Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807062253/bg2149sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536807062253/bg2149Isup2.hkl |
CCDC reference: 674176
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean (C-C) = 0.003 Å
- H-atom completeness 89%
- R factor = 0.027
- wR factor = 0.077
- Data-to-parameter ratio = 17.0
checkCIF/PLATON results
No syntax errors found
Alert level A PLAT306_ALERT_2_A Isolated Oxygen Atom (H-atoms Missing ?) ....... O6W
Alert level B PLAT430_ALERT_2_B Short Inter D...A Contact O1 .. O6W .. 2.82 Ang.
Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) V1 - O8 .. 6.07 su PLAT417_ALERT_2_C Short Inter D-H..H-D H2W .. H4W .. 2.14 Ang.
Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C10 H36 N2 O28 P2 V2 Zn2 Atom count from the _atom_site data: C10 H32 N2 O28 P2 V2 Zn2 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G WARNING: H atoms missing from atom site list. Is this intentional? From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_sum C10 H36 N2 O28 P2 V2 Zn2 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 20.00 20.00 0.00 H 72.00 64.00 8.00 N 4.00 4.00 0.00 O 56.00 56.00 0.00 P 4.00 4.00 0.00 V 4.00 4.00 0.00 Zn 4.00 4.00 0.00 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 15
1 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 7 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
checkCIF publication errors
Alert level A PUBL024_ALERT_1_A The number of authors is greater than 5. Please specify the role of each of the co-authors for your paper.
Author Response: This crystallographic communication results from a continued research effort in a area for which several researchers contribute with their work and financial support, hence the presence of more than five authors, of which three are supervisors. |
1 ALERT level A = Data missing that is essential or data in wrong format 0 ALERT level G = General alerts. Data that may be required is missing
Starting materials were purchased from commercial sources and were used as received without further purification: N-(phosphonomethyl)iminodiacetic acid hydrate (H4pmida, C5H10NO7P, 97%, Fluka), potassium metavanadate (KVO3, 98%, Aldrich), zinc oxide (ZnO, 98%, Panreac), imidazole (C3H4N2, 99.0%, Panreac) and adipic acid (HOOC(CH2)4COOH, 99%, Aldrich).
A mixture containing 0.26 g of KVO3, 0.15 g of ZnO, 0.42 g of H4pmida, 0.13 g of imidazole and 0.27 g of adipic acid in ca 9 g of distilled water, was stirred thoroughly at ambient temperature for 30 minutes, yielding a suspension with a molar composition of ca 1:1:1:1:1:270, respectively, which was transferred to a PTFE-lined stainless steel reaction vessel (total volume ca 40 ml). The reaction vessel was placed inside a preheated oven at 473 K for one day, after which the temperature was decreased to 373 K allowing the reaction to proceed for another four days. After reacting, under autogeneous pressure and static conditions, the vessel was removed from the oven and left to cool to ambient temperature before opening. Small amounts of green and/or blue mixed powders of unknown phases were readily separated from the mother liquor by vacuum filtering. Large single crystals of the title compound were isolated by slow evaporation (in open air) of the mother liquor over the period of one week. It is of considerable importance to emphasize that similar reactions where imidazole and adipic acid were not included in the starting reactive mixture failed in the isolation of the title material.
H atoms bound to carbon were placed at idealized positions and allowed to ride on their parent atoms with Uiso fixed at 1.2×Ueq(C). H atoms associated with the five coordinated water molecules were markedly visible in difference Fourier maps and were included in the structural model for subsequent least-squares refinement cycles with the O—H and H···H distances restrained to 0.90 (3) and 1.47 (3) Å, respectively, in order to ensure a chemically reasonable geometry for these chemical moieties. These H atoms were allowed to ride on their parent atoms with Uiso fixed at 1.5×Ueq(O).
The crystallographically unique O6W water molecule of crystallization was directly located from difference Fourier maps and refined assuming a full site occupancy and a thermal anisotropic displacement behaviour. The H atoms associated with this chemical moiety could not be unequivocally located from difference Fourier maps. Additionally, attempts to place the two H atoms in calculated positions did not produce a chemically reasonable structural model, in particular concerning the geometry of the resulting hydrogen bonding interactions. Therefore, these H atoms were omitted from the final structural model but were included in the empirical chemical formula.
Research on highly crystalline organic–inorganic hybrids, in particular those belonging to the family of coordination polymers, has received a considerable attention over the last two decades. Such occurs as a direct consequence of the fascinating structural architectures achieved by assembling organic ligands and metal centres which, in many cases, can be allied with interesting potential applications (e.g. gas storage, separation, catalysis, guest exchange, magnetic or optical sensors). Following our ongoing research toward the hydrothermal synthesis and structural characterization of this type of materials, we recently focused our attention on the use of multifunctional ligands such as N-(phosphonomethyl)iminodiacetic acid (H4pmida) (Cunha-Silva, Shi et al., 2007; Mafra et al., 2006; Shi, Paz, Girginova, Amaral et al., 2006; Shi, Paz, Girginova, Rocha et al., 2006; Shi, Almeida Paz, Trindade & Rocha, 2006; Paz, Rocha, Klinowski et al., 2005; Almeida Paz, Shi, Mafra et al., 2005; Almeida Paz, Shi, Trindade et al., 2005; Shi et al., 2005; Paz et al., 2004), 1-hydroxyethylidene-1,1-diphosphonic acid (H5hedp) (Shi et al., 2007), and nitrilotris(methylenephosphonic acid) (H6nmp) (Cunha-Silva, Mafra et al., 2007), we report here the structural details of the title compound, [Zn2V2O2(pmida)2(H2O)10].2H2O (I) [where pmida4– stands for C5H6NO7P4-].
The structure of (I) contains two crystallographically unique metal centres, Zn1 and V1, both exhibiting octahedral coordination geometries, {ZnO6} and {VO5N} (see table of selected geometric parameters and Fig. 1). Zn1 is coordinated by five O atoms of five crystalographically independent water molecules and one O atom from the µ3-bridging phosphonate group of pmida4- (Fig. 1), with the overall coordination geometry resembling a slightly distorted octahedron [Zn—O bond lengths found in the 2.0133 (14)–2.1660 (15) Å range; cis and trans O—Zn—O octahedral angles ranging from 87.09 (8) to 91.64 (6)° and from 177.27 (7) to 178.11 (7)°, respectively; see table of selected geometric parameters].
The two symmetry-related Zn2+ cations of the neutral tetranuclear [Zn2V2O2(pmida)2(H2O)10] molecule depicted in Fig. 1 are connected through the phosphonate groups belonging to the central centrosymmetric dimeric anionic [V2O2(pmida)2]4- unit, with intermetallic Zn1···Zn1i, Zn1···V1 and V1···V1i distances of 10.0170 (5), 3.2447 (5) and 3.8773 (5) Å, respectively [symmetry code: (i) 2 - x, 1 - y, 1 - z]. It is of considerable importance to emphasize that the geometrical aspects of this dimeric anionic unit are typical and in good agreement with those described in detail in our previous publications (Shi et al., 2007; Shi, Paz, Girginova, Amaral et al., 2006; Shi, Paz, Girginova, Rocha et al., 2006; Shi, Almeida Paz, Trindade & Rocha, 2006; Paz, Rocha, Klinowski et al., 2005; Almeida Paz, Shi, Mafra et al., 2005; Almeida Paz, Shi, Trindade et al., 2005; Shi et al., 2005; Paz et al., 2004). V1 is connected to one oxo group and to two pmida4- ligands, with the geometry of the first coordination sphere resembling a highly distorted octahedron, which is composed by one short V—O bond [1.6088 (16) Å], four intermediate V—O bonds [1.9890 (12)–2.0321 (14) Å] and a long V—N bond [2.3590 (16) Å]; the cis and trans internal octahedral angles range from 86.67 (6) to 103.84 (8)°, and from 154.45 (6) to 169.79 (8)°, respectively. Noteworthy is the structural evidence of the notable trans effect of the oxo group over the long V—N distance (see Table of selected geometric parameters).
Individual [Zn2V2O2(pmida)2(H2O)10] molecular units close pack with the water molecules of crystallization in a typical brick-wall-like fashion in the bc plane of the unit cell (Fig. 2), mediated by an extensive network of strong and highly directional O—H···O hydrogen bonding interactions (see Table summarizing the geometrical aspects of the hydrogen bonds).
For related literature, see: Cunha-Silva, Mafra et al. (2007); Cunha-Silva, Shi et al. (2007); Shi et al. (2007); Mafra et al. (2006); Shi, Paz, Girginova, Amaral et al. (2006); Shi, Paz, Girginova, Rocha et al. (2006); Shi, Almeida Paz, Trindade & Rocha (2006); Paz, Rocha, Klinowski et al. (2005); Almeida Paz, Shi, Mafra et al. (2005); Almeida Paz, Shi, Trindade et al. (2005); Shi et al. (2005); Paz et al. (2004).
Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Bruker 2001); program(s) used to refine structure: SHELXTL (Bruker 2001); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Bruker 2001).
[Zn2V2(C5H6NO7P)2O2(H2O)10]·2H2O | F(000) = 940 |
Mr = 926.97 | Dx = 2.045 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9009 reflections |
a = 10.0161 (5) Å | θ = 2.6–37.6° |
b = 14.8811 (7) Å | µ = 2.40 mm−1 |
c = 10.8298 (5) Å | T = 293 K |
β = 111.147 (2)° | Prism, blue |
V = 1505.48 (12) Å3 | 0.22 × 0.14 × 0.10 mm |
Z = 2 |
Bruker X8 APEXII Kappa CCD diffractometer | 4040 independent reflections |
Radiation source: fine-focus sealed tube | 3765 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Thin–slice ω and φ scans | θmax = 29.1°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | h = −13→13 |
Tmin = 0.621, Tmax = 0.796 | k = −20→20 |
95509 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.077 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.038P)2 + 2.056P] where P = (Fo2 + 2Fc2)/3 |
4040 reflections | (Δ/σ)max = 0.002 |
238 parameters | Δρmax = 1.06 e Å−3 |
15 restraints | Δρmin = −0.87 e Å−3 |
[Zn2V2(C5H6NO7P)2O2(H2O)10]·2H2O | V = 1505.48 (12) Å3 |
Mr = 926.97 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.0161 (5) Å | µ = 2.40 mm−1 |
b = 14.8811 (7) Å | T = 293 K |
c = 10.8298 (5) Å | 0.22 × 0.14 × 0.10 mm |
β = 111.147 (2)° |
Bruker X8 APEXII Kappa CCD diffractometer | 4040 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | 3765 reflections with I > 2σ(I) |
Tmin = 0.621, Tmax = 0.796 | Rint = 0.028 |
95509 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 15 restraints |
wR(F2) = 0.077 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 1.06 e Å−3 |
4040 reflections | Δρmin = −0.87 e Å−3 |
238 parameters |
Experimental. See dedicated section in the main paper |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.47946 (2) | 0.566124 (16) | 0.26276 (2) | 0.02202 (7) | |
V1 | 1.01192 (3) | 0.52639 (2) | 0.74230 (3) | 0.01679 (8) | |
P1 | 0.81721 (5) | 0.55866 (3) | 0.44467 (5) | 0.01775 (10) | |
N1 | 0.98913 (17) | 0.66771 (11) | 0.63798 (15) | 0.0188 (3) | |
O5 | 0.85567 (14) | 0.49988 (10) | 0.57024 (13) | 0.0223 (3) | |
O7 | 0.66854 (14) | 0.59666 (10) | 0.40459 (14) | 0.0242 (3) | |
O4 | 1.16206 (16) | 0.60558 (10) | 0.87361 (13) | 0.0252 (3) | |
C5 | 0.9481 (2) | 0.65025 (13) | 0.49415 (17) | 0.0199 (3) | |
H5A | 1.0323 | 0.6340 | 0.4747 | 0.024* | |
H5B | 0.9072 | 0.7041 | 0.4446 | 0.024* | |
O6 | 0.83989 (15) | 0.50552 (10) | 0.33263 (14) | 0.0249 (3) | |
O2 | 0.86146 (16) | 0.59104 (10) | 0.79428 (16) | 0.0275 (3) | |
C4 | 1.1990 (2) | 0.68247 (13) | 0.84317 (19) | 0.0229 (4) | |
C1 | 0.8075 (2) | 0.66657 (14) | 0.7474 (2) | 0.0239 (4) | |
O8 | 1.0159 (2) | 0.43890 (11) | 0.83081 (18) | 0.0348 (4) | |
C3 | 1.1313 (2) | 0.71027 (15) | 0.69835 (19) | 0.0263 (4) | |
H3A | 1.1213 | 0.7751 | 0.6922 | 0.032* | |
H3B | 1.1924 | 0.6920 | 0.6509 | 0.032* | |
C2 | 0.8762 (2) | 0.71885 (14) | 0.6657 (2) | 0.0266 (4) | |
H2A | 0.8027 | 0.7359 | 0.5824 | 0.032* | |
H2B | 0.9176 | 0.7736 | 0.7125 | 0.032* | |
O3 | 1.28796 (19) | 0.73187 (12) | 0.92367 (16) | 0.0371 (4) | |
O1 | 0.70218 (18) | 0.69941 (11) | 0.76509 (19) | 0.0360 (4) | |
O1W | 0.5041 (2) | 0.43314 (11) | 0.32805 (19) | 0.0392 (4) | |
H1W | 0.440 (3) | 0.390 (2) | 0.288 (3) | 0.059* | |
H2W | 0.528 (4) | 0.419 (2) | 0.414 (2) | 0.059* | |
O2W | 0.36824 (16) | 0.59655 (11) | 0.39610 (15) | 0.0266 (3) | |
H3W | 0.348 (3) | 0.6535 (14) | 0.402 (3) | 0.040* | |
H4W | 0.298 (3) | 0.5638 (17) | 0.401 (3) | 0.040* | |
O3W | 0.28954 (18) | 0.52927 (14) | 0.11685 (17) | 0.0409 (4) | |
H5W | 0.238 (4) | 0.560 (2) | 0.045 (3) | 0.061* | |
H6W | 0.234 (4) | 0.491 (2) | 0.136 (3) | 0.061* | |
O4W | 0.45023 (17) | 0.69926 (11) | 0.19464 (16) | 0.0304 (3) | |
H7W | 0.397 (3) | 0.706 (2) | 0.113 (2) | 0.046* | |
H8W | 0.531 (3) | 0.727 (2) | 0.205 (3) | 0.046* | |
O5W | 0.58091 (19) | 0.53840 (17) | 0.12317 (18) | 0.0446 (5) | |
H9W | 0.666 (3) | 0.513 (2) | 0.170 (3) | 0.067* | |
H10W | 0.598 (4) | 0.574 (2) | 0.068 (3) | 0.067* | |
O6W | 0.5884 (6) | 0.6734 (4) | −0.0345 (5) | 0.1474 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01727 (12) | 0.02490 (13) | 0.01985 (12) | −0.00060 (8) | 0.00183 (8) | 0.00210 (8) |
V1 | 0.01574 (14) | 0.01789 (15) | 0.01586 (14) | 0.00001 (10) | 0.00464 (11) | 0.00076 (10) |
P1 | 0.01270 (19) | 0.0220 (2) | 0.0165 (2) | −0.00024 (16) | 0.00279 (16) | −0.00184 (16) |
N1 | 0.0182 (7) | 0.0201 (7) | 0.0165 (7) | −0.0029 (6) | 0.0045 (5) | −0.0002 (5) |
O5 | 0.0185 (6) | 0.0238 (6) | 0.0206 (6) | −0.0037 (5) | 0.0023 (5) | 0.0009 (5) |
O7 | 0.0142 (6) | 0.0304 (7) | 0.0239 (6) | 0.0025 (5) | 0.0018 (5) | −0.0048 (6) |
O4 | 0.0279 (7) | 0.0252 (7) | 0.0171 (6) | −0.0049 (6) | 0.0017 (5) | 0.0016 (5) |
C5 | 0.0195 (8) | 0.0232 (8) | 0.0152 (7) | −0.0024 (7) | 0.0041 (6) | 0.0014 (6) |
O6 | 0.0177 (6) | 0.0331 (7) | 0.0233 (6) | −0.0002 (5) | 0.0067 (5) | −0.0079 (6) |
O2 | 0.0287 (7) | 0.0247 (7) | 0.0357 (8) | 0.0029 (6) | 0.0196 (6) | 0.0039 (6) |
C4 | 0.0210 (8) | 0.0251 (9) | 0.0190 (8) | −0.0035 (7) | 0.0026 (7) | 0.0003 (7) |
C1 | 0.0227 (9) | 0.0225 (9) | 0.0270 (9) | −0.0022 (7) | 0.0094 (7) | −0.0053 (7) |
O8 | 0.0410 (9) | 0.0272 (8) | 0.0383 (9) | 0.0017 (7) | 0.0169 (7) | 0.0086 (7) |
C3 | 0.0248 (9) | 0.0288 (10) | 0.0202 (8) | −0.0110 (8) | 0.0021 (7) | 0.0036 (7) |
C2 | 0.0337 (10) | 0.0189 (8) | 0.0299 (10) | 0.0036 (8) | 0.0148 (8) | 0.0009 (7) |
O3 | 0.0405 (9) | 0.0334 (8) | 0.0242 (7) | −0.0151 (7) | −0.0043 (7) | 0.0007 (6) |
O1 | 0.0305 (8) | 0.0297 (8) | 0.0538 (10) | 0.0047 (6) | 0.0226 (8) | −0.0033 (7) |
O1W | 0.0428 (10) | 0.0270 (8) | 0.0340 (9) | −0.0057 (7) | −0.0029 (7) | 0.0044 (7) |
O2W | 0.0235 (7) | 0.0261 (7) | 0.0316 (7) | −0.0003 (6) | 0.0117 (6) | 0.0027 (6) |
O3W | 0.0269 (8) | 0.0578 (12) | 0.0266 (8) | −0.0179 (8) | −0.0040 (6) | 0.0167 (8) |
O4W | 0.0274 (7) | 0.0287 (8) | 0.0303 (8) | −0.0041 (6) | 0.0046 (6) | 0.0066 (6) |
O5W | 0.0281 (8) | 0.0761 (14) | 0.0268 (8) | 0.0078 (9) | 0.0064 (7) | −0.0058 (9) |
O6W | 0.163 (4) | 0.159 (5) | 0.143 (4) | −0.009 (4) | 0.083 (4) | 0.009 (3) |
Zn1—O7 | 2.0133 (14) | C5—H5B | 0.9700 |
Zn1—O3W | 2.0609 (16) | O6—V1i | 1.9890 (14) |
Zn1—O1W | 2.0860 (17) | O2—C1 | 1.271 (3) |
Zn1—O4W | 2.0974 (16) | C4—O3 | 1.238 (2) |
Zn1—O5W | 2.1440 (18) | C4—C3 | 1.524 (3) |
Zn1—O2W | 2.1660 (15) | C1—O1 | 1.239 (3) |
V1—O8 | 1.6086 (16) | C1—C2 | 1.517 (3) |
V1—O6i | 1.9890 (14) | C3—H3A | 0.9700 |
V1—O5 | 1.9932 (14) | C3—H3B | 0.9700 |
V1—O2 | 2.0312 (15) | C2—H2A | 0.9700 |
V1—O4 | 2.0321 (14) | C2—H2B | 0.9700 |
V1—N1 | 2.3590 (16) | O1W—H1W | 0.90 (2) |
P1—O7 | 1.5030 (14) | O1W—H2W | 0.90 (2) |
P1—O6 | 1.5324 (15) | O2W—H3W | 0.88 (2) |
P1—O5 | 1.5443 (14) | O2W—H4W | 0.87 (2) |
P1—C5 | 1.8323 (19) | O3W—H5W | 0.89 (2) |
N1—C3 | 1.478 (2) | O3W—H6W | 0.88 (2) |
N1—C2 | 1.481 (3) | O4W—H7W | 0.86 (2) |
N1—C5 | 1.484 (2) | O4W—H8W | 0.88 (2) |
O4—C4 | 1.282 (2) | O5W—H9W | 0.90 (2) |
C5—H5A | 0.9700 | O5W—H10W | 0.86 (2) |
O7—Zn1—O3W | 177.43 (8) | P1—O7—Zn1 | 134.17 (9) |
O7—Zn1—O1W | 89.53 (7) | C4—O4—V1 | 123.17 (12) |
O3W—Zn1—O1W | 88.34 (7) | N1—C5—P1 | 109.58 (12) |
O7—Zn1—O4W | 91.64 (6) | N1—C5—H5A | 109.8 |
O3W—Zn1—O4W | 90.49 (7) | P1—C5—H5A | 109.8 |
O1W—Zn1—O4W | 178.81 (7) | N1—C5—H5B | 109.8 |
O7—Zn1—O5W | 91.53 (6) | P1—C5—H5B | 109.8 |
O3W—Zn1—O5W | 87.09 (8) | H5A—C5—H5B | 108.2 |
O1W—Zn1—O5W | 91.61 (9) | P1—O6—V1i | 142.36 (9) |
O4W—Zn1—O5W | 88.58 (8) | C1—O2—V1 | 123.99 (13) |
O7—Zn1—O2W | 90.73 (6) | O3—C4—O4 | 123.37 (18) |
O3W—Zn1—O2W | 90.71 (7) | O3—C4—C3 | 120.23 (18) |
O1W—Zn1—O2W | 89.93 (7) | O4—C4—C3 | 116.37 (16) |
O4W—Zn1—O2W | 89.83 (6) | O1—C1—O2 | 123.4 (2) |
O5W—Zn1—O2W | 177.27 (7) | O1—C1—C2 | 118.61 (19) |
O8—V1—O6i | 100.84 (8) | O2—C1—C2 | 118.02 (17) |
O8—V1—O5 | 103.84 (8) | N1—C3—C4 | 109.82 (15) |
O6i—V1—O5 | 91.21 (6) | N1—C3—H3A | 109.7 |
O8—V1—O2 | 94.57 (8) | C4—C3—H3A | 109.7 |
O6i—V1—O2 | 164.50 (7) | N1—C3—H3B | 109.7 |
O5—V1—O2 | 86.67 (6) | C4—C3—H3B | 109.7 |
O8—V1—O4 | 101.49 (8) | H3A—C3—H3B | 108.2 |
O6i—V1—O4 | 87.20 (6) | N1—C2—C1 | 113.27 (16) |
O5—V1—O4 | 154.45 (6) | N1—C2—H2A | 108.9 |
O2—V1—O4 | 88.12 (6) | C1—C2—H2A | 108.9 |
O8—V1—N1 | 169.79 (8) | N1—C2—H2B | 108.9 |
O6i—V1—N1 | 88.57 (6) | C1—C2—H2B | 108.9 |
O5—V1—N1 | 79.69 (6) | H2A—C2—H2B | 107.7 |
O2—V1—N1 | 75.95 (6) | Zn1—O1W—H1W | 122 (2) |
O4—V1—N1 | 74.78 (6) | Zn1—O1W—H2W | 121 (2) |
O7—P1—O6 | 112.33 (8) | H1W—O1W—H2W | 103 (3) |
O7—P1—O5 | 111.96 (8) | Zn1—O2W—H3W | 115.9 (19) |
O6—P1—O5 | 110.11 (9) | Zn1—O2W—H4W | 123 (2) |
O7—P1—C5 | 109.55 (9) | H3W—O2W—H4W | 109 (2) |
O6—P1—C5 | 108.69 (8) | Zn1—O3W—H5W | 128 (2) |
O5—P1—C5 | 103.82 (8) | Zn1—O3W—H6W | 119 (2) |
C3—N1—C2 | 111.98 (16) | H5W—O3W—H6W | 109 (3) |
C3—N1—C5 | 113.40 (15) | Zn1—O4W—H7W | 115 (2) |
C2—N1—C5 | 111.14 (15) | Zn1—O4W—H8W | 113 (2) |
C3—N1—V1 | 105.00 (11) | H7W—O4W—H8W | 106 (3) |
C2—N1—V1 | 108.06 (11) | Zn1—O5W—H9W | 106 (2) |
C5—N1—V1 | 106.80 (11) | Zn1—O5W—H10W | 130 (3) |
P1—O5—V1 | 124.99 (8) | H9W—O5W—H10W | 105 (3) |
O8—V1—N1—C3 | 95.2 (5) | O5—V1—O4—C4 | −10.3 (3) |
O6i—V1—N1—C3 | −62.07 (12) | O2—V1—O4—C4 | −88.53 (16) |
O5—V1—N1—C3 | −153.56 (13) | N1—V1—O4—C4 | −12.59 (15) |
O2—V1—N1—C3 | 117.32 (13) | C3—N1—C5—P1 | 155.80 (14) |
O4—V1—N1—C3 | 25.42 (12) | C2—N1—C5—P1 | −77.01 (17) |
O8—V1—N1—C2 | −24.5 (5) | V1—N1—C5—P1 | 40.64 (13) |
O6i—V1—N1—C2 | 178.27 (13) | O7—P1—C5—N1 | 89.70 (14) |
O5—V1—N1—C2 | 86.78 (13) | O6—P1—C5—N1 | −147.23 (12) |
O2—V1—N1—C2 | −2.35 (12) | O5—P1—C5—N1 | −30.04 (15) |
O4—V1—N1—C2 | −94.24 (13) | O7—P1—O6—V1i | 147.90 (15) |
O8—V1—N1—C5 | −144.1 (4) | O5—P1—O6—V1i | −86.60 (17) |
O6i—V1—N1—C5 | 58.62 (11) | C5—P1—O6—V1i | 26.51 (19) |
O5—V1—N1—C5 | −32.88 (11) | O8—V1—O2—C1 | −176.55 (17) |
O2—V1—N1—C5 | −122.00 (12) | O6i—V1—O2—C1 | 9.6 (4) |
O4—V1—N1—C5 | 146.11 (12) | O5—V1—O2—C1 | −72.91 (17) |
O7—P1—O5—V1 | −116.85 (10) | O4—V1—O2—C1 | 82.07 (17) |
O6—P1—O5—V1 | 117.44 (10) | N1—V1—O2—C1 | 7.29 (16) |
C5—P1—O5—V1 | 1.24 (12) | V1—O4—C4—O3 | 178.20 (17) |
O8—V1—O5—P1 | −173.68 (11) | V1—O4—C4—C3 | −4.0 (3) |
O6i—V1—O5—P1 | −72.20 (11) | V1—O2—C1—O1 | 169.44 (16) |
O2—V1—O5—P1 | 92.43 (11) | V1—O2—C1—C2 | −10.6 (3) |
O4—V1—O5—P1 | 13.8 (2) | C2—N1—C3—C4 | 83.0 (2) |
N1—V1—O5—P1 | 16.12 (10) | C5—N1—C3—C4 | −150.29 (17) |
O6—P1—O7—Zn1 | 21.40 (16) | V1—N1—C3—C4 | −34.07 (19) |
O5—P1—O7—Zn1 | −103.09 (13) | O3—C4—C3—N1 | −153.7 (2) |
C5—P1—O7—Zn1 | 142.29 (12) | O4—C4—C3—N1 | 28.5 (3) |
O1W—Zn1—O7—P1 | 52.88 (14) | C3—N1—C2—C1 | −116.61 (19) |
O4W—Zn1—O7—P1 | −127.34 (14) | C5—N1—C2—C1 | 115.43 (18) |
O5W—Zn1—O7—P1 | −38.72 (15) | V1—N1—C2—C1 | −1.4 (2) |
O2W—Zn1—O7—P1 | 142.81 (13) | O1—C1—C2—N1 | −172.84 (19) |
O8—V1—O4—C4 | 177.18 (16) | O2—C1—C2—N1 | 7.2 (3) |
O6i—V1—O4—C4 | 76.69 (16) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O1ii | 0.90 (2) | 1.88 (2) | 2.770 (2) | 169 (3) |
O1W—H2W···O2Wii | 0.90 (2) | 1.95 (2) | 2.828 (2) | 164 (3) |
O2W—H3W···O3iii | 0.88 (2) | 1.85 (2) | 2.725 (2) | 172 (3) |
O2W—H4W···O5ii | 0.87 (2) | 1.93 (2) | 2.795 (2) | 173 (3) |
O3W—H6W···O2ii | 0.88 (2) | 1.87 (2) | 2.733 (2) | 171 (3) |
O3W—H5W···O4iv | 0.89 (2) | 1.86 (2) | 2.726 (2) | 164 (4) |
O4W—H7W···O3iv | 0.86 (2) | 1.98 (2) | 2.837 (2) | 174 (3) |
O4W—H8W···O1v | 0.88 (2) | 1.94 (2) | 2.799 (2) | 167 (3) |
O5W—H9W···O6 | 0.90 (2) | 1.98 (3) | 2.805 (2) | 150 (4) |
O5W—H10W···O6W | 0.86 (2) | 1.84 (3) | 2.656 (6) | 159 (4) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x−1, −y+3/2, z−1/2; (iv) x−1, y, z−1; (v) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn2V2(C5H6NO7P)2O2(H2O)10]·2H2O |
Mr | 926.97 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 10.0161 (5), 14.8811 (7), 10.8298 (5) |
β (°) | 111.147 (2) |
V (Å3) | 1505.48 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.40 |
Crystal size (mm) | 0.22 × 0.14 × 0.10 |
Data collection | |
Diffractometer | Bruker X8 APEXII Kappa CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1998) |
Tmin, Tmax | 0.621, 0.796 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 95509, 4040, 3765 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.685 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.077, 1.04 |
No. of reflections | 4040 |
No. of parameters | 238 |
No. of restraints | 15 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.06, −0.87 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2005), SHELXTL (Bruker 2001), DIAMOND (Brandenburg, 2006).
Zn1—O7 | 2.0133 (14) | V1—O8 | 1.6086 (16) |
Zn1—O3W | 2.0609 (16) | V1—O6i | 1.9890 (14) |
Zn1—O1W | 2.0860 (17) | V1—O5 | 1.9932 (14) |
Zn1—O4W | 2.0974 (16) | V1—O2 | 2.0312 (15) |
Zn1—O5W | 2.1440 (18) | V1—O4 | 2.0321 (14) |
Zn1—O2W | 2.1660 (15) | V1—N1 | 2.3590 (16) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O1ii | 0.90 (2) | 1.88 (2) | 2.770 (2) | 169 (3) |
O1W—H2W···O2Wii | 0.90 (2) | 1.95 (2) | 2.828 (2) | 164 (3) |
O2W—H3W···O3iii | 0.88 (2) | 1.85 (2) | 2.725 (2) | 172 (3) |
O2W—H4W···O5ii | 0.87 (2) | 1.93 (2) | 2.795 (2) | 173 (3) |
O3W—H6W···O2ii | 0.88 (2) | 1.87 (2) | 2.733 (2) | 171 (3) |
O3W—H5W···O4iv | 0.89 (2) | 1.86 (2) | 2.726 (2) | 164 (4) |
O4W—H7W···O3iv | 0.86 (2) | 1.98 (2) | 2.837 (2) | 174 (3) |
O4W—H8W···O1v | 0.88 (2) | 1.94 (2) | 2.799 (2) | 167 (3) |
O5W—H9W···O6 | 0.90 (2) | 1.98 (3) | 2.805 (2) | 150 (4) |
O5W—H10W···O6W | 0.86 (2) | 1.84 (3) | 2.656 (6) | 159 (4) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x−1, −y+3/2, z−1/2; (iv) x−1, y, z−1; (v) x, −y+3/2, z−1/2. |
Research on highly crystalline organic–inorganic hybrids, in particular those belonging to the family of coordination polymers, has received a considerable attention over the last two decades. Such occurs as a direct consequence of the fascinating structural architectures achieved by assembling organic ligands and metal centres which, in many cases, can be allied with interesting potential applications (e.g. gas storage, separation, catalysis, guest exchange, magnetic or optical sensors). Following our ongoing research toward the hydrothermal synthesis and structural characterization of this type of materials, we recently focused our attention on the use of multifunctional ligands such as N-(phosphonomethyl)iminodiacetic acid (H4pmida) (Cunha-Silva, Shi et al., 2007; Mafra et al., 2006; Shi, Paz, Girginova, Amaral et al., 2006; Shi, Paz, Girginova, Rocha et al., 2006; Shi, Almeida Paz, Trindade & Rocha, 2006; Paz, Rocha, Klinowski et al., 2005; Almeida Paz, Shi, Mafra et al., 2005; Almeida Paz, Shi, Trindade et al., 2005; Shi et al., 2005; Paz et al., 2004), 1-hydroxyethylidene-1,1-diphosphonic acid (H5hedp) (Shi et al., 2007), and nitrilotris(methylenephosphonic acid) (H6nmp) (Cunha-Silva, Mafra et al., 2007), we report here the structural details of the title compound, [Zn2V2O2(pmida)2(H2O)10].2H2O (I) [where pmida4– stands for C5H6NO7P4-].
The structure of (I) contains two crystallographically unique metal centres, Zn1 and V1, both exhibiting octahedral coordination geometries, {ZnO6} and {VO5N} (see table of selected geometric parameters and Fig. 1). Zn1 is coordinated by five O atoms of five crystalographically independent water molecules and one O atom from the µ3-bridging phosphonate group of pmida4- (Fig. 1), with the overall coordination geometry resembling a slightly distorted octahedron [Zn—O bond lengths found in the 2.0133 (14)–2.1660 (15) Å range; cis and trans O—Zn—O octahedral angles ranging from 87.09 (8) to 91.64 (6)° and from 177.27 (7) to 178.11 (7)°, respectively; see table of selected geometric parameters].
The two symmetry-related Zn2+ cations of the neutral tetranuclear [Zn2V2O2(pmida)2(H2O)10] molecule depicted in Fig. 1 are connected through the phosphonate groups belonging to the central centrosymmetric dimeric anionic [V2O2(pmida)2]4- unit, with intermetallic Zn1···Zn1i, Zn1···V1 and V1···V1i distances of 10.0170 (5), 3.2447 (5) and 3.8773 (5) Å, respectively [symmetry code: (i) 2 - x, 1 - y, 1 - z]. It is of considerable importance to emphasize that the geometrical aspects of this dimeric anionic unit are typical and in good agreement with those described in detail in our previous publications (Shi et al., 2007; Shi, Paz, Girginova, Amaral et al., 2006; Shi, Paz, Girginova, Rocha et al., 2006; Shi, Almeida Paz, Trindade & Rocha, 2006; Paz, Rocha, Klinowski et al., 2005; Almeida Paz, Shi, Mafra et al., 2005; Almeida Paz, Shi, Trindade et al., 2005; Shi et al., 2005; Paz et al., 2004). V1 is connected to one oxo group and to two pmida4- ligands, with the geometry of the first coordination sphere resembling a highly distorted octahedron, which is composed by one short V—O bond [1.6088 (16) Å], four intermediate V—O bonds [1.9890 (12)–2.0321 (14) Å] and a long V—N bond [2.3590 (16) Å]; the cis and trans internal octahedral angles range from 86.67 (6) to 103.84 (8)°, and from 154.45 (6) to 169.79 (8)°, respectively. Noteworthy is the structural evidence of the notable trans effect of the oxo group over the long V—N distance (see Table of selected geometric parameters).
Individual [Zn2V2O2(pmida)2(H2O)10] molecular units close pack with the water molecules of crystallization in a typical brick-wall-like fashion in the bc plane of the unit cell (Fig. 2), mediated by an extensive network of strong and highly directional O—H···O hydrogen bonding interactions (see Table summarizing the geometrical aspects of the hydrogen bonds).