 (7)0.15756 (7)0.0523 (2)
Cl20.19709 (9)0.60363 (7)0.34025 (6)0.0543 (2)
O10.3318 (2)0.74790 (18)0.14353 (17)0.0468 (6)
O30.2043 (2)0.40909 (18)0.32345 (19)0.0510 (7)
O20.1627 (2)0.56135 (17)0.16697 (17)0.0477 (6)
H10.18190.51960.21800.057*
O40.4317 (2)0.4786 (2)0.3817 (2)0.0615 (7)
H20.44590.53330.34030.074*
N10.1196 (2)0.7565 (2)0.1231 (2)0.0426 (7)
N20.4028 (3)0.3112 (2)0.3942 (2)0.0526 (8)
C10.1714 (3)0.8907 (3)0.1324 (2)0.0432 (8)
C20.2818 (3)0.8389 (3)0.1475 (2)0.0434 (8)
C30.3413 (3)0.8884 (3)0.1661 (3)0.0541 (10)
H30.41670.85460.17650.065*
C40.2958 (4)0.9833 (3)0.1698 (3)0.0632 (11)
H40.33891.01570.18200.076*
C50.1876 (4)1.0339 (3)0.1546 (3)0.0634 (12)
H50.15471.09980.15880.076*
C60.1265 (4)0.9892 (3)0.1354 (3)0.0567 (11)
H60.05211.02480.12330.068*
C70.0983 (3)0.8481 (3)0.1166 (2)0.0459 (9)
H70.02810.89200.09980.055*
C80.0351 (3)0.7194 (3)0.1107 (3)0.0510 (10)
H80.03860.76040.12560.061*
C90.0455 (3)0.6123 (3)0.1804 (3)0.0524 (10)
H9A0.01930.61340.24240.063*
H9B0.00160.57840.17100.063*
C100.0578 (4)0.7260 (3)0.0114 (3)0.0616 (11)
H10A0.13100.68400.00330.074*
H10B0.05790.79440.02870.074*
C120.2095 (3)0.3181 (3)0.3282 (2)0.0458 (9)
C110.2952 (3)0.2318 (3)0.3607 (2)0.0475 (9)
C130.1268 (4)0.3059 (3)0.2977 (3)0.0590 (11)
H130.06810.36390.27520.071*
C140.1276 (4)0.2142 (3)0.2992 (3)0.0659 (12)
H140.06880.20780.27910.079*
C150.2124 (4)0.1303 (3)0.3295 (3)0.0652 (12)
H150.21390.06640.32910.078*
C160.2938 (4)0.1386 (3)0.3605 (3)0.0592 (11)
H160.35180.07980.38310.071*
C170.3865 (3)0.2329 (3)0.3933 (3)0.0528 (10)
H170.43870.16970.41690.063*
C180.5000 (4)0.3001 (3)0.4307 (3)0.0625 (11)
H180.56100.24650.41750.075*
C190.5338 (4)0.3988 (3)0.3798 (3)0.0666 (12)
H19A0.58400.40270.41040.080*
H19B0.57170.40450.31710.080*
C200.4678 (4)0.2740 (4)0.5328 (3)0.0831 (15)
H20A0.42780.22190.55880.100*
H20B0.41780.33270.54560.100*
C210.0296 (5)0.6970 (5)0.0100 (4)0.0925 (16)
H21A0.01340.70250.07370.111*
H21B0.02900.62830.02950.111*
H21C0.10270.73960.00390.111*
C220.5675 (6)0.2395 (8)0.5796 (5)0.162 (4)
H22A0.54350.22390.64550.194*
H22B0.61700.18040.56720.194*
H22C0.60680.29200.55380.194*
Cu1'0.17619 (4)0.91260 (3)0.27670 (3)0.04102 (10)
Cu2'0.38935 (3)1.12610 (3)0.22481 (3)0.03957 (10)
Cl1'0.19207 (7)1.02871 (7)0.13373 (6)0.0461 (2)
Cl2'0.39781 (8)0.98836 (7)0.35473 (6)0.0509 (2)
O1'0.2123 (2)0.81429 (18)0.25407 (17)0.0480 (6)
O2'0.1389 (2)1.00978 (18)0.31181 (18)0.0500 (6)
H1'0.20561.06810.31380.060*
O3'0.3043 (2)1.17189 (18)0.26968 (18)0.0479 (6)
O4'0.4767 (2)1.08607 (17)0.16933 (16)0.0438 (6)
H2'0.43941.01600.17360.053*
N1'0.1159 (3)0.8157 (2)0.3858 (2)0.0464 (7)
N2'0.4227 (2)1.2538 (2)0.12435 (19)0.0403 (7)
C1'0.1527 (3)0.6696 (3)0.3851 (2)0.0449 (9)
C2'0.2034 (3)0.7177 (3)0.3062 (2)0.0449 (9)
C3'0.2441 (4)0.6593 (3)0.2818 (3)0.0569 (10)
H3'0.27960.69140.22900.068*
C4'0.2352 (4)0.5586 (3)0.3317 (3)0.0694 (12)
H4'0.26470.52070.31340.083*
C5'0.1846 (4)0.5112 (3)0.4082 (3)0.0724 (13)
H5'0.17890.44070.44300.087*
C6'0.1431 (4)0.5660 (3)0.4340 (3)0.0592 (11)
H6'0.10570.53350.48570.071*
C7'0.1118 (3)0.7216 (3)0.4197 (3)0.0508 (10)
H7'0.07490.68150.47140.061*
C8'0.0729 (3)0.8592 (3)0.4314 (3)0.0543 (10)
H8'0.08560.82340.49710.065*
C9'0.1406 (4)0.9674 (3)0.4100 (3)0.0587 (10)
H9C0.21650.96890.44460.070*
H9D0.10881.00490.42700.070*
C10'0.0514 (4)0.8474 (4)0.3967 (3)0.0687 (12)
H10C0.06430.89200.33340.082*
H10D0.08700.77950.39830.082*
C11'0.3139 (3)1.3385 (3)0.1512 (3)0.0447 (9)
C12'0.2750 (3)1.2587 (3)0.2299 (3)0.0456 (9)
C13'0.2019 (3)1.2750 (3)0.2683 (3)0.0620 (11)
H13'0.17511.22260.32190.074*
C14'0.1705 (4)1.3642 (3)0.2319 (4)0.0768 (13)
H14'0.12111.37350.25980.092*
C15'0.2107 (4)1.4420 (3)0.1565 (4)0.0774 (14)
H15'0.18691.50370.13030.093*
C16'0.2806 (4)1.4278 (3)0.1169 (3)0.0615 (11)
H16'0.31031.48180.06530.074*
C17'0.3858 (3)1.3309 (3)0.1033 (2)0.0431 (8)
H17'0.40881.38870.05110.052*
C18'0.4950 (3)1.2566 (3)0.0678 (2)0.0450 (9)
H18'0.47471.29960.00490.054*
C19'0.4678 (3)1.1488 (3)0.0720 (2)0.0495 (9)
H19C0.52041.14110.04610.059*
H19D0.39301.13060.03780.059*
C20'0.6165 (3)1.2983 (3)0.1048 (3)0.0535 (10)
H20C0.62521.36470.10350.064*
H20D0.63591.25640.16840.064*
C21'0.1063 (5)0.8711 (5)0.4510 (5)0.114 (2)
H21D0.18590.86380.42680.137*
H21E0.07120.93930.44860.137*
H21F0.09410.82590.51410.137*
C22'0.6976 (4)1.3038 (3)0.0509 (3)0.0681 (12)
H22D0.77371.33050.07770.082*
H22E0.67941.34670.01240.082*
H22F0.69021.23730.05300.082*
O50.4994 (4)0.6383 (3)0.2490 (3)0.1205 (14)
H1W0.43180.67260.22150.145*
H2W0.54650.63410.20180.145*
O5'0.3945 (2)0.90100 (19)0.17167 (18)0.0538 (7)
H5M0.33600.88610.19310.065*
C23'0.3491 (4)0.8973 (4)0.0817 (3)0.0774 (14)
H23A0.40980.91330.05150.093*
H23B0.30340.83080.08560.093*
H23C0.30370.94530.04680.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0400 (2)0.0346 (2)0.0420 (2)0.00693 (17)0.00721 (17)0.01197 (17)
Cu20.0501 (2)0.0399 (2)0.0501 (2)0.00588 (19)0.0141 (2)0.01177 (19)
Cl10.0454 (5)0.0436 (4)0.0601 (5)0.0018 (4)0.0061 (4)0.0212 (4)
Cl20.0653 (6)0.0427 (5)0.0427 (5)0.0022 (4)0.0072 (4)0.0150 (4)
O10.0416 (12)0.0410 (12)0.0548 (14)0.0107 (10)0.0073 (11)0.0153 (11)
O30.0476 (13)0.0375 (13)0.0636 (16)0.0069 (11)0.0180 (12)0.0116 (11)
O20.0529 (14)0.0368 (12)0.0511 (14)0.0102 (11)0.0166 (11)0.0094 (11)
O40.0636 (16)0.0553 (15)0.0681 (17)0.0134 (13)0.0227 (14)0.0180 (13)
N10.0448 (15)0.0367 (15)0.0427 (15)0.0074 (12)0.0127 (12)0.0099 (12)
N20.0520 (17)0.0463 (17)0.0519 (18)0.0055 (14)0.0158 (14)0.0114 (14)
C10.053 (2)0.0367 (17)0.0351 (17)0.0122 (15)0.0029 (15)0.0109 (14)
C20.0518 (19)0.0405 (18)0.0335 (17)0.0158 (16)0.0012 (15)0.0106 (14)
C30.059 (2)0.052 (2)0.051 (2)0.0188 (18)0.0102 (18)0.0140 (17)
C40.084 (3)0.060 (2)0.060 (2)0.035 (2)0.011 (2)0.0234 (19)
C50.087 (3)0.043 (2)0.063 (2)0.023 (2)0.002 (2)0.0241 (18)
C60.062 (2)0.043 (2)0.056 (2)0.0095 (18)0.0063 (19)0.0147 (18)
C70.0461 (19)0.0401 (18)0.0423 (19)0.0027 (15)0.0086 (15)0.0122 (15)
C80.0447 (19)0.049 (2)0.054 (2)0.0067 (16)0.0149 (17)0.0126 (17)
C90.0481 (19)0.055 (2)0.054 (2)0.0205 (17)0.0134 (17)0.0096 (17)
C100.064 (2)0.064 (2)0.055 (2)0.015 (2)0.0149 (19)0.0168 (19)
C120.0490 (19)0.0420 (19)0.0387 (18)0.0149 (16)0.0018 (15)0.0089 (15)
C110.053 (2)0.0398 (18)0.0384 (18)0.0100 (16)0.0025 (16)0.0089 (15)
C130.060 (2)0.053 (2)0.060 (2)0.0164 (19)0.013 (2)0.0134 (19)
C140.069 (3)0.075 (3)0.064 (3)0.030 (2)0.008 (2)0.028 (2)
C150.084 (3)0.056 (2)0.062 (2)0.027 (2)0.002 (2)0.0271 (19)
C160.068 (3)0.045 (2)0.053 (2)0.0095 (19)0.001 (2)0.0183 (18)
C170.051 (2)0.0390 (19)0.051 (2)0.0019 (17)0.0080 (17)0.0080 (17)
C180.054 (2)0.059 (2)0.068 (3)0.0055 (19)0.023 (2)0.015 (2)
C190.060 (2)0.057 (2)0.076 (3)0.012 (2)0.025 (2)0.011 (2)
C200.077 (3)0.099 (4)0.068 (3)0.019 (3)0.020 (2)0.023 (3)
C210.100 (3)0.116 (4)0.086 (3)0.030 (3)0.039 (3)0.040 (3)
C220.117 (5)0.253 (10)0.093 (5)0.045 (6)0.057 (4)0.015 (6)
Cu1'0.0460 (2)0.0383 (2)0.0388 (2)0.00768 (18)0.01387 (17)0.01171 (17)
Cu2'0.0432 (2)0.0373 (2)0.0402 (2)0.00941 (17)0.01204 (17)0.01313 (17)
Cl1'0.0462 (4)0.0479 (5)0.0373 (4)0.0111 (4)0.0074 (3)0.0096 (4)
Cl2'0.0520 (5)0.0488 (5)0.0418 (5)0.0127 (4)0.0052 (4)0.0092 (4)
O1'0.0613 (14)0.0381 (12)0.0461 (13)0.0068 (11)0.0200 (11)0.0139 (10)
O2'0.0573 (14)0.0425 (13)0.0572 (14)0.0079 (11)0.0268 (12)0.0164 (11)
O3'0.0570 (14)0.0398 (12)0.0562 (14)0.0088 (11)0.0236 (11)0.0191 (11)
O4'0.0501 (13)0.0403 (12)0.0444 (12)0.0112 (10)0.0149 (10)0.0142 (10)
N1'0.0510 (16)0.0443 (16)0.0450 (16)0.0067 (13)0.0170 (13)0.0155 (13)
N2'0.0431 (15)0.0391 (14)0.0403 (14)0.0072 (12)0.0106 (12)0.0160 (12)
C1'0.0471 (19)0.0404 (18)0.0400 (18)0.0093 (15)0.0024 (15)0.0131 (15)
C2'0.0455 (19)0.0415 (18)0.0420 (18)0.0089 (15)0.0036 (15)0.0144 (15)
C3'0.070 (2)0.050 (2)0.055 (2)0.0190 (19)0.0105 (19)0.0208 (18)
C4'0.092 (3)0.054 (2)0.070 (3)0.030 (2)0.011 (2)0.024 (2)
C5'0.101 (3)0.045 (2)0.066 (3)0.031 (2)0.009 (3)0.010 (2)
C6'0.070 (3)0.046 (2)0.047 (2)0.0120 (19)0.0093 (19)0.0054 (17)
C7'0.050 (2)0.050 (2)0.044 (2)0.0055 (17)0.0141 (16)0.0101 (17)
C8'0.061 (2)0.059 (2)0.047 (2)0.0149 (19)0.0215 (17)0.0146 (17)
C9'0.068 (2)0.061 (2)0.057 (2)0.006 (2)0.0288 (19)0.0267 (18)
C10'0.062 (3)0.067 (3)0.076 (3)0.009 (2)0.018 (2)0.028 (2)
C11'0.0414 (18)0.0388 (17)0.055 (2)0.0082 (15)0.0041 (16)0.0232 (15)
C12'0.0403 (18)0.0426 (18)0.060 (2)0.0023 (15)0.0106 (16)0.0291 (16)
C13'0.053 (2)0.056 (2)0.093 (3)0.0002 (18)0.034 (2)0.039 (2)
C14'0.055 (2)0.072 (3)0.132 (4)0.012 (2)0.035 (2)0.053 (3)
C15'0.067 (3)0.056 (2)0.122 (4)0.027 (2)0.023 (3)0.032 (3)
C16'0.060 (2)0.045 (2)0.080 (3)0.0154 (19)0.015 (2)0.021 (2)
C17'0.0463 (19)0.0385 (17)0.0423 (18)0.0077 (15)0.0073 (15)0.0155 (15)
C18'0.054 (2)0.0440 (18)0.0350 (17)0.0116 (16)0.0139 (15)0.0088 (14)
C19'0.063 (2)0.0496 (19)0.0424 (18)0.0122 (17)0.0196 (17)0.0169 (16)
C20'0.052 (2)0.052 (2)0.055 (2)0.0133 (17)0.0153 (18)0.0152 (18)
C21'0.085 (3)0.149 (5)0.150 (5)0.036 (4)0.039 (4)0.074 (4)
C22'0.065 (2)0.059 (2)0.089 (3)0.011 (2)0.037 (2)0.021 (2)
O50.146 (3)0.074 (2)0.158 (3)0.042 (2)0.107 (3)0.009 (2)
O5'0.0639 (15)0.0490 (14)0.0564 (15)0.0117 (12)0.0224 (12)0.0203 (12)
C23'0.098 (3)0.077 (3)0.069 (3)0.011 (3)0.028 (3)0.036 (2)
Geometric parameters (Å, º) top
Cu1—O11.907 (3)Cu1'—Cl2'2.7862 (12)
Cu1—N11.937 (3)Cu2'—O3'1.910 (3)
Cu1—O22.043 (3)Cu2'—N2'1.943 (3)
Cu1—Cl12.2646 (11)Cu2'—O4'1.999 (3)
Cu1—Cl22.6662 (12)Cu2'—Cl2'2.2560 (12)
Cu2—O31.912 (3)Cu2'—Cl1'2.7752 (12)
Cu2—N21.945 (3)O1'—C2'1.326 (4)
Cu2—O41.996 (3)O2'—C9'1.440 (5)
Cu2—Cl22.2550 (11)O2'—H1'0.9999
Cu2—Cl12.9112 (13)O3'—C12'1.322 (4)
O1—C21.320 (4)O4'—C19'1.450 (4)
O3—C121.321 (4)O4'—H2'0.9805
O2—C91.433 (4)N1'—C7'1.277 (5)
O2—H10.8511N1'—C8'1.482 (5)
O4—C191.447 (5)N2'—C17'1.278 (5)
O4—H20.8500N2'—C18'1.479 (5)
N1—C71.276 (5)C1'—C6'1.403 (5)
N1—C81.479 (5)C1'—C2'1.415 (5)
N2—C171.275 (5)C1'—C7'1.431 (6)
N2—C181.477 (5)C2'—C3'1.396 (6)
C1—C21.410 (5)C3'—C4'1.370 (6)
C1—C61.413 (5)C3'—H3'0.9601
C1—C71.439 (6)C4'—C5'1.384 (7)
C2—C31.400 (6)C4'—H4'0.9602
C3—C41.368 (6)C5'—C6'1.369 (7)
C3—H30.9601C5'—H5'0.9600
C4—C51.382 (6)C6'—H6'0.9600
C4—H40.9600C7'—H7'0.9600
C5—C61.365 (6)C8'—C10'1.495 (6)
C5—H50.9600C8'—C9'1.510 (6)
C6—H60.9600C8'—H8'0.9601
C7—H70.9600C9'—H9C0.9600
C8—C101.509 (6)C9'—H9D0.9600
C8—C91.522 (5)C10'—C21'1.494 (8)
C8—H80.9600C10'—H10C0.9600
C9—H9A0.9600C10'—H10D0.9599
C9—H9B0.9600C11'—C16'1.387 (5)
C10—C211.514 (7)C11'—C12'1.422 (5)
C10—H10A0.9600C11'—C17'1.440 (5)
C10—H10B0.9600C12'—C13'1.410 (6)
C12—C111.410 (5)C13'—C14'1.371 (6)
C12—C131.398 (6)C13'—H13'0.9601
C11—C161.413 (6)C14'—C15'1.382 (7)
C11—C171.440 (6)C14'—H14'0.9599
C13—C141.368 (6)C15'—C16'1.371 (7)
C13—H130.9600C15'—H15'0.9600
C14—C151.379 (6)C16'—H16'0.9599
C14—H140.9599C17'—H17'0.9600
C15—C161.357 (7)C18'—C20'1.502 (5)
C15—H150.9600C18'—C19'1.516 (5)
C16—H160.9600C18'—H18'0.9600
C17—H170.9600C19'—H19C0.9599
C18—C201.483 (7)C19'—H19D0.9600
C18—C191.507 (6)C20'—C22'1.521 (6)
C18—H180.9600C20'—H20C0.9599
C19—H19A0.9601C20'—H20D0.9599
C19—H19B0.9600C21'—H21D0.9600
C20—C221.523 (8)C21'—H21E0.9597
C20—H20A0.9599C21'—H21F0.9599
C20—H20B0.9600C22'—H22D0.9600
C21—H21A0.9600C22'—H22E0.9600
C21—H21B0.9599C22'—H22F0.9600
C21—H21C0.9600O5—H1W0.9829
C22—H22A0.9600O5—H2W0.8249
C22—H22B0.9600O5'—C23'1.408 (5)
C22—H22C0.9600O5'—H5M0.8500
Cu1'—O1'1.894 (3)C23'—H23A0.9599
Cu1'—N1'1.943 (3)C23'—H23B0.9600
Cu1'—O2'2.015 (3)C23'—H23C0.9601
Cu1'—Cl1'2.2615 (11)
O1—Cu1—N193.79 (11)N1'—Cu1'—Cl1'162.78 (10)
O1—Cu1—O2175.87 (10)O2'—Cu1'—Cl1'90.79 (8)
N1—Cu1—O282.08 (11)O1'—Cu1'—Cl2'94.15 (8)
O1—Cu1—Cl195.08 (8)N1'—Cu1'—Cl2'101.89 (9)
N1—Cu1—Cl1162.71 (10)O2'—Cu1'—Cl2'84.78 (8)
O2—Cu1—Cl188.86 (7)Cl1'—Cu1'—Cl2'93.01 (4)
O1—Cu1—Cl292.50 (8)O3'—Cu2'—N2'93.77 (12)
N1—Cu1—Cl299.08 (9)O3'—Cu2'—O4'175.97 (10)
O2—Cu1—Cl288.39 (8)N2'—Cu2'—O4'82.44 (11)
Cl1—Cu1—Cl295.33 (4)O3'—Cu2'—Cl2'92.03 (8)
O3—Cu2—N293.16 (13)N2'—Cu2'—Cl2'165.58 (9)
O3—Cu2—O4174.57 (11)O4'—Cu2'—Cl2'91.98 (7)
N2—Cu2—O482.25 (13)O3'—Cu2'—Cl1'90.68 (8)
O3—Cu2—Cl292.76 (8)N2'—Cu2'—Cl1'99.70 (9)
N2—Cu2—Cl2167.03 (11)O4'—Cu2'—Cl1'88.62 (7)
O4—Cu2—Cl292.32 (9)Cl2'—Cu2'—Cl1'93.42 (4)
O3—Cu2—Cl189.95 (9)Cu1'—Cl1'—Cu2'84.95 (4)
N2—Cu2—Cl1102.41 (10)Cu2'—Cl2'—Cu1'84.79 (4)
O4—Cu2—Cl188.21 (9)C2'—O1'—Cu1'127.5 (2)
Cl2—Cu2—Cl189.12 (4)C9'—O2'—Cu1'108.3 (2)
Cu1—Cl1—Cu282.60 (4)C9'—O2'—H1'96.3
Cu2—Cl2—Cu188.62 (4)Cu1'—O2'—H1'110.0
C2—O1—Cu1124.7 (2)C12'—O3'—Cu2'126.7 (2)
C12—O3—Cu2127.3 (2)C19'—O4'—Cu2'108.1 (2)
C9—O2—Cu1108.5 (2)C19'—O4'—H2'108.2
C9—O2—H1111.7Cu2'—O4'—H2'106.8
Cu1—O2—H191.2C7'—N1'—C8'119.7 (3)
C19—O4—Cu2110.0 (3)C7'—N1'—Cu1'125.7 (3)
C19—O4—H2108.2C8'—N1'—Cu1'114.6 (2)
Cu2—O4—H2109.0C17'—N2'—C18'119.7 (3)
C7—N1—C8120.4 (3)C17'—N2'—Cu2'126.1 (3)
C7—N1—Cu1125.2 (3)C18'—N2'—Cu2'114.2 (2)
C8—N1—Cu1114.3 (2)C6'—C1'—C2'119.5 (4)
C17—N2—C18118.8 (3)C6'—C1'—C7'117.2 (4)
C17—N2—Cu2126.7 (3)C2'—C1'—C7'123.3 (3)
C18—N2—Cu2114.5 (3)O1'—C2'—C3'118.8 (3)
C2—C1—C6119.4 (4)O1'—C2'—C1'123.5 (4)
C2—C1—C7123.8 (3)C3'—C2'—C1'117.7 (3)
C6—C1—C7116.8 (3)C4'—C3'—C2'121.6 (4)
O1—C2—C3119.0 (3)C4'—C3'—H3'120.0
O1—C2—C1123.6 (3)C2'—C3'—H3'118.4
C3—C2—C1117.4 (3)C3'—C4'—C5'120.7 (5)
C4—C3—C2122.3 (4)C3'—C4'—H4'119.5
C4—C3—H3118.8C5'—C4'—H4'119.8
C2—C3—H3118.9C6'—C5'—C4'119.3 (4)
C3—C4—C5120.0 (4)C6'—C5'—H5'120.4
C3—C4—H4120.4C4'—C5'—H5'120.3
C5—C4—H4119.6C5'—C6'—C1'121.2 (4)
C6—C5—C4120.0 (4)C5'—C6'—H6'120.1
C6—C5—H5119.8C1'—C6'—H6'118.7
C4—C5—H5120.2N1'—C7'—C1'126.0 (4)
C5—C6—C1120.9 (4)N1'—C7'—H7'116.9
C5—C6—H6120.1C1'—C7'—H7'117.0
C1—C6—H6118.9N1'—C8'—C10'109.6 (3)
N1—C7—C1125.1 (3)N1'—C8'—C9'105.4 (3)
N1—C7—H7117.5C10'—C8'—C9'114.1 (4)
C1—C7—H7117.4N1'—C8'—H8'109.6
N1—C8—C10109.9 (3)C10'—C8'—H8'107.8
N1—C8—C9105.0 (3)C9'—C8'—H8'110.2
C10—C8—C9113.6 (4)O2'—C9'—C8'107.1 (3)
N1—C8—H8108.8O2'—C9'—H9C110.6
C10—C8—H8109.5C8'—C9'—H9C109.1
C9—C8—H8109.8O2'—C9'—H9D110.4
O2—C9—C8106.9 (3)C8'—C9'—H9D110.9
O2—C9—H9A110.0H9C—C9'—H9D108.7
C8—C9—H9A109.9C8'—C10'—C21'113.6 (4)
O2—C9—H9B110.4C8'—C10'—H10C108.5
C8—C9—H9B110.9C21'—C10'—H10C108.3
H9A—C9—H9B108.7C8'—C10'—H10D109.7
C8—C10—C21113.8 (4)C21'—C10'—H10D108.5
C8—C10—H10A109.6H10C—C10'—H10D108.2
C21—C10—H10A109.3C16'—C11'—C12'119.5 (4)
C8—C10—H10B108.8C16'—C11'—C17'117.5 (4)
C21—C10—H10B107.1C12'—C11'—C17'123.0 (3)
H10A—C10—H10B108.0O3'—C12'—C13'118.5 (3)
O3—C12—C11124.0 (4)O3'—C12'—C11'124.3 (3)
O3—C12—C13118.6 (3)C13'—C12'—C11'117.2 (3)
C11—C12—C13117.4 (4)C14'—C13'—C12'121.5 (4)
C12—C11—C16119.1 (4)C14'—C13'—H13'119.6
C12—C11—C17123.7 (4)C12'—C13'—H13'118.9
C16—C11—C17117.2 (4)C13'—C14'—C15'120.8 (4)
C14—C13—C12122.0 (4)C13'—C14'—H14'119.7
C14—C13—H13119.6C15'—C14'—H14'119.4
C12—C13—H13118.4C14'—C15'—C16'119.0 (4)
C13—C14—C15120.6 (5)C14'—C15'—H15'120.4
C13—C14—H14120.1C16'—C15'—H15'120.5
C15—C14—H14119.3C15'—C16'—C11'122.0 (4)
C16—C15—C14119.3 (4)C15'—C16'—H16'119.7
C16—C15—H15120.1C11'—C16'—H16'118.2
C14—C15—H15120.6N2'—C17'—C11'125.7 (3)
C15—C16—C11121.6 (4)N2'—C17'—H17'116.9
C15—C16—H16119.4C11'—C17'—H17'117.4
C11—C16—H16119.0N2'—C18'—C20'109.8 (3)
N2—C17—C11125.1 (3)N2'—C18'—C19'104.9 (3)
N2—C17—H17117.4C20'—C18'—C19'114.5 (3)
C11—C17—H17117.6N2'—C18'—H18'109.3
C20—C18—N2109.8 (4)C20'—C18'—H18'108.6
C20—C18—C19113.6 (5)C19'—C18'—H18'109.7
N2—C18—C19105.9 (3)O4'—C19'—C18'106.3 (3)
C20—C18—H18108.2O4'—C19'—H19C110.2
N2—C18—H18109.6C18'—C19'—H19C110.5
C19—C18—H18109.8O4'—C19'—H19D110.6
O4—C19—C18107.3 (3)C18'—C19'—H19D110.4
O4—C19—H19A109.8H19C—C19'—H19D108.7
C18—C19—H19A109.8C18'—C20'—C22'113.5 (4)
O4—C19—H19B110.9C18'—C20'—H20C108.9
C18—C19—H19B110.6C22'—C20'—H20C109.0
H19A—C19—H19B108.4C18'—C20'—H20D108.4
C18—C20—C22113.8 (5)C22'—C20'—H20D108.9
C18—C20—H20A109.0H20C—C20'—H20D107.9
C22—C20—H20A109.3C10'—C21'—H21D111.9
C18—C20—H20B108.1C10'—C21'—H21E108.3
C22—C20—H20B108.2H21D—C21'—H21E109.5
H20A—C20—H20B108.2C10'—C21'—H21F108.1
C10—C21—H21A111.9H21D—C21'—H21F109.5
C10—C21—H21B107.1H21E—C21'—H21F109.5
H21A—C21—H21B109.5C20'—C22'—H22D110.0
C10—C21—H21C109.3C20'—C22'—H22E109.1
H21A—C21—H21C109.5H22D—C22'—H22E109.5
H21B—C21—H21C109.5C20'—C22'—H22F109.3
C20—C22—H22A111.5H22D—C22'—H22F109.5
C20—C22—H22B108.0H22E—C22'—H22F109.5
H22A—C22—H22B109.5H1W—O5—H2W98.7
C20—C22—H22C109.0C23'—O5'—H5M102.8
H22A—C22—H22C109.5O5'—C23'—H23A108.9
H22B—C22—H22C109.5O5'—C23'—H23B109.6
O1'—Cu1'—N1'93.65 (12)H23A—C23'—H23B109.5
O1'—Cu1'—O2'175.30 (10)O5'—C23'—H23C109.9
N1'—Cu1'—O2'82.11 (12)H23A—C23'—H23C109.5
O1'—Cu1'—Cl1'93.85 (8)H23B—C23'—H23C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O30.851.842.664 (4)165
O2—H1···O31.001.692.629 (4)156
O4—H2···O50.851.822.662 (5)171
O4—H2···O50.981.642.611 (4)170
O5—H1W···O10.981.832.793 (5)165
O5—H5M···O10.851.892.718 (4)163

Experimental details

Crystal data
Chemical formula[Cu2Cl2(C11H14NO2)2].CH4O·[Cu2Cl2(C11H14NO2)2].H2O
Mr1214.94
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)12.877 (1), 15.079 (2), 16.212 (3)
α, β, γ (°)65.10 (2), 71.71 (2), 69.93 (2)
V3)2628.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerSiemens P3
diffractometer
Absorption correctionψ scan
North et al., 1968
Tmin, Tmax0.495, 0.573
No. of measured, independent and
observed [I > 2σ(I)] reflections
9070, 8666, 7583
Rint0.018
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.119, 1.10
No. of reflections8666
No. of parameters604
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.48

Computer programs: P3 Software (Siemens, 1990), P3 Software, SHELXTL/PC XDISK (Sheldrick, 1990), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1993), PLATON (Spek, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O11.907 (3)Cu1'—O1'1.894 (3)
Cu1—N11.937 (3)Cu1'—N1'1.943 (3)
Cu1—O22.043 (3)Cu1'—O2'2.015 (3)
Cu1—Cl12.2646 (11)Cu1'—Cl1'2.2615 (11)
Cu1—Cl22.6662 (12)Cu1'—Cl2'2.7862 (12)
Cu2—O31.912 (3)Cu2'—O3'1.910 (3)
Cu2—N21.945 (3)Cu2'—N2'1.943 (3)
Cu2—O41.996 (3)Cu2'—O4'1.999 (3)
Cu2—Cl22.2550 (11)Cu2'—Cl2'2.2560 (12)
Cu2—Cl12.9112 (13)Cu2'—Cl1'2.7752 (12)
O1—Cu1—O2175.87 (10)O1'—Cu1'—O2'175.30 (10)
O1—Cu1—Cl195.08 (8)O1'—Cu1'—Cl1'93.85 (8)
N1—Cu1—Cl1162.71 (10)N1'—Cu1'—Cl1'162.78 (10)
O2—Cu1—Cl188.86 (7)O2'—Cu1'—Cl1'90.79 (8)
N1—Cu1—Cl299.08 (9)N1'—Cu1'—Cl2'101.89 (9)
Cl1—Cu1—Cl295.33 (4)Cl1'—Cu1'—Cl2'93.01 (4)
O3—Cu2—O4174.57 (11)O3'—Cu2'—O4'175.97 (10)
O3—Cu2—Cl292.76 (8)O3'—Cu2'—Cl2'92.03 (8)
N2—Cu2—Cl2167.03 (11)N2'—Cu2'—Cl2'165.58 (9)
O3—Cu2—Cl189.95 (9)O3'—Cu2'—Cl1'90.68 (8)
N2—Cu2—Cl1102.41 (10)N2'—Cu2'—Cl1'99.70 (9)
Cl2—Cu2—Cl189.12 (4)Cl2'—Cu2'—Cl1'93.42 (4)
Cu1—Cl1—Cu282.60 (4)Cu1'—Cl1'—Cu2'84.95 (4)
Cu2—Cl2—Cu188.62 (4)Cu2'—Cl2'—Cu1'84.79 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O30.85111.83452.664 (4)164.54
O2'—H1'···O3'0.99971.68552.629 (4)155.71
O4—H2···O50.85021.81932.662 (5)170.75
O4'—H2'···O5'0.98061.64022.611 (4)169.85
O5—H1W···O10.98231.83142.793 (5)165.44
O5'—H5M···O1'0.84971.89432.718 (4)163.06
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds