The title compound, [Ni(C3H10N2)3][Ni(CN)4], is built up of [Ni(pn)3]2+ cations (pn is 1,2-diaminopropane) and [Ni(CN)4]2− anions. Both NiII atoms in the cation and the anion lie on a mirror plane. The respective ions interact through Coulombic forces and through a complex network of hydrogen bonds. Extended disorder associated with the cation has been resolved. The occupancies of the respective disordered positions are 0.4:0.4:0.2.
Supporting information
CCDC reference: 677439
Key indicators
- Single-crystal X-ray study
- T = 193 K
- Mean (C-C) = 0.007 Å
- Disorder in main residue
- R factor = 0.037
- wR factor = 0.101
- Data-to-parameter ratio = 10.6
checkCIF/PLATON results
No syntax errors found
Alert level A
PLAT780_ALERT_1_A Coordinates do not Form a Properly Connected Set ?
| Author Response: Not properly connected set arising from disorder of the structure.
|
Alert level B
PLAT301_ALERT_3_B Main Residue Disorder ......................... 33.00 Perc.
Alert level C
PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.63 Ratio
PLAT230_ALERT_2_C Hirshfeld Test Diff for N6 - C6 .. 6.56 su
PLAT230_ALERT_2_C Hirshfeld Test Diff for N7 - C7 .. 6.91 su
PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C5
PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N6
PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7
Alert level G
PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 12
1 ALERT level A = In general: serious problem
1 ALERT level B = Potentially serious problem
6 ALERT level C = Check and explain
1 ALERT level G = General alerts; check
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
4 ALERT type 2 Indicator that the structure model may be wrong or deficient
4 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
To 10 ml of a 0.1 M hot solution of NiSO4.6H2O (0.262 g, 1 mmol) 0.35 ml of pn (4 mmol) were added under continuous stirring, followed by addition
of 10 ml of a 0.1 M warm solution of K2[Ni(CN)4].H2O (1 mmol).
The resulting clear solution was left for crystallization at room temperature.
Single crystals of the title compound, in the form of light violet needles
suitable for X-ray studies, appeared after one day.
The structure was solved by direct method. The model (including two 50:50%
disordered positions of the pn ligands, forced by the crystallographic mirror
symmetry in the cation) was completed by subsequent Fourier syntheses. At this
stage the calculated difference Fourier map indicated the presence of further
positional disorder of the methyl groups in the pn ligands. The occupational
factors refined by fixing the common isotropic thermal parameters of the
concerning carbon atoms indicated 50:50 occupancy which was in the subsequent
refinement cycles fixed. Finally, the hydrogen atoms were put in the
calculated positions taking into account the observed disorder. Anisotropic
thermal parameters were refined for all non-H atoms. All H atoms positions
were calculated using the appropriate riding model with isotropic temperature
factors being 1.2 times larger then temperature factors of their parent atoms.
Geometrical analysis was performed using PARST (Nardelli, 1983) and
SHELXL97.
Data collection: EXPOSE in IPDS (Stoe & Cie, 1999); cell refinement: CELL in IPDS (Stoe & Cie, 1999); data reduction: INTEGRATE in IPDS (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: PARST (Nardelli, 1983) and SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).
Tris(propane-1,2-diamine-
κ2N,
N')nickel(II)
tetracyanidonickelate(II)
top
Crystal data top
[Ni(C3H10N2)3][Ni(CN)4] | F(000) = 936 |
Mr = 443.89 | Dx = 1.392 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 1308 reflections |
a = 9.7310 (12) Å | θ = 4.6–30.5° |
b = 13.3770 (14) Å | µ = 1.79 mm−1 |
c = 16.275 (3) Å | T = 193 K |
V = 2118.5 (5) Å3 | Needle, light-violet |
Z = 4 | 0.5 × 0.1 × 0.1 mm |
Data collection top
Stoe IPDS diffractometer | 1947 independent reflections |
Radiation source: fine-focus sealed tube | 1401 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 150 pixels mm-1 | θmax = 25.0°, θmin = 2.9° |
ϕ scans | h = −11→11 |
Absorption correction: gaussian (XPREP in SHELXTL; Siemens, 1996) | k = −15→15 |
Tmin = 0.580, Tmax = 0.815 | l = −19→19 |
14468 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0714P)2] where P = (Fo2 + 2Fc2)/3 |
1947 reflections | (Δ/σ)max < 0.001 |
183 parameters | Δρmax = 0.52 e Å−3 |
12 restraints | Δρmin = −0.60 e Å−3 |
Crystal data top
[Ni(C3H10N2)3][Ni(CN)4] | V = 2118.5 (5) Å3 |
Mr = 443.89 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 9.7310 (12) Å | µ = 1.79 mm−1 |
b = 13.3770 (14) Å | T = 193 K |
c = 16.275 (3) Å | 0.5 × 0.1 × 0.1 mm |
Data collection top
Stoe IPDS diffractometer | 1947 independent reflections |
Absorption correction: gaussian (XPREP in SHELXTL; Siemens, 1996) | 1401 reflections with I > 2σ(I) |
Tmin = 0.580, Tmax = 0.815 | Rint = 0.052 |
14468 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.037 | 12 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 0.92 | Δρmax = 0.52 e Å−3 |
1947 reflections | Δρmin = −0.60 e Å−3 |
183 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Ni1 | 0.79310 (7) | 0.2500 | 0.07496 (4) | 0.0430 (2) | |
C1 | 0.8878 (6) | 0.2500 | 0.1736 (4) | 0.0505 (13) | |
N1 | 0.9497 (6) | 0.2500 | 0.2336 (3) | 0.0711 (14) | |
C2 | 0.7945 (5) | 0.1112 (3) | 0.0757 (3) | 0.0605 (10) | |
N2 | 0.7977 (6) | 0.0261 (3) | 0.0772 (3) | 0.0972 (15) | |
C3 | 0.6984 (5) | 0.2500 | −0.0248 (4) | 0.0554 (14) | |
N3 | 0.6348 (6) | 0.2500 | −0.0840 (4) | 0.0746 (15) | |
Ni2 | 0.26627 (6) | 0.2500 | 0.03265 (4) | 0.0396 (2) | |
C4 | 0.0955 (5) | 0.2500 | −0.1180 (3) | 0.0644 (15) | |
H4C | 0.0649 | 0.3200 | −0.1066 | 0.077* | 0.50 |
C5 | 0.2431 (5) | 0.2500 | −0.1451 (4) | 0.0757 (18) | |
H5C | 0.2799 | 0.1810 | −0.1461 | 0.091* | 0.50 |
H5D | 0.2517 | 0.2790 | −0.2008 | 0.091* | 0.50 |
C6 | 0.3879 (5) | 0.0651 (3) | 0.0946 (3) | 0.099 (2) | |
H6C | 0.4498 | 0.0986 | 0.1343 | 0.119* | 0.50 |
H6D | 0.4220 | −0.0039 | 0.0862 | 0.119* | 0.50 |
H6E | 0.4497 | 0.0288 | 0.1327 | 0.119* | 0.50 |
H6F | 0.3922 | 0.0328 | 0.0400 | 0.119* | 0.50 |
C7 | 0.2450 (5) | 0.0615 (3) | 0.1294 (3) | 0.0876 (16) | |
H7C | 0.1813 | 0.0302 | 0.0886 | 0.105* | 0.50 |
H7D | 0.2619 | 0.1215 | 0.1646 | 0.105* | 0.50 |
C8 | 0.0056 (10) | 0.2045 (7) | −0.1810 (6) | 0.083 (3) | 0.50 |
H8C | 0.0391 | 0.1373 | −0.1942 | 0.124* | 0.50 |
H8D | 0.0067 | 0.2458 | −0.2307 | 0.124* | 0.50 |
H8E | −0.0885 | 0.2001 | −0.1599 | 0.124* | 0.50 |
N4 | 0.1011 (6) | 0.1921 (4) | −0.0397 (3) | 0.0509 (14) | 0.50 |
H4A | 0.1155 | 0.1254 | −0.0506 | 0.061* | 0.50 |
H4B | 0.0195 | 0.1984 | −0.0117 | 0.061* | 0.50 |
N5 | 0.3194 (6) | 0.3121 (4) | −0.0839 (3) | 0.0475 (14) | 0.50 |
H5A | 0.2927 | 0.3780 | −0.0871 | 0.057* | 0.50 |
H5B | 0.4126 | 0.3082 | −0.0927 | 0.057* | 0.50 |
N6 | 0.3911 (6) | 0.1202 (4) | 0.0147 (3) | 0.0515 (15) | 0.50 |
H6A | 0.3562 | 0.0811 | −0.0268 | 0.062* | 0.50 |
H6B | 0.4796 | 0.1381 | 0.0015 | 0.062* | 0.50 |
N7 | 0.2107 (6) | 0.1694 (3) | 0.1391 (4) | 0.0539 (15) | 0.50 |
H7A | 0.2568 | 0.1949 | 0.1838 | 0.065* | 0.50 |
H7B | 0.1180 | 0.1763 | 0.1484 | 0.065* | 0.50 |
C9 | 0.258 (3) | −0.0030 (11) | 0.2011 (7) | 0.073 (6) | 0.42 (3) |
H9C | 0.3260 | 0.0252 | 0.2390 | 0.109* | 0.42 (3) |
H9D | 0.2877 | −0.0698 | 0.1837 | 0.109* | 0.42 (3) |
H9E | 0.1689 | −0.0080 | 0.2290 | 0.109* | 0.42 (3) |
N8 | 0.4263 (6) | 0.3269 (3) | 0.0947 (4) | 0.0507 (14) | 0.50 |
H8A | 0.4347 | 0.3038 | 0.1478 | 0.061* | 0.50 |
H8B | 0.5087 | 0.3175 | 0.0681 | 0.061* | 0.50 |
N9 | 0.1551 (6) | 0.3770 (4) | 0.0749 (4) | 0.0532 (15) | 0.50 |
H9A | 0.1265 | 0.4146 | 0.0308 | 0.064* | 0.50 |
H9B | 0.0785 | 0.3565 | 0.1035 | 0.064* | 0.50 |
C10 | 0.181 (3) | 0.5209 (10) | 0.174 (2) | 0.086 (7) | 0.38 (3) |
H10A | 0.2265 | 0.5288 | 0.2274 | 0.130* | 0.38 (3) |
H10B | 0.0836 | 0.5067 | 0.1822 | 0.130* | 0.38 (3) |
H10C | 0.1915 | 0.5827 | 0.1422 | 0.130* | 0.38 (3) |
C11 | 0.445 (3) | 0.023 (2) | 0.1699 (11) | 0.138 (15) | 0.20 |
H11A | 0.5445 | 0.0147 | 0.1636 | 0.207* | 0.20 |
H11B | 0.4024 | −0.0415 | 0.1811 | 0.207* | 0.20 |
H11C | 0.4268 | 0.0690 | 0.2158 | 0.207* | 0.20 |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ni1 | 0.0430 (4) | 0.0313 (3) | 0.0547 (4) | 0.000 | 0.0079 (3) | 0.000 |
C1 | 0.054 (3) | 0.038 (2) | 0.060 (4) | 0.000 | 0.017 (3) | 0.000 |
N1 | 0.074 (4) | 0.085 (4) | 0.054 (3) | 0.000 | 0.005 (3) | 0.000 |
C2 | 0.073 (3) | 0.041 (2) | 0.068 (3) | −0.0044 (18) | 0.004 (2) | −0.0087 (18) |
N2 | 0.152 (5) | 0.0341 (18) | 0.106 (4) | −0.005 (2) | −0.001 (3) | −0.0084 (19) |
C3 | 0.040 (3) | 0.061 (3) | 0.065 (4) | 0.000 | 0.012 (3) | 0.000 |
N3 | 0.053 (3) | 0.101 (4) | 0.070 (4) | 0.000 | 0.000 (3) | 0.000 |
Ni2 | 0.0426 (4) | 0.0279 (3) | 0.0484 (4) | 0.000 | 0.0071 (3) | 0.000 |
C4 | 0.057 (3) | 0.067 (4) | 0.069 (4) | 0.000 | −0.006 (3) | 0.000 |
C5 | 0.065 (4) | 0.110 (5) | 0.052 (3) | 0.000 | −0.002 (3) | 0.000 |
C6 | 0.080 (4) | 0.053 (3) | 0.164 (6) | 0.005 (2) | −0.028 (4) | 0.043 (3) |
C7 | 0.103 (4) | 0.066 (3) | 0.094 (4) | −0.021 (3) | −0.016 (3) | 0.041 (3) |
C8 | 0.067 (6) | 0.099 (7) | 0.082 (6) | −0.007 (5) | −0.011 (6) | −0.005 (5) |
N4 | 0.052 (4) | 0.041 (3) | 0.060 (4) | 0.000 (3) | 0.009 (3) | 0.009 (3) |
N5 | 0.050 (3) | 0.034 (3) | 0.058 (4) | 0.002 (2) | 0.008 (3) | 0.004 (3) |
N6 | 0.052 (4) | 0.032 (3) | 0.071 (4) | 0.001 (2) | 0.008 (3) | −0.003 (3) |
N7 | 0.049 (3) | 0.053 (3) | 0.059 (4) | 0.005 (3) | 0.005 (3) | 0.007 (3) |
C9 | 0.108 (16) | 0.044 (6) | 0.066 (7) | −0.002 (7) | 0.019 (7) | 0.018 (5) |
N8 | 0.054 (3) | 0.046 (3) | 0.052 (4) | −0.002 (3) | 0.014 (3) | −0.004 (3) |
N9 | 0.055 (4) | 0.036 (3) | 0.068 (4) | 0.001 (3) | 0.017 (3) | 0.000 (3) |
C10 | 0.083 (12) | 0.061 (8) | 0.115 (15) | 0.020 (8) | 0.008 (13) | −0.006 (8) |
C11 | 0.11 (2) | 0.20 (4) | 0.10 (3) | −0.07 (3) | 0.032 (19) | −0.08 (3) |
Geometric parameters (Å, º) top
Ni1—C1 | 1.852 (7) | C7—C10i | 1.457 (7) |
Ni1—C2i | 1.856 (4) | C7—C9 | 1.457 (7) |
Ni1—C2 | 1.856 (4) | C7—N7 | 1.490 (3) |
Ni1—C3 | 1.866 (7) | C7—N9i | 1.493 (3) |
C1—N1 | 1.147 (7) | C7—H7C | 1.0000 |
C2—N2 | 1.139 (5) | C7—H7D | 1.0000 |
C3—N3 | 1.145 (8) | C8—H8C | 0.9800 |
Ni2—N7i | 2.112 (6) | C8—H8D | 0.9800 |
Ni2—N7 | 2.112 (6) | C8—H8E | 0.9800 |
Ni2—N8 | 2.122 (6) | N4—H4A | 0.9200 |
Ni2—N8i | 2.122 (6) | N4—H4B | 0.9200 |
Ni2—N9i | 2.128 (6) | N5—H5A | 0.9200 |
Ni2—N9 | 2.128 (6) | N5—H5B | 0.9200 |
Ni2—N5i | 2.135 (6) | N6—H6A | 0.9200 |
Ni2—N5 | 2.135 (6) | N6—H6B | 0.9200 |
Ni2—N4 | 2.137 (6) | N7—H7A | 0.9200 |
Ni2—N4i | 2.137 (6) | N7—H7B | 0.9200 |
Ni2—N6i | 2.139 (5) | C9—H9C | 0.9800 |
Ni2—N6 | 2.139 (5) | C9—H9D | 0.9800 |
C4—C8 | 1.480 (10) | C9—H9E | 0.9800 |
C4—N4 | 1.492 (3) | N8—C6i | 1.492 (3) |
C4—C5 | 1.503 (6) | N8—H8A | 0.9200 |
C4—H4C | 1.0000 | N8—H8B | 0.9200 |
C5—N5 | 1.494 (3) | N9—C7i | 1.493 (3) |
C5—H5C | 0.9900 | N9—H9A | 0.9200 |
C5—H5D | 0.9900 | N9—H9B | 0.9200 |
C6—C11 | 1.457 (7) | C10—C7i | 1.457 (7) |
C6—N6 | 1.495 (3) | C10—H10A | 0.9800 |
C6—C7 | 1.503 (6) | C10—H10B | 0.9800 |
C6—H6C | 0.9900 | C10—H10C | 0.9800 |
C6—H6D | 0.9900 | C11—H11A | 0.9800 |
C6—H6E | 0.9900 | C11—H11B | 0.9800 |
C6—H6F | 0.9900 | C11—H11C | 0.9800 |
| | | |
C1—Ni1—C2i | 89.46 (14) | C9—C7—C6 | 103.9 (11) |
C1—Ni1—C2 | 89.46 (14) | N7—C7—C6 | 102.5 (4) |
C2i—Ni1—C2 | 178.9 (3) | N9i—C7—C6 | 107.5 (4) |
C1—Ni1—C3 | 179.7 (2) | C9—C7—H7C | 109.7 |
C2i—Ni1—C3 | 90.54 (14) | N7—C7—H7C | 109.7 |
C2—Ni1—C3 | 90.54 (14) | C6—C7—H7C | 109.7 |
N1—C1—Ni1 | 178.2 (5) | C10i—C7—H7D | 113.2 |
N2—C2—Ni1 | 178.6 (5) | C4—C8—H8C | 109.5 |
N3—C3—Ni1 | 176.9 (5) | C4—C8—H8D | 109.5 |
N7—Ni2—N8 | 92.6 (2) | H8C—C8—H8D | 109.5 |
N7i—Ni2—N8i | 92.6 (2) | C4—C8—H8E | 109.5 |
N7i—Ni2—N9i | 90.7 (2) | H8C—C8—H8E | 109.5 |
N8i—Ni2—N9i | 80.36 (19) | H8D—C8—H8E | 109.5 |
N7—Ni2—N9 | 90.7 (2) | C4—N4—Ni2 | 108.0 (3) |
N8—Ni2—N9 | 80.36 (19) | C4—N4—H4A | 110.1 |
N8i—Ni2—N5i | 93.3 (2) | Ni2—N4—H4A | 110.1 |
N9i—Ni2—N5i | 95.7 (2) | C4—N4—H4B | 110.1 |
N8—Ni2—N5 | 93.3 (2) | Ni2—N4—H4B | 110.1 |
N9—Ni2—N5 | 95.7 (2) | H4A—N4—H4B | 108.4 |
N7—Ni2—N4 | 94.3 (2) | C5—N5—Ni2 | 104.8 (3) |
N8—Ni2—N4 | 171.73 (19) | C5—N5—H5A | 110.8 |
N9—Ni2—N4 | 94.9 (2) | Ni2—N5—H5A | 110.8 |
N5—Ni2—N4 | 80.42 (19) | C5—N5—H5B | 110.8 |
N7i—Ni2—N4i | 94.3 (2) | Ni2—N5—H5B | 110.8 |
N8i—Ni2—N4i | 171.73 (19) | H5A—N5—H5B | 108.9 |
N9i—Ni2—N4i | 94.9 (2) | C6—N6—Ni2 | 105.7 (3) |
N5i—Ni2—N4i | 80.42 (19) | C6—N6—H6A | 110.6 |
N7i—Ni2—N6i | 80.95 (19) | Ni2—N6—H6A | 110.6 |
N8i—Ni2—N6i | 92.4 (2) | C6—N6—H6B | 110.6 |
N9i—Ni2—N6i | 168.7 (2) | Ni2—N6—H6B | 110.6 |
N5i—Ni2—N6i | 93.3 (2) | H6F—N6—H6B | 108.4 |
N4i—Ni2—N6i | 93.3 (2) | H6A—N6—H6B | 108.7 |
N7—Ni2—N6 | 80.95 (19) | C7—N7—Ni2 | 110.5 (4) |
N8—Ni2—N6 | 92.4 (2) | C7—N7—H7A | 109.5 |
N9—Ni2—N6 | 168.7 (2) | Ni2—N7—H7A | 109.5 |
N5—Ni2—N6 | 93.3 (2) | C7—N7—H7B | 109.5 |
N4—Ni2—N6 | 93.3 (2) | Ni2—N7—H7B | 109.5 |
C8—C4—N4 | 113.6 (5) | H7A—N7—H7B | 108.1 |
C8—C4—C5 | 111.2 (5) | C7—C9—H9C | 109.5 |
N4—C4—C5 | 102.5 (4) | C7—C9—H9D | 109.5 |
C8—C4—H4C | 109.8 | C7—C9—H9E | 109.5 |
N4—C4—H4C | 109.8 | C6i—N8—Ni2 | 106.6 (4) |
C5—C4—H4C | 109.8 | C6i—N8—H8A | 110.4 |
N5—C5—C4 | 106.2 (4) | Ni2—N8—H8A | 110.4 |
N5—C5—H5C | 110.5 | C6i—N8—H8B | 110.4 |
C4—C5—H5C | 110.5 | Ni2—N8—H8B | 110.4 |
N5—C5—H5D | 110.5 | H8A—N8—H8B | 108.6 |
C4—C5—H5D | 110.5 | C7i—N9—Ni2 | 109.5 (3) |
H5C—C5—H5D | 108.7 | C7i—N9—H9A | 109.8 |
C11—C6—N6 | 155.9 (13) | Ni2—N9—H9A | 109.8 |
C11—C6—C7 | 91.4 (13) | C7i—N9—H9B | 109.8 |
N6—C6—C7 | 111.3 (4) | Ni2—N9—H9B | 109.8 |
N6—C6—H6C | 109.4 | H9A—N9—H9B | 108.2 |
C7—C6—H6C | 109.4 | C7i—C10—H10A | 109.5 |
N6—C6—H6D | 109.4 | C7i—C10—H10B | 109.5 |
C7—C6—H6D | 109.4 | H10A—C10—H10B | 109.5 |
H6C—C6—H6D | 108.0 | C7i—C10—H10C | 109.5 |
C7—C6—H6E | 108.1 | H10A—C10—H10C | 109.5 |
C7—C6—H6F | 111.3 | H10B—C10—H10C | 109.5 |
H6E—C6—H6F | 108.8 | C6—C11—H11A | 109.5 |
C9—C7—N7 | 120.5 (7) | C6—C11—H11B | 109.5 |
C10i—C7—N9i | 117.6 (14) | H6E—C11—H11B | 108.6 |
C10i—C7—C6 | 127.2 (9) | C6—C11—H11C | 109.5 |
Symmetry code: (i) x, −y+1/2, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···N2ii | 0.92 | 2.24 | 3.140 (7) | 167 |
N5—H5A···N2iii | 0.92 | 2.17 | 3.083 (6) | 169 |
N5—H5B···N3 | 0.92 | 2.30 | 3.180 (8) | 159 |
N6—H6A···N2ii | 0.92 | 2.23 | 3.073 (7) | 152 |
N6—H6B···N3 | 0.92 | 2.54 | 3.349 (7) | 147 |
N7—H7A···N1iv | 0.92 | 2.42 | 3.295 (8) | 158 |
N7—H7B···N1v | 0.92 | 2.36 | 3.159 (7) | 145 |
N8—H8A···N1iv | 0.92 | 2.07 | 2.985 (8) | 179 |
N9—H9A···N2iii | 0.92 | 2.42 | 3.212 (8) | 144 |
Symmetry codes: (ii) −x+1, −y, −z; (iii) −x+1, y+1/2, −z; (iv) x−1/2, y, −z+1/2; (v) x−1, y, z. |
Experimental details
Crystal data |
Chemical formula | [Ni(C3H10N2)3][Ni(CN)4] |
Mr | 443.89 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 193 |
a, b, c (Å) | 9.7310 (12), 13.3770 (14), 16.275 (3) |
V (Å3) | 2118.5 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.79 |
Crystal size (mm) | 0.5 × 0.1 × 0.1 |
|
Data collection |
Diffractometer | Stoe IPDS diffractometer |
Absorption correction | Gaussian (XPREP in SHELXTL; Siemens, 1996) |
Tmin, Tmax | 0.580, 0.815 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14468, 1947, 1401 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.594 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.100, 0.92 |
No. of reflections | 1947 |
No. of parameters | 183 |
No. of restraints | 12 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.52, −0.60 |
Selected bond lengths (Å) topNi1—C1 | 1.852 (7) | Ni2—N9 | 2.128 (6) |
Ni1—C2 | 1.856 (4) | Ni2—N5 | 2.135 (6) |
Ni1—C3 | 1.866 (7) | Ni2—N4 | 2.137 (6) |
Ni2—N7 | 2.112 (6) | Ni2—N6 | 2.139 (5) |
Ni2—N8 | 2.122 (6) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···N2i | 0.92 | 2.24 | 3.140 (7) | 166.6 |
N5—H5A···N2ii | 0.92 | 2.17 | 3.083 (6) | 169.4 |
N5—H5B···N3 | 0.92 | 2.30 | 3.180 (8) | 159.3 |
N6—H6A···N2i | 0.92 | 2.23 | 3.073 (7) | 152.1 |
N6—H6B···N3 | 0.92 | 2.54 | 3.349 (7) | 147.0 |
N7—H7A···N1iii | 0.92 | 2.42 | 3.295 (8) | 158.2 |
N7—H7B···N1iv | 0.92 | 2.36 | 3.159 (7) | 145.0 |
N8—H8A···N1iii | 0.92 | 2.07 | 2.985 (8) | 178.7 |
N9—H9A···N2ii | 0.92 | 2.42 | 3.212 (8) | 144.3 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, y+1/2, −z; (iii) x−1/2, y, −z+1/2; (iv) x−1, y, z. |
The title compound, C13H30N10Ni2, was studied as part of a broader study of cyanocomplexes viewed as magnetic materials [Černák et al.2002). The complex is ionic and built up of [Ni(pn)3]2+cations (pn: 1,2-diaminopropane) and [Ni(CN)~4~]2– anions. Other similar ionic compounds with square tetracyanometallates(II) and [M(L—L)3]2+ cations (M = Ni, Zn, Cd; L—L: a chelating ligand), have already been described [Bubanec et al., 2004; Rodriguez et al., 1999; Paharová et al., 2007]. The Pt analogue was described by Potočňák et al. (2008).
The NiII atom in the complex cation exhibits pseudo-octahedral coordination by six nitrogen atoms from three chelate bonded pn ligands in gauche conformations. As the nickel atom occupies the position on a mirror plane the chelate bonded ligands are disordered in two positions with half occupancy (Fig. 1). Further disorder associated with the position of the methyl groups bonded to the carbon atom was detected so within the same metallocycle both R and S enantiomers are present with the same occupancy. Moreover, the structure is centrosymmetric so both opposite absolute configurations Λδδλ and Δλλδ of the chiral cations are present in the unit cell in equal quantities. It is worth noting that for the synthesis a racemic mixture of the pn ligand was used. The observed geometrical parameters are close to those observed in [Ni(pn)3][Fe(CN)5NO].H2O [Saha et al., 2005].
The charge of the cation is compensated by a [Ni(CN)4]2- anion. The latter is bisected by a mirror plane, leading to a rather regular NiC4 chromophore. The geometric characteristics are similar to those previously reported [Smékal et al., 2001].
The NiII atoms in the respective ions are not connected by covalent bonds, the shortest distance between NiII atoms being 8.527 (1) Å. The cations are connected by a complicated system of weak intermolecular hydrogen bonds of the N—H···N≡C—Ni—C≡N···H—N type, in which also the complex anions take part and where the H···N distance range is 2.103–2.488 Å.