Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106044751/av3040sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270106044751/av3040Isup2.hkl |
CCDC reference: 634876
Cu(ClO4)2·6H2O (0.3705 g, 1.00 mmol), bpy (0.1560 g, 1.00 mmol), H3ptc (0.1402 g, 0.67 mmol) and H2O (10 ml) were added to a 23 ml Teflon-lined autoclave retort and heated for 160 h at 443 K, then cooled to room temperature. Blue block crystals of (I) were collected, washed with methanol and dried in the air [yield ca 2% based on the initial Cu(ClO4)2·6H2O input].
H atoms attached to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.97 Å, and with Uiso(H) = 1.2Ueq(C). Water H atoms were found in a difference Fourier synthesis and refined with the O—H bond distances fixed as initially found and with Uiso(H) = 1.2Ueq(O).
The data were collected on Siemens P4 diffractometer at room temperature, and the crystal size is 0.10 × 0.08 × 0.06 mm3. The small crystal, a non-CCD instrument and room temperature resulted in a low ratio of observed to total reflections.
Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.
[Cu2(C8H2NO6)(C10H8N2)]·H2O | F(000) = 1020 |
Mr = 509.39 | Dx = 1.939 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 32 reflections |
a = 12.823 (3) Å | θ = 11.2–25° |
b = 8.2800 (17) Å | µ = 2.49 mm−1 |
c = 16.776 (3) Å | T = 298 K |
β = 101.53 (3)° | Block, blue |
V = 1745.2 (6) Å3 | 0.10 × 0.08 × 0.06 mm |
Z = 4 |
Siemens P4 diffractometer | 1439 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.065 |
Graphite monochromator | θmax = 27.5°, θmin = 1.8° |
ω scans | h = −1→16 |
Absorption correction: ψ scan (North et al., 1968) | k = −1→10 |
Tmin = 0.651, Tmax = 0.758 | l = −21→21 |
5160 measured reflections | 3 standard reflections every 97 reflections |
4011 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.0277P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.90 | (Δ/σ)max = 0.005 |
4011 reflections | Δρmax = 0.51 e Å−3 |
272 parameters | Δρmin = −0.50 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00052 (13) |
[Cu2(C8H2NO6)(C10H8N2)]·H2O | V = 1745.2 (6) Å3 |
Mr = 509.39 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.823 (3) Å | µ = 2.49 mm−1 |
b = 8.2800 (17) Å | T = 298 K |
c = 16.776 (3) Å | 0.10 × 0.08 × 0.06 mm |
β = 101.53 (3)° |
Siemens P4 diffractometer | 1439 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.065 |
Tmin = 0.651, Tmax = 0.758 | 3 standard reflections every 97 reflections |
5160 measured reflections | intensity decay: none |
4011 independent reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 0.90 | Δρmax = 0.51 e Å−3 |
4011 reflections | Δρmin = −0.50 e Å−3 |
272 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.34039 (6) | 0.77279 (11) | 0.65020 (5) | 0.0312 (3) | |
Cu2 | −0.30314 (6) | 0.73763 (13) | 0.37936 (5) | 0.0434 (3) | |
N1 | 0.1932 (3) | 0.7471 (7) | 0.6048 (3) | 0.0218 (12) | |
N2 | 0.4955 (4) | 0.7642 (7) | 0.6881 (3) | 0.0280 (13) | |
N3 | 1.0504 (4) | 0.7645 (7) | 0.8352 (3) | 0.0311 (14) | |
O1 | 0.3285 (3) | 0.9247 (6) | 0.5545 (2) | 0.0356 (13) | |
O2 | 0.2102 (3) | 1.0078 (5) | 0.4450 (3) | 0.0331 (13) | |
O3 | −0.1606 (3) | 0.7382 (7) | 0.4273 (2) | 0.0415 (14) | |
O4 | −0.1828 (3) | 0.5813 (6) | 0.5322 (3) | 0.0431 (14) | |
O5 | 0.1610 (4) | 0.4703 (6) | 0.7544 (3) | 0.0405 (14) | |
O6 | 0.3024 (3) | 0.6023 (6) | 0.7259 (3) | 0.0349 (13) | |
C1 | 0.1528 (5) | 0.8274 (8) | 0.5364 (4) | 0.0268 (18) | |
C2 | 0.0471 (5) | 0.8050 (8) | 0.5000 (4) | 0.0259 (17) | |
H1 | 0.0179 | 0.8599 | 0.4524 | 0.031* | |
C3 | −0.0146 (5) | 0.7006 (9) | 0.5349 (4) | 0.0279 (18) | |
C4 | 0.0314 (5) | 0.6200 (8) | 0.6062 (4) | 0.0301 (18) | |
H2 | −0.0090 | 0.5502 | 0.6312 | 0.036* | |
C5 | 0.1380 (5) | 0.6450 (8) | 0.6396 (4) | 0.0251 (16) | |
C6 | 0.2363 (5) | 0.9301 (8) | 0.5081 (4) | 0.0260 (17) | |
C7 | −0.1304 (5) | 0.6712 (9) | 0.4960 (4) | 0.0305 (19) | |
C8 | 0.2041 (5) | 0.5618 (8) | 0.7146 (4) | 0.0249 (17) | |
C9 | 0.5626 (5) | 0.7573 (9) | 0.6365 (4) | 0.0356 (18) | |
H3 | 0.5344 | 0.7569 | 0.5809 | 0.043* | |
C10 | 0.6721 (5) | 0.7508 (9) | 0.6618 (4) | 0.0339 (18) | |
H4 | 0.7163 | 0.7396 | 0.6245 | 0.041* | |
C11 | 0.7139 (5) | 0.7614 (9) | 0.7445 (4) | 0.0279 (17) | |
C12 | 0.6439 (5) | 0.7714 (8) | 0.7980 (4) | 0.0296 (17) | |
H5 | 0.6696 | 0.7790 | 0.8538 | 0.035* | |
C13 | 0.5363 (5) | 0.7699 (8) | 0.7671 (4) | 0.0320 (18) | |
H6 | 0.4900 | 0.7729 | 0.8033 | 0.038* | |
C14 | 0.8315 (4) | 0.7619 (8) | 0.7750 (4) | 0.0258 (17) | |
C15 | 0.8993 (5) | 0.8451 (8) | 0.7359 (4) | 0.0302 (18) | |
H7 | 0.8732 | 0.9008 | 0.6879 | 0.036* | |
C16 | 1.0066 (5) | 0.8444 (9) | 0.7691 (4) | 0.036 (2) | |
H8 | 1.0512 | 0.9045 | 0.7430 | 0.043* | |
C17 | 0.9835 (5) | 0.6806 (9) | 0.8730 (4) | 0.036 (2) | |
H9 | 1.0123 | 0.6225 | 0.9196 | 0.043* | |
C18 | 0.8764 (5) | 0.6772 (8) | 0.8459 (4) | 0.0346 (19) | |
H10 | 0.8332 | 0.6192 | 0.8741 | 0.042* | |
O7 | 0.3857 (5) | 0.5501 (8) | 0.5152 (4) | 0.114 (3) | |
H11 | 0.3701 | 0.6454 | 0.5275 | 0.137* | |
H12 | 0.3192 | 0.5324 | 0.5020 | 0.137* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0132 (4) | 0.0427 (6) | 0.0343 (5) | −0.0031 (5) | −0.0035 (4) | 0.0049 (5) |
Cu2 | 0.0161 (4) | 0.0645 (8) | 0.0441 (6) | −0.0012 (6) | −0.0071 (4) | 0.0033 (6) |
N1 | 0.009 (2) | 0.030 (4) | 0.023 (3) | 0.003 (3) | −0.004 (2) | −0.006 (3) |
N2 | 0.015 (3) | 0.035 (4) | 0.032 (3) | 0.002 (3) | −0.001 (2) | 0.002 (3) |
N3 | 0.016 (3) | 0.041 (4) | 0.033 (3) | −0.001 (3) | −0.003 (3) | −0.007 (3) |
O1 | 0.018 (3) | 0.054 (3) | 0.032 (3) | −0.009 (3) | −0.001 (2) | 0.005 (3) |
O2 | 0.031 (3) | 0.041 (3) | 0.026 (3) | −0.005 (3) | 0.004 (2) | 0.008 (2) |
O3 | 0.024 (3) | 0.069 (4) | 0.028 (3) | −0.001 (3) | −0.002 (2) | −0.002 (3) |
O4 | 0.019 (3) | 0.061 (4) | 0.049 (3) | −0.013 (3) | 0.007 (3) | 0.004 (3) |
O5 | 0.033 (3) | 0.046 (4) | 0.042 (3) | −0.007 (3) | 0.006 (3) | 0.021 (3) |
O6 | 0.019 (3) | 0.048 (3) | 0.035 (3) | 0.000 (2) | −0.003 (2) | 0.012 (3) |
C1 | 0.022 (4) | 0.032 (5) | 0.025 (4) | −0.001 (4) | 0.001 (3) | −0.003 (4) |
C2 | 0.022 (4) | 0.030 (4) | 0.022 (4) | 0.004 (3) | −0.003 (3) | 0.007 (3) |
C3 | 0.016 (3) | 0.042 (5) | 0.024 (4) | 0.002 (4) | −0.002 (3) | 0.001 (4) |
C4 | 0.018 (4) | 0.032 (5) | 0.040 (4) | −0.009 (4) | 0.008 (3) | −0.011 (4) |
C5 | 0.017 (3) | 0.025 (4) | 0.033 (4) | −0.002 (3) | 0.005 (3) | −0.002 (4) |
C6 | 0.024 (4) | 0.021 (4) | 0.034 (4) | 0.002 (3) | 0.008 (4) | −0.009 (4) |
C7 | 0.016 (4) | 0.040 (5) | 0.035 (4) | 0.000 (4) | 0.005 (3) | −0.009 (4) |
C8 | 0.018 (4) | 0.030 (4) | 0.024 (4) | 0.008 (3) | −0.002 (3) | −0.004 (3) |
C9 | 0.022 (3) | 0.049 (5) | 0.034 (4) | 0.001 (4) | 0.001 (3) | 0.007 (4) |
C10 | 0.015 (3) | 0.052 (5) | 0.034 (4) | −0.007 (4) | 0.003 (3) | 0.002 (5) |
C11 | 0.017 (4) | 0.034 (5) | 0.031 (4) | −0.002 (4) | 0.001 (3) | 0.003 (4) |
C12 | 0.020 (3) | 0.038 (5) | 0.027 (3) | 0.002 (4) | −0.006 (3) | 0.003 (4) |
C13 | 0.023 (3) | 0.048 (5) | 0.026 (4) | 0.004 (4) | 0.006 (3) | 0.009 (4) |
C14 | 0.013 (3) | 0.031 (5) | 0.033 (4) | 0.004 (4) | 0.002 (3) | −0.001 (4) |
C15 | 0.018 (4) | 0.044 (5) | 0.026 (4) | 0.004 (4) | −0.002 (3) | −0.003 (4) |
C16 | 0.018 (4) | 0.050 (5) | 0.040 (5) | 0.007 (4) | 0.005 (3) | −0.002 (4) |
C17 | 0.024 (4) | 0.051 (5) | 0.027 (4) | 0.005 (4) | −0.008 (3) | 0.004 (4) |
C18 | 0.020 (4) | 0.049 (5) | 0.034 (4) | 0.004 (4) | 0.002 (3) | 0.010 (4) |
O7 | 0.048 (4) | 0.080 (5) | 0.190 (7) | −0.018 (4) | −0.036 (5) | 0.016 (5) |
Cu1—N1 | 1.900 (4) | C3—C4 | 1.395 (8) |
Cu1—N2 | 1.965 (5) | C3—C7 | 1.517 (8) |
Cu1—O1 | 2.020 (4) | C4—C5 | 1.385 (8) |
Cu1—O6 | 2.022 (5) | C4—H2 | 0.9300 |
Cu1—O5i | 2.290 (5) | C5—C8 | 1.533 (8) |
Cu2—O3 | 1.844 (4) | C9—C10 | 1.383 (7) |
Cu2—N3ii | 1.876 (5) | C9—H3 | 0.9300 |
N1—C5 | 1.312 (7) | C10—C11 | 1.386 (7) |
N1—C1 | 1.338 (7) | C10—H4 | 0.9300 |
N2—C13 | 1.326 (7) | C11—C12 | 1.393 (8) |
N2—C9 | 1.338 (7) | C11—C14 | 1.493 (7) |
N3—C16 | 1.316 (8) | C12—C13 | 1.373 (7) |
N3—C17 | 1.356 (8) | C12—H5 | 0.9300 |
N3—Cu2iii | 1.876 (5) | C13—H6 | 0.9300 |
O1—C6 | 1.281 (7) | C14—C15 | 1.375 (8) |
O2—C6 | 1.227 (7) | C14—C18 | 1.401 (8) |
O3—C7 | 1.269 (8) | C15—C16 | 1.377 (8) |
O4—C7 | 1.239 (8) | C15—H7 | 0.9300 |
O5—C8 | 1.214 (7) | C16—H8 | 0.9300 |
O5—Cu1iv | 2.290 (5) | C17—C18 | 1.358 (8) |
O6—C8 | 1.281 (7) | C17—H9 | 0.9300 |
C1—C2 | 1.383 (8) | C18—H10 | 0.9300 |
C1—C6 | 1.515 (9) | O7—H11 | 0.8501 |
C2—C3 | 1.378 (8) | O7—H12 | 0.8501 |
C2—H1 | 0.9300 | ||
N1—Cu1—N2 | 170.3 (2) | O2—C6—C1 | 118.5 (6) |
N1—Cu1—O1 | 80.8 (2) | O1—C6—C1 | 114.5 (6) |
N2—Cu1—O1 | 100.9 (2) | O4—C7—O3 | 127.7 (6) |
N1—Cu1—O6 | 80.1 (2) | O4—C7—C3 | 117.8 (6) |
N2—Cu1—O6 | 97.3 (2) | O3—C7—C3 | 114.5 (7) |
O1—Cu1—O6 | 160.71 (17) | O5—C8—O6 | 128.7 (6) |
N1—Cu1—O5i | 102.33 (19) | O5—C8—C5 | 119.6 (6) |
N2—Cu1—O5i | 87.1 (2) | O6—C8—C5 | 111.7 (6) |
O1—Cu1—O5i | 95.78 (18) | N2—C9—C10 | 123.2 (6) |
O6—Cu1—O5i | 91.34 (18) | N2—C9—H3 | 118.4 |
O3—Cu2—N3ii | 177.5 (2) | C10—C9—H3 | 118.4 |
C5—N1—C1 | 123.4 (5) | C9—C10—C11 | 118.1 (6) |
C5—N1—Cu1 | 118.4 (4) | C9—C10—H4 | 121.0 |
C1—N1—Cu1 | 118.1 (5) | C11—C10—H4 | 121.0 |
C13—N2—C9 | 118.2 (5) | C10—C11—C12 | 118.6 (5) |
C13—N2—Cu1 | 119.6 (4) | C10—C11—C14 | 120.4 (5) |
C9—N2—Cu1 | 122.2 (4) | C12—C11—C14 | 121.1 (5) |
C16—N3—C17 | 116.6 (5) | C13—C12—C11 | 119.0 (6) |
C16—N3—Cu2iii | 124.2 (5) | C13—C12—H5 | 120.5 |
C17—N3—Cu2iii | 119.2 (4) | C11—C12—H5 | 120.5 |
C6—O1—Cu1 | 114.7 (4) | N2—C13—C12 | 122.9 (6) |
C7—O3—Cu2 | 119.4 (5) | N2—C13—H6 | 118.6 |
C8—O5—Cu1iv | 153.9 (4) | C12—C13—H6 | 118.6 |
C8—O6—Cu1 | 116.3 (4) | C15—C14—C18 | 117.7 (6) |
N1—C1—C2 | 119.3 (6) | C15—C14—C11 | 122.0 (6) |
N1—C1—C6 | 111.8 (6) | C18—C14—C11 | 120.3 (6) |
C2—C1—C6 | 128.9 (6) | C14—C15—C16 | 118.7 (6) |
C3—C2—C1 | 119.5 (6) | C14—C15—H7 | 120.6 |
C3—C2—H1 | 120.3 | C16—C15—H7 | 120.6 |
C1—C2—H1 | 120.3 | N3—C16—C15 | 124.5 (7) |
C2—C3—C4 | 119.0 (6) | N3—C16—H8 | 117.8 |
C2—C3—C7 | 121.0 (6) | C15—C16—H8 | 117.8 |
C4—C3—C7 | 120.1 (7) | N3—C17—C18 | 123.1 (6) |
C5—C4—C3 | 119.3 (7) | N3—C17—H9 | 118.4 |
C5—C4—H2 | 120.4 | C18—C17—H9 | 118.4 |
C3—C4—H2 | 120.4 | C17—C18—C14 | 119.3 (7) |
N1—C5—C4 | 119.6 (6) | C17—C18—H10 | 120.3 |
N1—C5—C8 | 113.2 (5) | C14—C18—H10 | 120.3 |
C4—C5—C8 | 127.1 (7) | H11—O7—H12 | 87.1 |
O2—C6—O1 | 127.0 (7) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) x−3/2, −y+3/2, z−1/2; (iii) x+3/2, −y+3/2, z+1/2; (iv) −x+1/2, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H11···O1 | 0.85 | 2.44 | 3.284 (8) | 176 |
O7—H12···O4v | 0.85 | 1.97 | 2.786 (8) | 162 |
C10—H4···O4vi | 0.93 | 2.57 | 3.432 (8) | 155 |
C15—H7···O2vii | 0.93 | 2.39 | 3.310 (8) | 168 |
C16—H8···O6viii | 0.93 | 2.47 | 3.238 (8) | 140 |
C17—H9···O1ix | 0.93 | 2.58 | 3.257 (8) | 130 |
C18—H10···O2x | 0.93 | 2.40 | 3.327 (8) | 174 |
Symmetry codes: (v) −x, −y+1, −z+1; (vi) x+1, y, z; (vii) −x+1, −y+2, −z+1; (viii) −x+3/2, y+1/2, −z+3/2; (ix) −x+3/2, y−1/2, −z+3/2; (x) x+1/2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C8H2NO6)(C10H8N2)]·H2O |
Mr | 509.39 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 12.823 (3), 8.2800 (17), 16.776 (3) |
β (°) | 101.53 (3) |
V (Å3) | 1745.2 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.49 |
Crystal size (mm) | 0.10 × 0.08 × 0.06 |
Data collection | |
Diffractometer | Siemens P4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.651, 0.758 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5160, 4011, 1439 |
Rint | 0.065 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.116, 0.90 |
No. of reflections | 4011 |
No. of parameters | 272 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.51, −0.50 |
Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.
Cu1—N1 | 1.900 (4) | Cu1—O5i | 2.290 (5) |
Cu1—N2 | 1.965 (5) | Cu2—O3 | 1.844 (4) |
Cu1—O1 | 2.020 (4) | Cu2—N3ii | 1.876 (5) |
Cu1—O6 | 2.022 (5) | ||
N1—Cu1—N2 | 170.3 (2) | N1—Cu1—O5i | 102.33 (19) |
N1—Cu1—O1 | 80.8 (2) | N2—Cu1—O5i | 87.1 (2) |
N2—Cu1—O1 | 100.9 (2) | O1—Cu1—O5i | 95.78 (18) |
N1—Cu1—O6 | 80.1 (2) | O6—Cu1—O5i | 91.34 (18) |
N2—Cu1—O6 | 97.3 (2) | O3—Cu2—N3ii | 177.5 (2) |
O1—Cu1—O6 | 160.71 (17) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) x−3/2, −y+3/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H11···O1 | 0.85 | 2.44 | 3.284 (8) | 176 |
O7—H12···O4iii | 0.85 | 1.97 | 2.786 (8) | 162 |
C10—H4···O4iv | 0.93 | 2.57 | 3.432 (8) | 155 |
C15—H7···O2v | 0.93 | 2.39 | 3.310 (8) | 168 |
C16—H8···O6vi | 0.93 | 2.47 | 3.238 (8) | 140 |
C17—H9···O1vii | 0.93 | 2.58 | 3.257 (8) | 130 |
C18—H10···O2viii | 0.93 | 2.40 | 3.327 (8) | 174 |
Symmetry codes: (iii) −x, −y+1, −z+1; (iv) x+1, y, z; (v) −x+1, −y+2, −z+1; (vi) −x+3/2, y+1/2, −z+3/2; (vii) −x+3/2, y−1/2, −z+3/2; (viii) x+1/2, −y+3/2, z+1/2. |
In recent years, great interest has been focused on the rapidly expanding field of coordination polymers, due to their potential applications as catalysts and as materials with unique magnetic or optical properties (Eddaoudi et al., 2002; Rouzo et al., 1995; Li et al.,1998). For the syntheses of two- or three-dimensional complexes, many rigid polydentate ligands, such as 1,3,5-benzenetricarboxylic acid (H3tma) (Yaghi et al., 1996), 1,3-adamantanedicarboxylic acid (Millange et al., 2004), 2,6-pyridinedicarboxylic acid (H2pdc) (Murtha & Walton, 1974), have been widely used. However, 2,4,6-pyridinetricarboxylic acid (H3ptc) has rarely been explored to construct coordination polymers (Gao et al., 2005; Ghosh et al., 2004; Ghosh & Bharadwaj, 2005). The limited investigation to date shows that the structural dimensionality of ptc complexes depends on the coordination modes of the ptc ligand (Gao et al., 2005). Here, we report the title novel mixed-valence copper complex, [CuIICuI(ptc)(bpy)·H2O]n, (I), which was obtained by hydrothermal reaction of bpy, H3ptc and Cu(ClO4)2·6H2O at 423 K. CuII salts can be reduced to CuI or to mixed-valence compounds by 4,4'-bipyridine or 2,2'-bipyridine via hydrothermal reactions (Yang et al., 1999).
Compound (I) is composed of solvent water molecules and two-dimensional corrugated polymeric layers, [CuICuII(bpy)(ptc)]n, where the cupric cations (Cu1) are in a square-pyramidal N2O3 coordination environment defined by one bpy and two ptc anions, with one carboxylate atom O5i atom at the apical position [symmetry code: (i) 1/2 − x, 1/2 + y, 3/2 − z] (Table 1), and the cuprous cations (Cu2) are linearly coordinated by one N atom of one bpy ligand and one carboxylate O atom of one ptc anion. Within the polymeric layer, the cupric and cuprous cations (Cu1 and Cu2) are alternately bridged by bpy and ptc ligands in the [001] direction and further interlinked through the apical carboxylate O5 atoms at the Cu1 atoms in the [010] direction. As illustrated in Fig. 2, the polymeric layers can be viewed topologically as rail-sharing ladders, which are oriented nearly perpendicular to one another [the dihedral angle between adjacent ladders is 86.02 (2)°].
The bond lengths involving the cupric cations (Cu1) are comparable with those reported in the literature. The Cu—O and Cu—N distances are close to those observed in the compounds [Cu(phen)(BzCN)]2·2BF4 [phen is 1,10-phenanthroline; BzCN is ? Please define; Cu2—N2 = 1.859 (9) Å and Cu2—N3 = 1.877 (9) Å; Lopez & Keller, 1999] and [Cu3(C6H2Me3-2,4,6)(O2CC6H5)2] [Cu2—O2 = 1.855 (5) Å; Aalten et al., 1989], but a little shorter than those in [Cu6(Iso)6]·2H2O [Iso is ? Please define; Cu1—O3 = 2.1919 (14) Å, Cu1—O4a = 2.1869 (14) Å, Cu2—N21 = 2.1410 (16) Å, Cu2—N31 = 2.1389 (15) Å, Cu3—N11 = 2.1538 (15) Å and Cu3—O1 = 2.1367 (14) Å; Liu & Yuan, 2005] [bond lengths and angles for (I) are listed in Table 1].
The ptc anions display nearly perfect coplanarity, with a maximum deviation from the best plane of 0.022 (1) Å [For which atom?]. The coordination modes of the carboxylate groups are different. The 2-carboxylate atom O1 is bound to the cupric cation (Cu1) in an anti fashion, the 4-carboxylate atom O3 to the cuprous cation (Cu2) in a syn fashion, and the 6-carboxylate bidentately bridges two cupric cations in a syn–anti fashion. The bridging bpy ligands are twisted, with a dihedral angle of 39.6 (1)° between the component pyridyl rings.
The solvent water molecules form nearly linear hydrogen bonds to the coordinated (O1) and uncoordinated (O4) atoms of different ladders of one layer, with O···O distances in the range 2.786 (8)–3.284 (8) Å (Table 1). The polymeric layers are stacked along the [001] direction to meet the requirements of close packing, and weak classical interlayer C—H···O hydrogen bonding and a non-classical C17—H9···O1 hydrogen-bonding interaction (Steiner, 1996) make a significant contribution to the stabilization of the crystal structure.