Download citation
Download citation
link to html
The principal building units in the title compound, [Co3(C9H3O6)2(C10H8N2)4(H2O)10]·C10H8N2·8H2O, are the linear centrosymmetric tricobalt(II) complex mol­ecules resulting from two square-pyramidal [Co(btc)(bpy)(H2O)3] entities (bpy is 4,4′-bipyridine and btc is the benzene-1,3,5-tricarboxyl­ate trianion) bridged by one trans-[Co(bpy)2(H2O)4]2+ unit. The trinuclear complex mol­ecules are assembled into infinite chains through inter­molecular O—H...N hydrogen bonds and π–π stacking inter­actions between adjacent monodentate bpy ligands. The chains and uncoordinated bpy mol­ecules are further assembled into two-dimensional open layers, which are stacked in a staggered manner to give a three-dimensional supra­molecular architecture with the solvent water mol­ecules in the cavities.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106044726/av3039sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106044726/av3039Isup2.hkl
Contains datablock I

CCDC reference: 634880

Comment top

Recently, the design and synthesis of metal–organic frameworks (MOFs) has been a field of increasing interest, due to their potential applications as functional materials (Tu et al., 2003; Mandal et al., 2000; Reynolds & Coucouvanis, 1998). In general, the strategy to design MOFs relies on the utilization of multidentate O- and/or N-donor bridging ligands. For this, benzencarboxylic acids like terephthalic acid, benzene-1,3,5-tricarboxylic acid, benzene-1,2,4,5-tetracarboxylic acid and mellitic acid etc., in combination with some linear N-donor ligands such as 4,4'-bipyridine, 1,2-bis-(4-pyridyl)ethane etc., are extensively employed to construct one-, two- and three-dimensional coordination polymers (Groeneman et al., 1999; Shattock et al., 2005; Wu et al., 2002; Cui, 2005; Chui et al., 1999). However, few reports of polynuclear complex molecules from the self-assembly of transition metal cations with benzene-1,3,5-tricarboxylic acid (TMA) and 4,4'-bipyridine (bpy) have been published to date. Here, we present the title novel trinuclear cobalt complex, [Co3(H2O)10(C10H8N2)4(C9H3O6)2]·C10H8N2·8H2O, (I), which was obtained from the hydrothermal reaction of bpy, benzene-1,3,5-tricarboxylic acid and CoCl2·6H2O at 443 K.

As shown in Fig. 1, compound (I) consists of solvent water molecules, bpy molecules and linear centrosymmetric trinuclear [Co3(H2O)10(C10H8N2)4(C9H3O6)2] complex molecules, where the middle Co1 atom at an inversion centre is bridged to two distal Co2 atoms by two bidentate bpy ligands. Both crystallographically independent Co atoms are in nearly identical trans-CoN2O4 environments with normal Co—N and Co—O bond lengths (Lightfoot & Snedden, 1999). The octahedral N2O4 donor set around the Co1 atoms arises from two N atoms of different bridging bpy ligands and four aqua O atoms, while the coordination geometry of the Co2 atoms is defined by three aqua O atoms, one O atom of the monodentate TMA anion, and two N atoms of one bidentate bpy and one monodentate bpy, respectively. The monodentate TMA anions are nearly perpendicular to the principal axis through the Co atoms of the trinuclear molecule. To the best of our knowledge, complex (I) represents a rare example of a compound with the TMA anion acting as a monodentate ligand (Guillou et al., 2000).

The carboxylic acid groups are found to be twisted from the plane defined by the C atoms to different extents. The largest dihedral angle of 13.3 (3)° is found for the coordinated group, due to the formation of an intramolecular hydrogen bond between the uncoordinated atom O6 and an aqua ligand, with O3···O6 = 2.775 (4) Å; the dihedral angles for the uncoordinated groups are 4.7 (8) and 5.0 (7)°, respectively [Please specify the atoms]. The uncoordinated carboxylic acid O atoms are each involved in double hydrogen bonds to both aqua ligands and uncoordinated H2O molecules.

Through an intermolecular hydrogen bond between the uncoordinated pyridyl N atom and the aqua ligand opposite to the coordinated carboxylic acid O7 atom [O1···N4i = 2.828 (5) Å; symmetry code: (i) −x + 2, −y − 1, −z + 2], the trinuclear complex molecules are assembled into infinite chains extending in the [021] and [02sc/Desktop/publCIF/symbols/bar1.png" height="12" />] directions. The resulting chains are stabilized by intermolecular ππ stacking interactions between adjacent monodentate bpy ligands (mean interplanar distance = 3.56 Å). The uncoordinated bpy molecules are each sandwiched between two adjacent bridging bpy ligands of different chains, and are engaged in ππ stacking interactions and in hydrogen bonds to one aqua ligand bonded to the middle Co1 atom, with O5···N5 = 2.895 (5) Å, leading to a two-dimensional open supramolecular layer parallel to (100) with the TMA ligands pendent on both sides (Fig. 2).

The layers are stacked in a staggered manner, with TMA ligands of one layer occupying the apertures of a neighbouring one, and interlocked by interlayer hydrogen bonds [O2···O9iv = 2.733 (4) Å and O5···O11iv = 2.858 (4) Å; symmetry code: (iv) −x + 3/2, y + 1/2, −z + 3/2]. The uncoordinated water molecules are located between the layers and participate in extensive hydrogen bonds, which make a substantial contribution to the stabilization of the crystal structure. The uncoordinated bpy molecule is twisted, with a dihedral angle of 8.8 (2)° between the two pyridyl components, while the mono- and bidentate bpy ligands are twisted with dihedral angles between the component rings of 4.9 (1) and 12.8 (2)°, indicating significant coordination effects.

Experimental top

A 23 ml Teflon-lined autoclave charged with a mixture of CoCl2·6H2O (0.237 g, 1.0 mmol), benzene-1,3,5-tricarboxylic acid (0.105 g, 0.5 mmol), NaOH (0.03 g, 1.5 mmol) and H2O (10.0 ml) was heated at 443 K for 120 h, then cooled to 373 K at a rate of 5 K h−1 and held at this temperature for 10 h, followed by further cooling to room temperature [Rate for this step?]. The mixture was filtered and slow evaporation of the pink filtrate at room temperature yielded rose-coloured [Red below?] crystals of (I) (yield ca 5%, based on the initial CoCl2·6H2O input).

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. Water H atoms were found in a difference Fourier synthesis and refined with the O—H bonds fixed as initially found and Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the complex molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 45% probability level. H atoms have been omitted for clarity. [Symmetry codes: (x) −x + 2, −y + 1, −z + 1; (xi) −x, −y, −z + 1.]
[Figure 2] Fig. 2. The two-dimensional supramolecular layer in (I), parallel to (100).
decaaqua-1κ3O,2κ4O,3κ3O-bis(benzene-1,3,5-tricarboxylato)- 1κO,3κO-di-µ-4,4'-bipyridine-1:2κ2N:N';2:3κ2N:N'-di-4,4'-bipyridine- 1κN,3κN-tricobalt(II) 4,4'-bipyridine solvate octahydrate top
Crystal data top
[Co3(C9H3O6)2(C10H8N2)4(H2O)10]·C10H8N2·8H2OF(000) = 1762
Mr = 1696.23Dx = 1.513 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 25 reflections
a = 13.193 (3) Åθ = 10–25°
b = 13.982 (3) ŵ = 0.75 mm1
c = 20.193 (4) ÅT = 298 K
β = 91.36 (3)°Block, red
V = 3723.8 (13) Å30.31 × 0.27 × 0.22 mm
Z = 2
Data collection top
Siemens P4
diffractometer
4457 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
θ/2θ scansh = 117
Absorption correction: ψ scan
(North et al., 1968)
k = 118
Tmin = 0.527, Tmax = 0.601l = 2626
10423 measured reflections3 standard reflections every 97 reflections
8535 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.3118P]
where P = (Fo2 + 2Fc2)/3
8535 reflections(Δ/σ)max = 0.001
502 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Co3(C9H3O6)2(C10H8N2)4(H2O)10]·C10H8N2·8H2OV = 3723.8 (13) Å3
Mr = 1696.23Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.193 (3) ŵ = 0.75 mm1
b = 13.982 (3) ÅT = 298 K
c = 20.193 (4) Å0.31 × 0.27 × 0.22 mm
β = 91.36 (3)°
Data collection top
Siemens P4
diffractometer
4457 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.043
Tmin = 0.527, Tmax = 0.6013 standard reflections every 97 reflections
10423 measured reflections intensity decay: none
8535 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
8535 reflectionsΔρmin = 0.41 e Å3
502 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.50000.50000.0375 (2)
Co20.93710 (4)0.16582 (4)0.81737 (3)0.03659 (16)
O11.0786 (2)0.1382 (2)0.86312 (14)0.0544 (8)
H1A1.11790.17720.87250.065*
H1B1.09550.09150.88440.065*
O20.8603 (2)0.0726 (2)0.88168 (13)0.0536 (8)
H2A0.80320.05700.87330.064*
H2B0.88480.03120.89970.064*
O31.0138 (2)0.2566 (2)0.75454 (14)0.0498 (8)
H3A1.06350.25430.74090.060*
H3B0.98050.26690.72000.060*
O40.8553 (2)0.5424 (2)0.52759 (13)0.0515 (8)
H4A0.83730.54030.56710.062*
H4B0.79590.52750.50900.062*
O51.0579 (2)0.5706 (2)0.58597 (14)0.0533 (8)
H5A1.05960.54100.62300.064*
H5B1.05010.62150.58820.064*
N10.9907 (3)0.3737 (2)0.55748 (16)0.0421 (8)
N20.9545 (3)0.0461 (2)0.75158 (16)0.0423 (8)
C11.0437 (4)0.0106 (4)0.7361 (3)0.0644 (14)
H11.10180.04180.75170.077*
C21.0551 (4)0.0706 (3)0.6978 (3)0.0664 (15)
H21.11970.09350.68940.080*
C30.9714 (3)0.1177 (3)0.67207 (19)0.0375 (10)
C40.9784 (3)0.2057 (3)0.63229 (19)0.0375 (9)
C51.0681 (3)0.2558 (3)0.6271 (2)0.0448 (11)
H51.12650.23350.64870.054*
C61.0719 (3)0.3382 (3)0.5903 (2)0.0469 (11)
H61.13320.37070.58800.056*
C70.9034 (3)0.3259 (3)0.5626 (2)0.0544 (12)
H70.84570.34980.54090.065*
C80.8957 (3)0.2438 (3)0.5980 (2)0.0550 (12)
H80.83350.21250.59930.066*
C90.8782 (3)0.0799 (3)0.6885 (2)0.0538 (12)
H90.81880.10880.67280.065*
C100.8735 (3)0.0001 (3)0.7278 (2)0.0548 (12)
H100.80990.02340.73830.066*
N30.9101 (3)0.2859 (2)0.88209 (17)0.0407 (8)
N40.8306 (3)0.6939 (3)1.0847 (2)0.0626 (11)
C110.9029 (4)0.3745 (3)0.8580 (2)0.0520 (12)
H110.91070.38280.81270.062*
C120.8849 (4)0.4539 (3)0.8954 (2)0.0499 (12)
H120.88120.51370.87530.060*
C130.8719 (3)0.4459 (3)0.9629 (2)0.0393 (10)
C140.8562 (3)0.5312 (3)1.0054 (2)0.0421 (10)
C150.8479 (4)0.6225 (3)0.9786 (2)0.0638 (14)
H150.85070.63120.93310.077*
C160.8355 (4)0.7000 (4)1.0195 (3)0.0698 (15)
H160.83020.76021.00020.084*
C170.8379 (4)0.6076 (4)1.1105 (2)0.0613 (13)
H170.83510.60171.15630.074*
C180.8493 (3)0.5256 (3)1.0736 (2)0.0529 (12)
H180.85250.46641.09460.063*
C190.8763 (4)0.3539 (3)0.9879 (2)0.0565 (13)
H190.86660.34361.03280.068*
C200.8948 (4)0.2776 (3)0.9471 (2)0.0551 (12)
H200.89680.21670.96560.066*
O60.8282 (2)0.2902 (2)0.69142 (16)0.0618 (9)
O70.7975 (2)0.19143 (19)0.77475 (13)0.0438 (7)
O80.3753 (3)0.3597 (2)0.58598 (17)0.0682 (10)
O90.5273 (3)0.4224 (2)0.57082 (16)0.0657 (9)
O100.3427 (2)0.0757 (2)0.74079 (17)0.0661 (9)
O110.4831 (2)0.0183 (2)0.79003 (16)0.0602 (9)
C260.6608 (3)0.2301 (3)0.70391 (18)0.0367 (9)
C270.6173 (3)0.2925 (3)0.65817 (19)0.0395 (10)
H270.65750.33770.63760.047*
C280.5145 (3)0.2882 (3)0.64280 (19)0.0397 (10)
C290.4566 (3)0.2177 (3)0.6723 (2)0.0435 (10)
H290.38770.21400.66190.052*
C300.4991 (3)0.1524 (3)0.71719 (19)0.0380 (10)
C310.6014 (3)0.1607 (3)0.73255 (19)0.0376 (9)
H310.63100.11850.76290.045*
C320.4690 (4)0.3611 (3)0.5967 (2)0.0482 (11)
C330.4363 (3)0.0762 (3)0.7515 (2)0.0455 (11)
C340.7709 (3)0.2389 (3)0.7244 (2)0.0382 (10)
O120.2526 (3)0.0897 (3)0.7986 (2)0.1036 (14)
H12A0.27650.03790.79560.124*
H12B0.23900.08710.83840.124*
O140.6659 (2)0.5340 (2)0.46908 (16)0.0652 (9)
H14A0.62210.53740.49620.078*
H14B0.66300.48430.45120.078*
O150.8267 (2)0.5240 (2)0.65939 (14)0.0538 (8)
H15A0.87990.50620.67680.065*
H15B0.82370.57800.66570.065*
N51.0290 (4)0.7758 (3)0.5824 (2)0.0734 (13)
C211.1038 (6)0.8357 (5)0.5755 (4)0.120 (3)
H211.16720.81820.59270.144*
C221.0949 (5)0.9238 (5)0.5443 (4)0.111 (3)
H221.15170.96290.54170.133*
C231.0060 (4)0.9540 (3)0.5176 (2)0.0522 (12)
C240.9273 (4)0.8906 (4)0.5257 (3)0.0838 (18)
H240.86300.90600.50900.101*
C250.9423 (5)0.8048 (4)0.5580 (3)0.0874 (19)
H250.88660.76490.56260.105*
O130.2887 (3)0.2683 (3)0.7596 (3)0.127 (2)
H13B0.27670.21600.76990.153*
H13A0.26280.31530.75170.153*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0384 (5)0.0363 (4)0.0376 (4)0.0023 (4)0.0031 (3)0.0103 (4)
Co20.0400 (3)0.0315 (3)0.0382 (3)0.0019 (3)0.0023 (2)0.0046 (2)
O10.062 (2)0.0374 (16)0.0629 (19)0.0067 (15)0.0264 (16)0.0058 (14)
O20.062 (2)0.0466 (18)0.0518 (18)0.0056 (16)0.0003 (16)0.0076 (15)
O30.0419 (17)0.0553 (19)0.0523 (17)0.0003 (15)0.0026 (14)0.0031 (15)
O40.0414 (17)0.069 (2)0.0440 (16)0.0018 (16)0.0007 (14)0.0082 (15)
O50.067 (2)0.0434 (17)0.0491 (17)0.0079 (16)0.0110 (16)0.0057 (14)
N10.042 (2)0.041 (2)0.0428 (19)0.0014 (18)0.0054 (17)0.0090 (16)
N20.044 (2)0.0360 (19)0.046 (2)0.0026 (18)0.0042 (17)0.0096 (16)
C10.046 (3)0.064 (3)0.082 (4)0.003 (3)0.011 (3)0.041 (3)
C20.039 (3)0.065 (3)0.095 (4)0.005 (3)0.003 (3)0.048 (3)
C30.040 (2)0.037 (2)0.036 (2)0.002 (2)0.0004 (19)0.0040 (18)
C40.043 (2)0.033 (2)0.037 (2)0.003 (2)0.0018 (19)0.0034 (18)
C50.041 (3)0.043 (2)0.050 (3)0.005 (2)0.004 (2)0.013 (2)
C60.042 (3)0.044 (2)0.055 (3)0.008 (2)0.003 (2)0.010 (2)
C70.044 (3)0.055 (3)0.064 (3)0.002 (2)0.014 (2)0.026 (3)
C80.040 (3)0.056 (3)0.068 (3)0.011 (2)0.008 (2)0.026 (3)
C90.040 (3)0.053 (3)0.068 (3)0.008 (2)0.002 (2)0.022 (2)
C100.039 (3)0.052 (3)0.074 (3)0.003 (2)0.001 (2)0.027 (3)
N30.039 (2)0.039 (2)0.045 (2)0.0052 (17)0.0027 (16)0.0040 (17)
N40.060 (3)0.059 (3)0.068 (3)0.006 (2)0.009 (2)0.025 (2)
C110.076 (3)0.044 (3)0.036 (2)0.006 (3)0.002 (2)0.000 (2)
C120.067 (3)0.033 (2)0.050 (3)0.007 (2)0.000 (2)0.000 (2)
C130.032 (2)0.040 (2)0.046 (2)0.0008 (19)0.0069 (19)0.006 (2)
C140.030 (2)0.044 (3)0.052 (3)0.006 (2)0.0027 (19)0.013 (2)
C150.089 (4)0.045 (3)0.057 (3)0.003 (3)0.002 (3)0.011 (2)
C160.090 (4)0.045 (3)0.075 (4)0.003 (3)0.002 (3)0.013 (3)
C170.068 (3)0.063 (3)0.053 (3)0.006 (3)0.005 (3)0.017 (3)
C180.059 (3)0.054 (3)0.046 (3)0.007 (2)0.006 (2)0.011 (2)
C190.084 (4)0.043 (3)0.042 (2)0.007 (3)0.007 (2)0.006 (2)
C200.080 (4)0.039 (3)0.047 (3)0.006 (2)0.001 (2)0.005 (2)
O60.0410 (18)0.067 (2)0.077 (2)0.0069 (17)0.0012 (17)0.0314 (19)
O70.0408 (17)0.0451 (17)0.0452 (16)0.0003 (14)0.0067 (14)0.0058 (14)
O80.049 (2)0.073 (2)0.082 (2)0.0045 (18)0.0104 (18)0.0170 (19)
O90.061 (2)0.064 (2)0.071 (2)0.0112 (19)0.0162 (18)0.0221 (18)
O100.042 (2)0.063 (2)0.093 (3)0.0086 (17)0.0033 (18)0.0141 (19)
O110.0474 (19)0.055 (2)0.078 (2)0.0013 (17)0.0021 (17)0.0198 (18)
C260.040 (2)0.034 (2)0.036 (2)0.0047 (19)0.0015 (18)0.0008 (18)
C270.040 (2)0.035 (2)0.043 (2)0.001 (2)0.0023 (19)0.0011 (19)
C280.041 (3)0.038 (2)0.040 (2)0.001 (2)0.0003 (19)0.0026 (19)
C290.036 (2)0.049 (3)0.046 (2)0.001 (2)0.002 (2)0.004 (2)
C300.038 (2)0.030 (2)0.045 (2)0.0003 (19)0.0016 (19)0.0033 (18)
C310.041 (2)0.033 (2)0.039 (2)0.002 (2)0.0005 (18)0.0033 (19)
C320.042 (3)0.051 (3)0.051 (3)0.002 (2)0.005 (2)0.001 (2)
C330.042 (3)0.040 (3)0.055 (3)0.004 (2)0.002 (2)0.002 (2)
C340.036 (2)0.033 (2)0.045 (2)0.005 (2)0.001 (2)0.001 (2)
O120.103 (3)0.096 (3)0.113 (3)0.009 (3)0.028 (3)0.010 (3)
O140.061 (2)0.066 (2)0.068 (2)0.0074 (18)0.0036 (18)0.0015 (18)
O150.057 (2)0.0441 (17)0.0602 (19)0.0055 (16)0.0012 (16)0.0009 (15)
N50.082 (4)0.062 (3)0.076 (3)0.004 (3)0.003 (3)0.005 (2)
C210.096 (5)0.098 (5)0.163 (7)0.036 (5)0.048 (5)0.052 (5)
C220.084 (5)0.084 (5)0.162 (7)0.043 (4)0.046 (5)0.046 (5)
C230.060 (3)0.046 (3)0.051 (3)0.010 (3)0.001 (3)0.011 (2)
C240.054 (3)0.070 (4)0.128 (5)0.003 (3)0.012 (3)0.031 (4)
C250.076 (4)0.068 (4)0.118 (5)0.013 (4)0.019 (4)0.021 (4)
O130.063 (3)0.107 (4)0.214 (6)0.025 (3)0.047 (3)0.051 (4)
Geometric parameters (Å, º) top
Co1—O4i2.087 (3)C13—C191.383 (6)
Co1—O42.087 (3)C13—C141.487 (6)
Co1—N12.118 (3)C14—C181.386 (6)
Co1—N1i2.118 (3)C14—C151.390 (6)
Co1—O52.123 (3)C15—C161.374 (6)
Co1—O5i2.123 (3)C15—H150.9300
Co2—O72.045 (3)C16—H160.9300
Co2—O32.075 (3)C17—C181.378 (6)
Co2—O12.099 (3)C17—H170.9300
Co2—O22.115 (3)C18—H180.9300
Co2—N22.153 (3)C19—C201.374 (6)
Co2—N32.163 (3)C19—H190.9300
O1—H1A0.7722C20—H200.9300
O1—H1B0.8108O6—C341.245 (5)
O2—H2A0.7981O7—C341.258 (5)
O2—H2B0.7524O8—C321.250 (5)
O3—H3A0.7179O9—C321.273 (5)
O3—H3B0.8273O10—C331.249 (5)
O4—H4A0.8376O11—C331.272 (5)
O4—H4B0.8861C26—C311.382 (5)
O5—H5A0.8543C26—C271.385 (5)
O5—H5B0.7198C26—C341.506 (6)
N1—C71.338 (5)C27—C281.386 (6)
N1—C61.341 (5)C27—H270.9300
N2—C11.321 (6)C28—C291.390 (6)
N2—C101.327 (5)C28—C321.496 (6)
C1—C21.382 (6)C29—C301.394 (6)
C1—H10.9300C29—H290.9300
C2—C31.377 (6)C30—C311.383 (5)
C2—H20.9300C30—C331.526 (6)
C3—C91.385 (6)C31—H310.9300
C3—C41.473 (5)O12—H12A0.7926
C4—C51.382 (6)O12—H12B0.8287
C4—C81.385 (6)O14—H14A0.8069
C5—C61.373 (6)O14—H14B0.7841
C5—H50.9300O15—H15A0.8152
C6—H60.9300O15—H15B0.7665
C7—C81.358 (6)N5—C251.299 (7)
C7—H70.9300N5—C211.303 (7)
C8—H80.9300C21—C221.388 (8)
C9—C101.374 (6)C21—H210.9300
C9—H90.9300C22—C231.347 (8)
C10—H100.9300C22—H220.9300
N3—C111.334 (5)C23—C241.377 (7)
N3—C201.337 (5)C23—C23ii1.476 (9)
N4—C171.318 (6)C24—C251.378 (8)
N4—C161.321 (6)C24—H240.9300
C11—C121.368 (6)C25—H250.9300
C11—H110.9300O13—H13B0.7772
C12—C131.381 (6)O13—H13A0.7557
C12—H120.9300
O4i—Co1—O4180.000 (1)C11—N3—Co2120.8 (3)
O4i—Co1—N188.56 (12)C20—N3—Co2123.8 (3)
O4—Co1—N191.44 (12)C17—N4—C16116.6 (4)
O4i—Co1—N1i91.44 (12)N3—C11—C12124.3 (4)
O4—Co1—N1i88.56 (12)N3—C11—H11117.8
N1—Co1—N1i180.00 (14)C12—C11—H11117.8
O4i—Co1—O592.10 (12)C11—C12—C13120.5 (4)
O4—Co1—O587.90 (12)C11—C12—H12119.8
N1—Co1—O587.93 (12)C13—C12—H12119.8
N1i—Co1—O592.07 (12)C12—C13—C19115.5 (4)
O4i—Co1—O5i87.90 (12)C12—C13—C14121.8 (4)
O4—Co1—O5i92.10 (12)C19—C13—C14122.7 (4)
N1—Co1—O5i92.07 (12)C18—C14—C15115.6 (4)
N1i—Co1—O5i87.93 (12)C18—C14—C13122.8 (4)
O5—Co1—O5i180.000 (1)C15—C14—C13121.6 (4)
O7—Co2—O394.73 (11)C16—C15—C14120.0 (5)
O7—Co2—O1178.63 (12)C16—C15—H15120.0
O3—Co2—O186.58 (12)C14—C15—H15120.0
O7—Co2—O285.78 (12)N4—C16—C15123.9 (5)
O3—Co2—O2179.45 (12)N4—C16—H16118.1
O1—Co2—O292.91 (12)C15—C16—H16118.1
O7—Co2—N289.13 (12)N4—C17—C18123.8 (4)
O3—Co2—N292.16 (13)N4—C17—H17118.1
O1—Co2—N291.24 (12)C18—C17—H17118.1
O2—Co2—N287.67 (13)C17—C18—C14120.1 (5)
O7—Co2—N387.62 (12)C17—C18—H18120.0
O3—Co2—N389.10 (12)C14—C18—H18120.0
O1—Co2—N391.99 (12)C20—C19—C13120.7 (4)
O2—Co2—N391.09 (12)C20—C19—H19119.7
N2—Co2—N3176.60 (13)C13—C19—H19119.7
Co2—O1—H1A124.2N3—C20—C19123.6 (4)
Co2—O1—H1B127.7N3—C20—H20118.2
H1A—O1—H1B105.4C19—C20—H20118.2
Co2—O2—H2A120.1C34—O7—Co2131.6 (3)
Co2—O2—H2B124.3C31—C26—C27119.4 (4)
H2A—O2—H2B106.5C31—C26—C34119.7 (4)
Co2—O3—H3A132.1C27—C26—C34120.8 (4)
Co2—O3—H3B111.4C26—C27—C28120.6 (4)
H3A—O3—H3B99.0C26—C27—H27119.7
Co1—O4—H4A121.8C28—C27—H27119.7
Co1—O4—H4B128.7C27—C28—C29118.6 (4)
H4A—O4—H4B97.3C27—C28—C32119.1 (4)
Co1—O5—H5A119.5C29—C28—C32122.3 (4)
Co1—O5—H5B117.4C28—C29—C30121.8 (4)
H5A—O5—H5B115.2C28—C29—H29119.1
C7—N1—C6117.1 (3)C30—C29—H29119.1
C7—N1—Co1121.3 (3)C31—C30—C29117.8 (4)
C6—N1—Co1121.6 (3)C31—C30—C33119.6 (4)
C1—N2—C10116.5 (4)C29—C30—C33122.6 (4)
C1—N2—Co2123.2 (3)C26—C31—C30121.7 (4)
C10—N2—Co2120.2 (3)C26—C31—H31119.2
N2—C1—C2123.4 (4)C30—C31—H31119.2
N2—C1—H1118.3O8—C32—O9123.0 (4)
C2—C1—H1118.3O8—C32—C28118.5 (4)
C3—C2—C1120.4 (4)O9—C32—C28118.5 (4)
C3—C2—H2119.8O10—C33—O11124.5 (4)
C1—C2—H2119.8O10—C33—C30118.0 (4)
C2—C3—C9115.8 (4)O11—C33—C30117.5 (4)
C2—C3—C4123.1 (4)O6—C34—O7125.1 (4)
C9—C3—C4121.0 (4)O6—C34—C26119.6 (4)
C5—C4—C8115.7 (4)O7—C34—C26115.3 (4)
C5—C4—C3122.0 (4)H12A—O12—H12B97.5
C8—C4—C3122.4 (4)H14A—O14—H14B109.8
C6—C5—C4120.6 (4)H15A—O15—H15B106.1
C6—C5—H5119.7C25—N5—C21114.9 (5)
C4—C5—H5119.7N5—C21—C22124.2 (6)
N1—C6—C5122.6 (4)N5—C21—H21117.9
N1—C6—H6118.7C22—C21—H21117.9
C5—C6—H6118.7C23—C22—C21121.6 (6)
N1—C7—C8122.6 (4)C23—C22—H22119.2
N1—C7—H7118.7C21—C22—H22119.2
C8—C7—H7118.7C22—C23—C24113.7 (5)
C7—C8—C4121.4 (4)C22—C23—C23ii123.2 (6)
C7—C8—H8119.3C24—C23—C23ii123.1 (6)
C4—C8—H8119.3C23—C24—C25121.0 (6)
C10—C9—C3120.1 (4)C23—C24—H24119.5
C10—C9—H9120.0C25—C24—H24119.5
C3—C9—H9120.0N5—C25—C24124.6 (6)
N2—C10—C9123.8 (4)N5—C25—H25117.7
N2—C10—H10118.1C24—C25—H25117.7
C9—C10—H10118.1H13B—O13—H13A141.3
C11—N3—C20115.4 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N4iii0.772.102.828 (5)156
O1—H1B···O14iv0.812.092.812 (4)149
O2—H2A···O15v0.802.152.916 (5)162
O2—H2B···O9vi0.752.002.732 (5)166
O3—H3A···O13v0.721.982.651 (4)157
O3—H3B···O60.832.102.773 (4)138
O4—H4A···O150.841.892.709 (4)167
O4—H4B···O140.891.892.741 (5)164
O5—H5A···O11vi0.852.032.858 (5)162
O5—H5B···N50.722.182.895 (4)173
O12—H12A···O100.792.142.862 (4)153
O12—H12B···O8vii0.832.292.994 (5)142
O13—H13A···O10vii0.762.072.787 (4)158
O13—H13B···O120.781.892.664 (4)177
O14—H14A···O9viii0.812.062.848 (5)166
O14—H14B···O8ix0.781.962.728 (5)167
O15—H15A···O11vi0.821.942.751 (5)171
O15—H15B···O6viii0.781.922.677 (4)172
Symmetry codes: (iii) x+2, y1, z+2; (iv) x+1/2, y+1/2, z+1/2; (v) x+3/2, y1/2, z+3/2; (vi) x+3/2, y+1/2, z+3/2; (vii) x+1/2, y+1/2, z+3/2; (viii) x, y+1, z; (ix) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Co3(C9H3O6)2(C10H8N2)4(H2O)10]·C10H8N2·8H2O
Mr1696.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)13.193 (3), 13.982 (3), 20.193 (4)
β (°) 91.36 (3)
V3)3723.8 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.31 × 0.27 × 0.22
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.527, 0.601
No. of measured, independent and
observed [I > 2σ(I)] reflections
10423, 8535, 4457
Rint0.043
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.154, 1.01
No. of reflections8535
No. of parameters502
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.41

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N4i0.772.102.828 (5)156
O1—H1B···O14ii0.812.092.812 (4)149
O2—H2A···O15iii0.802.152.916 (5)162
O2—H2B···O9iv0.752.002.732 (5)166
O3—H3A···O13iii0.721.982.651 (4)157
O3—H3B···O60.832.102.773 (4)138
O4—H4A···O150.841.892.709 (4)167
O4—H4B···O140.891.892.741 (5)164
O5—H5A···O11iv0.852.032.858 (5)162
O5—H5B···N50.722.182.895 (4)173
O12—H12A···O100.792.142.862 (4)153
O12—H12B···O8v0.832.292.994 (5)142
O13—H13A···O10v0.762.072.787 (4)158
O13—H13B···O120.781.892.664 (4)177
O14—H14A···O9vi0.812.062.848 (5)166
O14—H14B···O8vii0.781.962.728 (5)167
O15—H15A···O11iv0.821.942.751 (5)171
O15—H15B···O6vi0.781.922.677 (4)172
Symmetry codes: (i) x+2, y1, z+2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+3/2, y+1/2, z+3/2; (v) x+1/2, y+1/2, z+3/2; (vi) x, y+1, z; (vii) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds