Download citation
Download citation
link to html
The structure of the title complex consists of isolated [Cd(C7H4NO3S)2(C4H11NO2)2] units. The Cd2+ cation lies on an inversion centre and is octahedrally coordinated by two N,O-bidentate diethanol­amine (dea) and two N-bonded saccharinate (sac) ligands [saccharin is 1,2-benziso­thia­zol-3(2H)-one 1,1-dioxide]. The dea ligands constitute the equatorial plane of the octahedron, forming two five-membered chelate rings around the CdII ion, while the sac ligands are localized at the axial positions. The Cd-Nsac, Cd-Ndea and Cd-Odea bond distances are 2.3879 (12), 2.3544 (14) and 2.3702 (13) Å, respectively. The H atoms of the free and coordinated hydroxyl groups of the dea ligands are involved in hydrogen bonding with the carbonyl and sulfonyl O atoms of the neighbouring sac ions, while the amine H atom forms a hydrogen bond with the free hydroxyl O atom. The individual mol­ecules are held together by strong hydrogen bonds, forming an infinite three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101018546/av1092sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018546/av1092Isup2.hkl
Contains datablock I

CCDC reference: 180129

Comment top

This work is part of our extensive research into the synthesis and spectral, thermal and structural characterization of mixed ligand complexes of the saccharinate ion (sac), chemically known as o-sulphobenzimide, with other bidentate N– and O-donor ligands such as ethanolamine (Yilmaz, Andac et al., 2001; Andac et al., 2001), monoethanolethylenediamine (Yilmaz, Karadag & Thoene, 2001) and diethanolamine (Yilmaz, Topcu et al., 2001). In order to extend this investigation to the IIB metal complexes, we report here the structural characterization of the title complex, [Cd(dea)2(sac)2], (I), of cadmium(II) saccharinate with diethanolamine (dea). \sch

A molecular view of (I) is shown in Fig. 1. The structure is built up of individual molecules, each containing a Cd2+ cation, two sac anions and two neutral dea molecules. The CdII ion sits on the centre of symmetry and the coordination around the CdII ion is a distorted CdN4O2 octahedron, with two N-bonded sac and two bidentate dea ligands. Both dea and sac ligands occupy the trans positions of the octahedron.

The dea ligands are chelated to the CdII ion symmetrically through one hydroxyl O atom and the amine N atoms, forming two five-membered rings, and one ethanol group of the dea ligand remains uncomplexed. The two dea ligands constitute the equatorial plane of the octahedron, while the sac ligands are localized at the axial positions. The Cd—Ndea and Cd—Odea bond distances are 2.3544 (14) and 2.3702 (13) Å, respectively. The Cd—Nsac bond distance of 2.3879 (12) Å is noticeably longer than those found in [Cd(sac)2(H2O)4]·2H2O (2.323 Å; Haider et al., 1984), [Cd2(sac)2(im)4] [im is?; 2.323 (5) and 2.367 (5) Å; Jianmin et al., 1997] and [Cd(sac)2(bipy)2] [bipy is 2,2'-bipyridine?; 2.320 (4) Å; Johns et al., 2001], and also somewhat shorter than the values reported for [Cd(sac)2(NH3)4] [2.423 (8) Å; Pascual, 1995] and [Cd(sac)2(HydEt-en)2] [HydEt-en is?; 2.412 (4) and 2.525 (5) Å; Yilmaz, Karadag & Thoene, 2001]. The large differences in the reported Cd—Nsac bond distances seem to be a consequence of the presence of sterically hindered groups in the coligands, although NH3 does not obey the rule. The interatomic distances within both sac and dea ligands are similar to the corresponding values found in the free Hsac molecule (Okaya, 1969) and [Cu(SCN)2(dea)2] (Yilmaz et al., 2000), respectively.

A packing diagram with the hydrogen-bonding scheme is shown in Fig. 2. Both sac ions are essentially planar, with an r.m.s. deviation of 0.02 Å. The sac ions of adjacent molecules are almost perpendicular to each other and the dihedral angles between the corresponding planes with symmetry code 1 - x, y - 1/2, 3/2 - z are 86.44 (3)°. The individual molecules are linked by intermolecular hydrogen bonds, forming infinite three-dimensional zigzag chains.

The H atom of the free hydroxyl group (O2) of the dea ligand forms a relatively strong intramolecular hydrogen bond with the sulfonyl O atom (O5) of the sac ligand [O2···O5 2.785 (2) Å; symmetry code: -x, 1 - y, 1 - z], while the H atoms of the coordinated hydroxyl (O1) and amine (N1) groups of the dea ligand are involved in intermolecular hydrogen bonding with the carbonyl O atom [O1···O3 2.818 (2) Å; symmetry code: x - 1, y, z] and the free hydroxyl O atom [N1···O2 3.205 (2) Å; symmetry code: -x, -y, 1 - z] of the neighbouring molecules, respectively. Furthermore, some weak interactions between the phenyl H atoms on C7 and C10 and the hydroxyl and sulfonyl O atoms (O1, O4 and O5) also occur (Table 2).

The sum of the van der Waals radii of H and O (1.20 + 1.52 = 2.72 Å; ref?) is comperatively longer than the distances found for the C7—H7···O5 (2.53 Å) and C10—H10···O4 (2.58 Å) interactions, with C—H···O angles of 133 and 169°, respectively, and somewhat shorther than the distance found for C7—H7···O1 (2.84 Å), with a C—H···O angle of 144°. Therefore, the C10—H10···O4 interaction, with a nearly linear angle, may be considered as a weak hydrogen bond, while the C7—H7···O5 and C7—H7···O1 interactions, with highly deviated angles, are classical van der Waals contacts (Steiner, 1997; Steiner & Desiraju, 1998). Additionally, the phenyl H atom on C9 interacts with the ring centroid, Cg, of the phenyl ring of the sac anion, forming an non-conventional hydrogen bond of the C—H···π type (Madhavi et al., 1997). The hydrogen bonds maintain the crystal structure by forming an infinite three-dimensional lattice.

Experimental top

To synthesize (I), previously prepared [Cd(sac)2(H2O)4]·2H2O (1.17 g, 2.0 mmol) was dissolved in 40 ml of a methanol-2-propanol mixture (1:1) at 333 K with stirring. Next, dea (0.21 g, 4.0 mmol) was added dropwise at 333 K and the solution was cooled to room temperature. The resulting solution was left at room temperature until evaporation resulted in the formation of colourless crystals of (I) suitable for X-ray diffraction analysis.

Refinement top

H atoms on O and N atoms were found in difference maps and were positionally refined with geometric restraints (O—H = 0.82 and N—H = 0.89 Å) and with Uiso(H) = 1.2Ueq(N,O). The remaining H atoms were placed in calculated positions and refined with a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with 50% displacement ellipsoids and the atom-numbering scheme. H atoms are drawn as small spheres of arbitrary radii [symmetry code: (i) -x, 1 - y, 1 - z].
[Figure 2] Fig. 2. A packing diagram for (I) showing the hydrogen-bonding scheme.
trans-Bis(diethanolamine-N,O)bis(saccharinato-N)cadmium(II) top
Crystal data top
[Cd(C7H4NO3S)2(C4H11NO2)2]F(000) = 700
Mr = 687.02Dx = 1.686 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.8444 (3) ÅCell parameters from 6160 reflections
b = 8.4654 (3) Åθ = 2.6–30.0°
c = 20.4378 (8) ŵ = 1.02 mm1
β = 94.188 (1)°T = 298 K
V = 1353.57 (9) Å3Chunk, colourless
Z = 20.36 × 0.25 × 0.18 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3933 independent reflections
Radiation source: fine-focus sealed tube3314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1011
Tmin = 0.687, Tmax = 0.832k = 911
11324 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: mixed
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.0284P]
where P = (Fo2 + 2Fc2)/3
3933 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.30 e Å3
3 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cd(C7H4NO3S)2(C4H11NO2)2]V = 1353.57 (9) Å3
Mr = 687.02Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.8444 (3) ŵ = 1.02 mm1
b = 8.4654 (3) ÅT = 298 K
c = 20.4378 (8) Å0.36 × 0.25 × 0.18 mm
β = 94.188 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3933 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3314 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.832Rint = 0.025
11324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0253 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
3933 reflectionsΔρmin = 0.30 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.50000.50000.03099 (6)
S10.07767 (5)0.73297 (5)0.646860 (18)0.03080 (9)
N10.03475 (18)0.26011 (17)0.55773 (7)0.0342 (3)
H1N0.013 (2)0.1861 (19)0.5324 (8)0.041*
N20.15601 (16)0.62705 (17)0.58990 (6)0.0321 (3)
O10.23214 (16)0.49010 (15)0.56790 (7)0.0406 (3)
H1O0.3284 (16)0.509 (3)0.5541 (12)0.049*
O20.2219 (2)0.01848 (17)0.48977 (9)0.0549 (4)
H2O0.170 (3)0.054 (3)0.4574 (9)0.066*
O30.41817 (16)0.56976 (19)0.55431 (7)0.0477 (3)
O40.01425 (18)0.63702 (18)0.69724 (7)0.0532 (4)
O50.04006 (15)0.84862 (17)0.61873 (7)0.0480 (3)
C10.0693 (2)0.2762 (2)0.61508 (9)0.0435 (4)
H1A0.01360.34930.64630.052*
H1B0.07720.17450.63650.052*
C20.2457 (2)0.3351 (2)0.59482 (10)0.0462 (4)
H2A0.30090.26480.56230.055*
H2B0.31400.33820.63250.055*
C30.2080 (2)0.2039 (2)0.57927 (10)0.0443 (4)
H3A0.19890.11890.61070.053*
H3B0.27110.28950.60140.053*
C40.3059 (2)0.1460 (2)0.52353 (11)0.0486 (5)
H4A0.31980.23200.49310.058*
H4B0.41880.11220.54050.058*
C50.32855 (19)0.6444 (2)0.59042 (7)0.0304 (3)
C60.39780 (18)0.76307 (19)0.63938 (7)0.0282 (3)
C70.5659 (2)0.8104 (2)0.65214 (9)0.0407 (4)
H70.65280.76860.62880.049*
C80.5999 (3)0.9215 (3)0.70064 (11)0.0574 (6)
H80.71170.95580.71000.069*
C90.4720 (3)0.9826 (3)0.73540 (12)0.0624 (6)
H90.49931.05790.76760.075*
C100.3020 (2)0.9350 (3)0.72385 (9)0.0457 (4)
H100.21530.97570.74760.055*
C110.27071 (19)0.82439 (19)0.67529 (7)0.0285 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03396 (9)0.02423 (9)0.03435 (8)0.00209 (6)0.00034 (6)0.00108 (6)
S10.02309 (16)0.0330 (2)0.03682 (18)0.00274 (14)0.00598 (13)0.00514 (16)
N10.0381 (7)0.0239 (7)0.0401 (7)0.0014 (6)0.0005 (6)0.0010 (5)
N20.0257 (6)0.0343 (7)0.0362 (6)0.0032 (5)0.0028 (5)0.0101 (5)
O10.0290 (6)0.0366 (7)0.0561 (7)0.0012 (5)0.0014 (5)0.0036 (6)
O20.0619 (10)0.0340 (8)0.0680 (10)0.0001 (6)0.0007 (8)0.0052 (7)
O30.0316 (6)0.0602 (9)0.0519 (7)0.0018 (6)0.0077 (5)0.0243 (7)
O40.0550 (8)0.0554 (9)0.0520 (7)0.0175 (7)0.0227 (6)0.0005 (7)
O50.0285 (6)0.0489 (8)0.0655 (8)0.0089 (5)0.0033 (6)0.0083 (7)
C10.0554 (11)0.0349 (10)0.0408 (8)0.0016 (8)0.0085 (8)0.0051 (7)
C20.0436 (10)0.0435 (11)0.0533 (10)0.0080 (8)0.0151 (8)0.0012 (8)
C30.0467 (10)0.0311 (9)0.0533 (10)0.0044 (8)0.0084 (8)0.0016 (8)
C40.0373 (9)0.0343 (10)0.0737 (13)0.0007 (8)0.0005 (9)0.0007 (9)
C50.0258 (7)0.0336 (8)0.0316 (7)0.0006 (6)0.0016 (5)0.0031 (6)
C60.0255 (7)0.0305 (8)0.0285 (6)0.0024 (6)0.0006 (5)0.0000 (6)
C70.0261 (8)0.0524 (11)0.0433 (8)0.0078 (7)0.0015 (6)0.0046 (8)
C80.0383 (10)0.0709 (16)0.0617 (12)0.0199 (10)0.0059 (9)0.0163 (11)
C90.0591 (13)0.0635 (16)0.0629 (13)0.0157 (11)0.0065 (11)0.0317 (11)
C100.0450 (10)0.0480 (11)0.0438 (9)0.0015 (9)0.0013 (7)0.0183 (9)
C110.0274 (7)0.0280 (8)0.0301 (6)0.0013 (6)0.0010 (5)0.0018 (6)
Geometric parameters (Å, º) top
Cd1—N12.3544 (14)C1—H1A0.9700
Cd1—N1i2.3544 (14)C1—H1B0.9700
Cd1—N2i2.3879 (12)C2—H2A0.9700
Cd1—N22.3879 (12)C2—H2B0.9700
Cd1—O1i2.3702 (13)C3—C41.502 (3)
Cd1—O12.3702 (13)C3—H3A0.9700
S1—O41.4291 (13)C3—H3B0.9700
S1—O51.4368 (13)C4—H4A0.9700
S1—N21.6252 (13)C4—H4B0.9700
S1—C111.7610 (16)C5—C61.492 (2)
N1—C31.477 (2)C6—C111.382 (2)
N1—C11.483 (2)C6—C71.384 (2)
N1—H1N0.879 (9)C7—C81.379 (3)
N2—C51.3606 (19)C7—H70.9300
O1—C21.430 (2)C8—C91.372 (3)
O1—H1O0.803 (9)C8—H80.9300
O2—C41.417 (2)C9—C101.397 (3)
O2—H2O0.808 (10)C9—H90.9300
O3—C51.2303 (19)C10—C111.374 (2)
C1—C21.500 (3)C10—H100.9300
N1—Cd1—N1i180.00 (6)O1—C2—C1108.54 (15)
N1—Cd1—O1i104.96 (5)O1—C2—H2A110.0
N1i—Cd1—O1i75.04 (5)C1—C2—H2A110.0
N1—Cd1—O175.04 (5)O1—C2—H2B110.0
N1i—Cd1—O1104.96 (5)C1—C2—H2B110.0
O1i—Cd1—O1180.0H2A—C2—H2B108.4
N1—Cd1—N2i91.78 (5)N1—C3—C4112.92 (15)
N1i—Cd1—N2i88.22 (5)N1—C3—H3A109.0
O1i—Cd1—N2i86.44 (4)C4—C3—H3A109.0
O1—Cd1—N2i93.56 (4)N1—C3—H3B109.0
N1—Cd1—N288.22 (5)C4—C3—H3B109.0
N1i—Cd1—N291.78 (5)H3A—C3—H3B107.8
O1i—Cd1—N293.56 (4)O2—C4—C3111.90 (17)
O1—Cd1—N286.44 (4)O2—C4—H4A109.2
N2i—Cd1—N2180.0C3—C4—H4A109.2
O4—S1—O5115.35 (9)O2—C4—H4B109.2
O4—S1—N2111.86 (8)C3—C4—H4B109.2
O5—S1—N2110.79 (8)H4A—C4—H4B107.9
O4—S1—C11110.38 (8)O3—C5—N2123.48 (15)
O5—S1—C11110.16 (8)O3—C5—C6123.50 (14)
N2—S1—C1196.76 (7)N2—C5—C6113.02 (13)
C3—N1—C1109.99 (14)C11—C6—C7120.37 (15)
C3—N1—Cd1119.84 (11)C11—C6—C5111.57 (13)
C1—N1—Cd1105.45 (11)C7—C6—C5128.03 (14)
C3—N1—H1N106.9 (13)C8—C7—C6117.68 (17)
C1—N1—H1N107.2 (13)C8—C7—H7121.2
Cd1—N1—H1N106.9 (14)C6—C7—H7121.2
C5—N2—S1111.28 (10)C9—C8—C7121.26 (17)
C5—N2—Cd1120.54 (9)C9—C8—H8119.4
S1—N2—Cd1126.89 (7)C7—C8—H8119.4
C2—O1—Cd1109.86 (10)C8—C9—C10121.94 (18)
C2—O1—H1O102.9 (16)C8—C9—H9119.0
Cd1—O1—H1O122.1 (18)C10—C9—H9119.0
C4—O2—H2O108 (2)C11—C10—C9115.90 (18)
N1—C1—C2111.25 (15)C11—C10—H10122.1
N1—C1—H1A109.4C9—C10—H10122.1
C2—C1—H1A109.4C10—C11—C6122.84 (15)
N1—C1—H1B109.4C10—C11—S1129.93 (13)
C2—C1—H1B109.4C6—C11—S1107.23 (11)
H1A—C1—H1B108.0
O1i—Cd1—N1—C336.65 (13)N1—C1—C2—O163.4 (2)
O1—Cd1—N1—C3143.35 (13)C1—N1—C3—C4165.49 (16)
N2i—Cd1—N1—C3123.44 (12)Cd1—N1—C3—C472.13 (18)
N2—Cd1—N1—C356.56 (12)N1—C3—C4—O259.8 (2)
O1i—Cd1—N1—C1161.22 (11)S1—N2—C5—O3175.93 (15)
O1—Cd1—N1—C118.78 (11)Cd1—N2—C5—O316.2 (2)
N2i—Cd1—N1—C1111.98 (11)S1—N2—C5—C64.00 (17)
N2—Cd1—N1—C168.02 (11)Cd1—N2—C5—C6163.90 (10)
O4—S1—N2—C5111.64 (13)O3—C5—C6—C11177.45 (16)
O5—S1—N2—C5118.14 (12)N2—C5—C6—C112.47 (19)
C11—S1—N2—C53.54 (13)O3—C5—C6—C70.8 (3)
O4—S1—N2—Cd181.41 (11)N2—C5—C6—C7179.24 (16)
O5—S1—N2—Cd148.82 (12)C11—C6—C7—C81.1 (3)
C11—S1—N2—Cd1163.41 (9)C5—C6—C7—C8179.24 (19)
N1—Cd1—N2—C591.74 (13)C6—C7—C8—C90.4 (3)
N1i—Cd1—N2—C588.26 (13)C7—C8—C9—C100.4 (4)
O1i—Cd1—N2—C513.14 (13)C8—C9—C10—C110.5 (4)
O1—Cd1—N2—C5166.86 (13)C9—C10—C11—C60.2 (3)
N1—Cd1—N2—S1102.39 (10)C9—C10—C11—S1179.01 (17)
N1i—Cd1—N2—S177.61 (10)C7—C6—C11—C101.0 (3)
O1i—Cd1—N2—S1152.73 (10)C5—C6—C11—C10179.48 (17)
O1—Cd1—N2—S127.27 (10)C7—C6—C11—S1178.35 (13)
N1—Cd1—O1—C212.37 (11)C5—C6—C11—S10.09 (16)
N1i—Cd1—O1—C2167.63 (11)O4—S1—C11—C1065.0 (2)
N2i—Cd1—O1—C278.53 (12)O5—S1—C11—C1063.51 (19)
N2—Cd1—O1—C2101.47 (12)N2—S1—C11—C10178.62 (18)
C3—N1—C1—C2179.31 (16)O4—S1—C11—C6114.32 (12)
Cd1—N1—C1—C248.77 (17)O5—S1—C11—C6117.15 (12)
Cd1—O1—C2—C141.56 (17)N2—S1—C11—C62.04 (12)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2ii0.88 (1)2.40 (1)3.205 (2)152 (17)
O1—H1O···O3iii0.80 (1)2.05 (1)2.819 (2)159 (2)
O2—H2O···O5i0.81 (1)1.98 (1)2.785 (2)177 (3)
C7—H7···O5iv0.932.533.231 (2)133
C7—H7···O1iv0.932.843.637 (2)144
C10—H10···O4v0.932.583.502 (2)169
C9—H9···Cg1vi0.932.853.707 (2)153
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x1, y, z; (iv) x+1, y, z; (v) x, y+1/2, z+3/2; (vi) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cd(C7H4NO3S)2(C4H11NO2)2]
Mr687.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.8444 (3), 8.4654 (3), 20.4378 (8)
β (°) 94.188 (1)
V3)1353.57 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.36 × 0.25 × 0.18
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.687, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
11324, 3933, 3314
Rint0.025
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 1.03
No. of reflections3933
No. of parameters187
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.30

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cd1—N12.3544 (14)O2—C41.417 (2)
Cd1—N22.3879 (12)O3—C51.2303 (19)
Cd1—O12.3702 (13)C1—C21.500 (3)
S1—O41.4291 (13)C3—C41.502 (3)
S1—O51.4368 (13)C5—C61.492 (2)
S1—N21.6252 (13)C6—C111.382 (2)
S1—C111.7610 (16)C6—C71.384 (2)
N1—C31.477 (2)C7—C81.379 (3)
N1—C11.483 (2)C8—C91.372 (3)
N1—H1N0.879 (9)C9—C101.397 (3)
N2—C51.3606 (19)C10—C111.374 (2)
O1—C21.430 (2)
N1—Cd1—O175.04 (5)O1—Cd1—N286.44 (4)
N1—Cd1—N288.22 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.879 (9)2.404 (13)3.205 (2)152 (17)
O1—H1O···O3ii0.803 (9)2.054 (13)2.819 (2)159 (2)
O2—H2O···O5iii0.808 (10)1.977 (10)2.785 (2)177 (3)
C7—H7···O5iv0.932.533.231 (2)133
C7—H7···O1iv0.932.843.637 (2)144
C10—H10···O4v0.932.583.502 (2)169
C9—H9···Cg1vi0.932.853.707 (2)153
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x+1, y, z; (v) x, y+1/2, z+3/2; (vi) x+1, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds