Download citation
Download citation
link to html
Mg2Ru2Cl10O·16H2O {dimagnesium μ-oxo-bis­[penta­chloro­ruthenate(IV)] hexa­deca­hydrate} crystallizes in the monoclinic system (space group P21/c). The structure consists of layers of [Ru2Cl10O]4− anions, [Mg(H2O)6]2+ cations and water mol­ecules stacked along the a axis. Only the O atom bonded to Ru occupies the 2a site with \overline{1} symmetry. All the other atoms occupy general 4e sites. The crystal structure is stabilized by O—H...O and O—H...Cl inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106050839/bc3021sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106050839/bc3021Isup2.hkl
Contains datablock I

Comment top

As part of an ongoing study of ruthenium materials in high oxidation states, the chemistry of ruthenium chlorides, fluorides and oxide fluorides is of interest. These materials are also of some value to the nuclear industry (Bourgeois & Cochet-Muchy, 1971).

The structure of Mg2Ru2Cl10O.16H2O presented here is the first example of a salt containing the RuIV oxychloride anion together with magnesium. Interestingly, few other derivatives of [Ru2Cl10O]4− are known. The only previous structure reports are for K4Ru2Cl10O (Deloume et al., 1979) and Cs4Ru2Cl10O (Santana Da Silva et al., 1999) where RuIV is present with anhydrous alkali ions. One goal of the present work was therefore to examine the nature of the interactions between the [Ru2Cl10O]4− anion and hydrated cations capable of forming hydrogen bonds.

The asymmetric unit contains one [Ru2Cl10O]4− anion, one [Mg(H2O)6]2+ cation and two water molecules (Fig. 1). The overall structure consists of layers stacked along the a direction, with [Ru2Cl10O]4− dimeric units bridging adjacent layers (Fig. 2). The Ru atom resides in a distorted octahedron of one O and five Cl atoms, with an average Ru—Cl distance of 2.362 Å, similar to that in K4Ru2Cl10O (2.362 Å), Cs4Ru2Cl10O (2.357 Å) and K4Ru2Cl10O·H2O (2.360 Å). As expected, the Ru—O distance compares well with those reported for Cs4Ru2Cl10O (1.791 Å), K4Ru2Cl10O (1.800 Å) and K4Ru2Cl10O·H2O (1.797 Å). In the latter case, the structure was first determined (Mathieson et al., 1952) from a zero-level Weissenberg photograph for the formula K4Ru2Cl10O. H2O. A subsequent fully anisotropic refinement (R = 0.034 for 245 measured reflections) has shown that there is, in fact, no water molecule in the structure (Deloume et al., 1979). The correct formula is therefore K4Ru2Cl10O.

The Mg2+ ion is surrounded by six water molecules via Mg2+—OH2 ion-dipole interactions. The Mg—O distances (average Mg—O = 2.057 Å) are longer than the values reported for magnesium bis(triazide) hexahydrate (average Mg—O = 2.024 Å; Mautner & Krischner, 1986), and similar to those in [Mg(H2O)6](C14H10Cl2NO2).22H2O (average Mg—O = 2.058 Å), where the Mg2+ ion is also hexahydrated (Castellari et al., 1999).

Two types of intermolecular interactions are present in the structure, including O—H···O hydrogen bonds and O—H···Cl dipole–dipole interactions that contribute to hold cations and anions together. The presence of water molecules in the structure results in the presence of additional hydrogen bonds (Table 2 and Fig. 3). Five O—H···O hydrogen bonds are formed by the two water molecules that ensure the cohesion between the [Mg(H2O)6]2+ ions located in the same layer. The environment of the [Ru2Cl10O]4− anion contains twelve O—H···Cl dipole–dipole interactions between the anion and the water molecules. Overall, the various interactions bridge the rutenate anions within and between layers and form cavities occupied by the [Mg(H2O)6]2+ cations.

Experimental top

The title compound was crystallized from a supersaturated hydrochloric acid solution (50%, 5 ml) prepared using doubly distilled water and a mixture of ruthenium(III) chloride trihydrate (2.61 g) and magnesium chloride (0.95 g) in a 1:1 ratio. Supersaturation was obtained by gentle warming of the solution. Thin, brown needle-shaped single crystals of Mg2Ru2Cl10O.16H2O were obtained at ambient temperature by slow evaporation of the solution.

Refinement top

H atoms were fixed by geometric constraints using HFIX and allowed to ride on the attached O atom (O—H = 0.92–0.99 Å). CIF suggests that these atoms were refined with distance restraints applied, not as riding. Please check all values in Table 2; many of the O—H distances do not match the geom_bond_distance values in CIF.

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 1995); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1]
[Figure 2]
Figure 1. The asymmetric unit of Mg2Ru2Cl10O.16H2O, with 50% probability displacement ellipsoids.

Figure 2. The structure of Mg2Ru2Cl10O.16H2O, viewed perpendicular to the (100) plane.

Figure 3. The O—H.·Cl dipole–dipole interactions (blue lines) and O—H.·O hydrogen bonds (red lines) in the title compound.
dimagnesium µ-oxo-bis(pentachlororuthenate(IV) hexadecahydrate top
Crystal data top
Mg2Ru2Cl10O·16H2OF(000) = 900
Mr = 906.88Dx = 2.112 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4491 reflections
a = 8.256 (2) Åθ = 2.3–26.4°
b = 16.343 (3) ŵ = 2.09 mm1
c = 10.647 (5) ÅT = 173 K
β = 95.499 (3)°Needle, brown
V = 1430.0 (8) Å30.45 × 0.06 × 0.03 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2918 independent reflections
Radiation source: fine-focus sealed tube2295 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.038
ω or ϕ scans?θmax = 26.4°, θmin = 2.3°
Absorption correction: part of the refinement model (ΔF)
(Sheldrick, 1990)
h = 910
Tmin = 0.760, Tmax = 0.939k = 2018
8087 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0098P)2 + 0.1594P]
where P = (Fo2 + 2Fc2)/3
2918 reflections(Δ/σ)max = 0.002
190 parametersΔρmax = 0.58 e Å3
16 restraintsΔρmin = 0.66 e Å3
Crystal data top
Mg2Ru2Cl10O·16H2OV = 1430.0 (8) Å3
Mr = 906.88Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.256 (2) ŵ = 2.09 mm1
b = 16.343 (3) ÅT = 173 K
c = 10.647 (5) Å0.45 × 0.06 × 0.03 mm
β = 95.499 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2918 independent reflections
Absorption correction: part of the refinement model (ΔF)
(Sheldrick, 1990)
2295 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.939Rint = 0.038
8087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02816 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.58 e Å3
2918 reflectionsΔρmin = 0.66 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru0.46786 (3)0.439501 (13)0.36057 (2)0.01211 (9)
Cl10.44264 (11)0.55535 (4)0.22846 (8)0.0223 (2)
Cl20.74948 (10)0.43557 (4)0.33572 (8)0.01764 (19)
Cl30.18124 (10)0.43860 (4)0.36637 (8)0.01985 (19)
Cl40.42362 (10)0.35620 (5)0.18105 (8)0.0246 (2)
Cl50.49101 (10)0.31640 (4)0.47910 (8)0.0210 (2)
Mg0.01007 (12)0.18896 (5)0.25193 (10)0.0173 (3)
O1W0.0345 (3)0.30061 (12)0.1593 (2)0.0222 (6)
H11W0.087 (4)0.3393 (16)0.215 (3)0.033*
H21W0.067 (3)0.3217 (17)0.120 (3)0.033*
O2W0.1570 (3)0.22248 (14)0.4098 (2)0.0308 (6)
H12W0.264 (3)0.2452 (19)0.416 (4)0.046*
H22W0.122 (4)0.227 (2)0.493 (2)0.046*
O3W0.2037 (3)0.14318 (14)0.1661 (3)0.0326 (6)
H13W0.204 (5)0.0980 (16)0.110 (3)0.049*
H23W0.304 (3)0.1677 (19)0.204 (3)0.049*
O4W0.0214 (3)0.07874 (13)0.3412 (2)0.0247 (6)
H14W0.074 (3)0.0545 (17)0.386 (3)0.037*
H24W0.084 (4)0.0402 (17)0.289 (3)0.037*
O5W0.1394 (3)0.15077 (13)0.0987 (2)0.0280 (6)
H15W0.117 (4)0.1083 (16)0.041 (3)0.042*
H25W0.254 (2)0.151 (2)0.105 (4)0.042*
O6W0.1955 (3)0.23270 (13)0.3223 (2)0.0259 (6)
H16W0.212 (4)0.2876 (12)0.336 (3)0.039*
H26W0.234 (4)0.2079 (18)0.394 (2)0.039*
O7W0.2495 (3)0.35047 (13)0.0389 (2)0.0262 (6)
H17W0.250 (4)0.4089 (11)0.030 (3)0.039*
H27W0.339 (3)0.3416 (19)0.088 (3)0.039*
O8W0.2682 (3)0.52003 (14)0.0458 (2)0.0288 (6)
H18W0.305 (4)0.5504 (17)0.031 (2)0.043*
H28W0.349 (4)0.532 (2)0.102 (3)0.043*
O10.50.50.50.0114 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.01097 (16)0.01256 (15)0.01243 (15)0.00045 (10)0.00084 (11)0.00163 (10)
Cl10.0258 (5)0.0221 (4)0.0186 (5)0.0045 (3)0.0011 (4)0.0052 (3)
Cl20.0122 (4)0.0229 (4)0.0179 (5)0.0013 (3)0.0016 (3)0.0001 (3)
Cl30.0115 (4)0.0212 (4)0.0265 (5)0.0007 (3)0.0000 (4)0.0031 (3)
Cl40.0216 (5)0.0306 (4)0.0212 (5)0.0010 (4)0.0004 (4)0.0095 (4)
Cl50.0202 (5)0.0153 (4)0.0272 (5)0.0002 (3)0.0004 (4)0.0036 (3)
Mg0.0157 (6)0.0175 (6)0.0185 (7)0.0006 (5)0.0002 (5)0.0001 (4)
O1W0.0229 (15)0.0178 (12)0.0251 (15)0.0042 (10)0.0024 (11)0.0007 (10)
O2W0.0336 (17)0.0353 (13)0.0220 (15)0.0166 (12)0.0054 (13)0.0003 (12)
O3W0.0257 (15)0.0356 (15)0.0377 (18)0.0058 (12)0.0094 (13)0.0045 (12)
O4W0.0214 (15)0.0203 (12)0.0315 (16)0.0034 (10)0.0022 (12)0.0038 (10)
O5W0.0295 (15)0.0283 (13)0.0246 (15)0.0005 (11)0.0055 (12)0.0052 (11)
O6W0.0276 (15)0.0206 (12)0.0320 (16)0.0053 (11)0.0150 (12)0.0033 (11)
O7W0.0262 (15)0.0251 (12)0.0278 (15)0.0016 (11)0.0056 (12)0.0014 (11)
O8W0.0271 (16)0.0366 (14)0.0221 (16)0.0015 (12)0.0016 (12)0.0002 (11)
O10.0093 (16)0.0116 (14)0.0131 (17)0.0017 (12)0.0007 (13)0.0006 (12)
Geometric parameters (Å, º) top
Ru—O11.7822 (6)O1W—H21W0.960 (18)
Ru—Cl42.3464 (11)O7W—H17W0.959 (18)
Ru—Cl12.3559 (9)O7W—H27W0.959 (18)
Ru—Cl22.3660 (10)O6W—H16W0.921 (18)
Ru—Cl52.3728 (9)O6W—H26W0.950 (18)
Ru—Cl32.3731 (10)O2W—H12W0.957 (18)
Mg—O5W2.047 (3)O2W—H22W0.964 (18)
Mg—O6W2.048 (2)O3W—H13W0.949 (18)
Mg—O2W2.051 (3)O3W—H23W0.974 (19)
Mg—O3W2.056 (3)O5W—H15W0.954 (18)
Mg—O4W2.065 (2)O5W—H25W0.954 (18)
Mg—O1W2.093 (2)O1—Rui1.7822 (6)
O4W—H14W0.968 (18)O8W—H18W0.983 (18)
O4W—H24W0.959 (18)O8W—H28W0.958 (18)
O1W—H11W0.946 (18)
O1—Ru—Cl4178.14 (2)O6W—Mg—O4W89.48 (9)
O1—Ru—Cl192.81 (3)O2W—Mg—O4W86.93 (10)
O1—Ru—Cl591.68 (3)O3W—Mg—O4W91.41 (10)
O1—Ru—Cl392.92 (2)O5W—Mg—O6W86.60 (11)
O1—Ru—Cl292.22 (2)Mg—O1W—H11W110 (2)
Cl1—Ru—Cl289.24 (3)Mg—O1W—H21W113.5 (19)
Cl1—Ru—Cl5175.50 (3)H11W—O1W—H21W111 (3)
Cl1—Ru—Cl389.38 (3)H17W—O7W—H27W102 (3)
Cl2—Ru—Cl3174.73 (3)Mg—O2W—H12W129 (2)
Cl2—Ru—Cl590.37 (3)Mg—O2W—H22W125 (2)
Cl4—Ru—Cl586.54 (4)H12W—O2W—H22W105 (3)
Cl4—Ru—Cl188.97 (4)Mg—O3W—H13W128 (2)
Cl4—Ru—Cl288.34 (3)Mg—O3W—H23W110 (2)
Cl4—Ru—Cl386.55 (3)H13W—O3W—H23W122 (3)
Cl5—Ru—Cl390.61 (3)Mg—O4W—H14W116.8 (19)
O5W—Mg—O1W88.18 (10)Mg—O4W—H24W113 (2)
O6W—Mg—O1W89.34 (9)H14W—O4W—H24W113 (3)
O2W—Mg—O1W94.43 (10)Mg—O5W—H15W126 (2)
O3W—Mg—O1W89.65 (10)Mg—O5W—H25W118 (2)
O4W—Mg—O1W178.25 (11)H15W—O5W—H25W108 (3)
O5W—Mg—O2W177.37 (10)Mg—O6W—H16W123 (2)
O6W—Mg—O2W93.02 (11)Mg—O6W—H26W120 (2)
O5W—Mg—O3W88.27 (11)H16W—O6W—H26W103 (3)
O6W—Mg—O3W174.80 (12)H18W—O8W—H28W104 (3)
O2W—Mg—O3W92.14 (12)Rui—O1—Ru180
O5W—Mg—O4W90.46 (10)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···Cl30.94 (3)2.37 (3)3.302 (3)172 (3)
O1W—H21W···O7W0.96 (3)1.73 (3)2.688 (4)174 (3)
O2W—H12W···Cl50.95 (3)2.25 (3)3.180 (3)164 (3)
O2W—H22W···O1Wii0.96 (2)2.03 (2)2.956 (3)162 (3)
O3W—H13W···Cl2iii0.95 (3)2.74 (3)3.415 (3)129 (2)
O3W—H13W···Cl3iv0.95 (3)2.65 (3)3.448 (4)142 (2)
O3W—H23W···Cl1iii0.97 (3)2.82 (3)3.349 (3)115 (2)
O4W—H14W···O8Wv0.97 (3)1.79 (3)2.745 (4)171 (3)
O4W—H24W···Cl3v0.96 (3)2.43 (3)3.363 (3)166 (3)
O5W—H15W···Cl2vi0.96 (3)2.46 (3)3.191 (3)133 (2)
O5W—H25W···Cl5vi0.96 (2)2.44 (3)3.237 (3)140 (3)
O6W—H16W···Cl2vii0.92 (2)2.44 (2)3.351 (3)171 (3)
O6W—H26W···O7Wii0.95 (2)1.83 (2)2.750 (3)164 (3)
O7W—H17W···O8W0.96 (2)1.83 (2)2.777 (3)168 (3)
O7W—H27W···Cl4vii0.96 (3)2.29 (3)3.220 (3)163 (3)
O8W—H28W···Cl1vii0.96 (3)2.32 (3)3.272 (3)176 (3)
O8W—H18W···Cl4viii0.98 (2)2.35 (3)3.313 (3)166 (2)
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x, y1/2, z+1/2; (vi) x1, y+1/2, z1/2; (vii) x1, y, z; (viii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaMg2Ru2Cl10O·16H2O
Mr906.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.256 (2), 16.343 (3), 10.647 (5)
β (°) 95.499 (3)
V3)1430.0 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.09
Crystal size (mm)0.45 × 0.06 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(Sheldrick, 1990)
Tmin, Tmax0.760, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
8087, 2918, 2295
Rint0.038
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.063, 1.04
No. of reflections2918
No. of parameters190
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.66

Computer programs: COLLECT (Nonius, 1997), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 1995), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
Ru—O11.7822 (6)Mg—O5W2.047 (3)
Ru—Cl42.3464 (11)Mg—O6W2.048 (2)
Ru—Cl12.3559 (9)Mg—O2W2.051 (3)
Ru—Cl22.3660 (10)Mg—O3W2.056 (3)
Ru—Cl52.3728 (9)Mg—O4W2.065 (2)
Ru—Cl32.3731 (10)Mg—O1W2.093 (2)
O1—Ru—Cl4178.14 (2)O5W—Mg—O3W88.27 (11)
O1—Ru—Cl192.81 (3)O2W—Mg—O3W92.14 (12)
O1—Ru—Cl591.68 (3)O2W—Mg—O4W86.93 (10)
O1—Ru—Cl392.92 (2)O5W—Mg—O6W86.60 (11)
O1—Ru—Cl292.22 (2)Rui—O1—Ru180
O4W—Mg—O1W178.25 (11)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···Cl30.94 (3)2.37 (3)3.302 (3)172 (3)
O1W—H21W···O7W0.96 (3)1.73 (3)2.688 (4)174 (3)
O2W—H12W···Cl50.95 (3)2.25 (3)3.180 (3)164 (3)
O2W—H22W···O1Wii0.96 (2)2.03 (2)2.956 (3)162 (3)
O3W—H13W···Cl2iii0.95 (3)2.74 (3)3.415 (3)129 (2)
O3W—H13W···Cl3iv0.95 (3)2.65 (3)3.448 (4)142 (2)
O3W—H23W···Cl1iii0.97 (3)2.82 (3)3.349 (3)115 (2)
O4W—H14W···O8Wv0.97 (3)1.79 (3)2.745 (4)171 (3)
O4W—H24W···Cl3v0.96 (3)2.43 (3)3.363 (3)166 (3)
O5W—H15W···Cl2vi0.96 (3)2.46 (3)3.191 (3)133 (2)
O5W—H25W···Cl5vi0.955 (18)2.44 (3)3.237 (3)140 (3)
O6W—H16W···Cl2vii0.92 (2)2.44 (2)3.351 (3)171 (3)
O6W—H26W···O7Wii0.95 (2)1.83 (2)2.750 (3)164 (3)
O7W—H17W···O8W0.960 (18)1.831 (18)2.777 (3)168 (3)
O7W—H27W···Cl4vii0.96 (3)2.29 (3)3.220 (3)163 (3)
O8W—H28W···Cl1vii0.96 (3)2.32 (3)3.272 (3)176 (3)
O8W—H18W···Cl4viii0.98 (2)2.35 (3)3.313 (3)166 (2)
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x, y1/2, z+1/2; (vi) x1, y+1/2, z1/2; (vii) x1, y, z; (viii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds