Download citation
Download citation
link to html
In the title compound, [Co(N3)2(H2O)4]·C14H12N2O4·2H2O, the metal complex mol­ecule is centrosymmetric, the Co(II) ion being six-coordinated by two azide N atoms and four aqua O atoms with a trans-octa­hedral geometry. The zwitterionic organic mol­ecule is also centrosymmetric. In the crystal, the components are associated into a two-dimensional network through O—H...O hydrogen bonds. Further O—H...O and O—H...N inter­actions give a three-dimensional structure. The free water molecule is disordered over two positions in a 0.787 (5):0.213 (5) ratio.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809049848/bg2309sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809049848/bg2309Isup2.hkl
Contains datablock I

CCDC reference: 758752

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in solvent or counterion
  • R factor = 0.027
  • wR factor = 0.089
  • Data-to-parameter ratio = 11.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Co1 -- O3 .. 6.36 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Co1 -- O4 .. 5.81 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.08 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.07 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 20 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 13
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 13 PLAT302_ALERT_4_G Note: Anion/Solvent Disorder ................... 50.00 Perc.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The D—H···A hydrogen bonds, ranging from the strong ones involving O—H and N—H to the weak ones involving C—H, have been widely used as a putative tool for engineering organic and metal-organic solids (Braga & Grepioni, 2000; Baures et al., 2006; Maly et al., 2006). In this paper, we report the hydrogen-bonded structure of the title compound, (I), which contains a nuetral metal complex molecule, [Co(N3)2(H2O)4], and a zwitterionic dicarboxylate, 1,2-bis(4-carboxylatopyridinium)ethane(Loeb et al., 2006).

The molecular structure is shown in Fig. 1. The metal complex molecule is centrosymmetric, with the Co(II) ion being six-coordinated by two azides and four aquas with a trans-octahedral geometry.The axial Co–N distances are slightly shorter than the equatorial Co–O ones. The zwitterionic molecule is also centrosymmetric. As shown in Fig. 2, the inorganic complex molecules and the organic molecules are associated into a two-dimensional sheet along the [101] direction through O—H···O hydrogen bonds involving the coordinated aqua ligands (O3 and O4) and the carboxylate oxygen atoms (O1 and O2). Two O4 aqua ligands from different complex molecules and two O2 atoms from different organic molecules, form a hydrogen-bonded ring which can be denoted by the graph set R42(8) (Bernstein et al., 1995; Etter, 1990), and the carboxylate group forms a R22(8) hydrogen-bonded ring with two aqua ligands from the same complex molecule. The three-dimensional structure is formed via the hydrogen bonds between the disordered free water molecules (O5 and O5') and the terminal azide nitrogen (N4), the carboxylate oxygen (O2) or the coordinated water molecule (O3) (Fig. 3).

Related literature top

For background information on hydrogen bonds in crystal engineering, see: Baures et al. (2006); Braga & Grepioni (2000); Maly et al. (2006). For the ligand synthesis, see: Loeb et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). AUTHOR: Please supply captions for all three figures (include probability level for ellipsoid plot

Experimental top

The crystals was synthesized using the hydrothermal method in a 23 ml Teflon-lined Parr bomb. CoCl2.6H2O (0.0238 g, 0.1 mmol), 1,2-bis(4-carboxylatopyridinium)ethane (0.0434 g, 0.1 mmol), NaN3 (0.052 g, 0.8 mmol) and distilled water (3 ml) were placed into the bomb and sealed. The bomb was then heated in a 70°C oven for 3 d and allowed to cool to room temperature. The clear colorless solution was decanted to give sheet orange crystals. Yield: 71.7%. Elemental analysis: calculated for C14H24CoN8O10: C 32.13, H 4.62, N 21.41%; found: C 32.28, H 4.79, N 21.73%. IR (KBr, ν/cm-1): 2086, 1607, 1561, 1457, 1372, 1193, 1138, 1110, 1043, 782, 686.

Refinement top

All hydrogen atoms attached to carbon atoms were placed at calculated positions and refined with the riding model using AFIX 43 and AFIX 23 instructions for aromatic C—H and secondary CH2. The water hydrogen atoms were initially located from difference Fourier maps and refined isotropically with restraints on O—H distance (0.85 Å) and H—O—H angle, and Uiso(H) = 1.5Ueq(O). The free water molecule is disordered over two positions with the occupancies being refined to be 0.79 (O5) and 0.21 (O5').

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the two-dimensional network by O—H···O hydrogen bonds which are shown in dashed lines. Hydrogen atoms not involved in the hydrogen bonds have been omitted for clarity.
[Figure 3] Fig. 3. The three-dimensional structure of (I) formed via O—H···O and O—H···N hydrogen-bonds which are shown as dashed lines.
Tetraaquadiazidocobalt(II) 4,4'-dicarboxylato-1,1'-ethylenedipyridinium dihydrate top
Crystal data top
[Co(N3)2(H2O)4]·C14H12N2O4·2H2OZ = 1
Mr = 523.34F(000) = 271
Triclinic, P1Dx = 1.655 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1951 (5) ÅCell parameters from 7436 reflections
b = 9.0354 (7) Åθ = 2.5–27.6°
c = 9.0915 (5) ŵ = 0.89 mm1
α = 71.402 (3)°T = 296 K
β = 85.568 (2)°Sheet, orange
γ = 69.752 (2)°0.08 × 0.08 × 0.02 mm
V = 525.20 (6) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2029 independent reflections
Radiation source: fine-focus sealed tube2016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 78
Tmin = 0.932, Tmax = 0.982k = 1111
6498 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.2305P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
2029 reflectionsΔρmax = 0.34 e Å3
183 parametersΔρmin = 0.35 e Å3
13 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.072 (7)
Crystal data top
[Co(N3)2(H2O)4]·C14H12N2O4·2H2Oγ = 69.752 (2)°
Mr = 523.34V = 525.20 (6) Å3
Triclinic, P1Z = 1
a = 7.1951 (5) ÅMo Kα radiation
b = 9.0354 (7) ŵ = 0.89 mm1
c = 9.0915 (5) ÅT = 296 K
α = 71.402 (3)°0.08 × 0.08 × 0.02 mm
β = 85.568 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2029 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2016 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.982Rint = 0.020
6498 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02713 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.34 e Å3
2029 reflectionsΔρmin = 0.35 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50000.50000.00000.02233 (16)
N10.0182 (2)0.06625 (19)0.78289 (17)0.0240 (3)
N20.5369 (3)0.4349 (3)0.2408 (2)0.0458 (5)
N30.4823 (2)0.3822 (2)0.36258 (18)0.0283 (4)
O30.4820 (2)0.26543 (17)0.02090 (16)0.0300 (3)
H310.425 (4)0.272 (3)0.058 (2)0.045*
H320.420 (4)0.229 (3)0.099 (2)0.045*
O40.18626 (19)0.59340 (17)0.00759 (16)0.0298 (3)
H420.146 (4)0.535 (3)0.087 (2)0.045*
H410.135 (4)0.600 (3)0.072 (2)0.045*
C10.1394 (3)0.2551 (3)0.3161 (2)0.0316 (4)
C20.0846 (3)0.1895 (2)0.4838 (2)0.0267 (4)
C30.1985 (3)0.0345 (2)0.5774 (2)0.0284 (4)
H3A0.31090.02880.53920.034*
C40.1448 (3)0.0255 (2)0.7271 (2)0.0279 (4)
H4A0.22110.12980.79030.033*
C50.1306 (3)0.2167 (2)0.6939 (2)0.0322 (4)
H5A0.24260.27790.73420.039*
C60.0818 (3)0.2812 (3)0.5435 (2)0.0335 (4)
H6A0.16020.38590.48230.040*
C70.0719 (3)0.0022 (2)0.9445 (2)0.0283 (4)
H7A0.06630.11560.96360.034*
H7B0.20610.06310.96070.034*
N40.4358 (4)0.3278 (3)0.4876 (2)0.0546 (6)
O10.2747 (3)0.1567 (2)0.26605 (18)0.0470 (4)
O20.0391 (2)0.4020 (2)0.24191 (17)0.0447 (4)
O50.2585 (3)0.2801 (3)0.7844 (2)0.0415 (7)0.787 (5)
H50.344 (3)0.244 (3)0.727 (3)0.062*
H510.193 (5)0.377 (3)0.760 (4)0.062*0.787 (5)
O5'0.4261 (18)0.1544 (12)0.7953 (9)0.059 (3)0.213 (5)
H520.506 (13)0.097 (6)0.744 (6)0.089*0.213 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0217 (2)0.0262 (2)0.0185 (2)0.00944 (14)0.00190 (12)0.00503 (13)
N10.0264 (7)0.0293 (8)0.0161 (7)0.0115 (6)0.0029 (5)0.0050 (6)
N20.0542 (12)0.0691 (13)0.0221 (9)0.0363 (11)0.0023 (8)0.0080 (8)
N30.0273 (8)0.0341 (8)0.0252 (9)0.0110 (7)0.0001 (6)0.0105 (7)
O30.0309 (7)0.0337 (7)0.0279 (7)0.0147 (6)0.0038 (5)0.0096 (6)
O40.0256 (6)0.0341 (7)0.0267 (7)0.0118 (5)0.0019 (5)0.0041 (6)
C10.0371 (10)0.0469 (11)0.0172 (8)0.0266 (9)0.0001 (7)0.0048 (8)
C20.0309 (9)0.0378 (10)0.0169 (8)0.0208 (8)0.0002 (7)0.0058 (7)
C30.0308 (9)0.0330 (9)0.0230 (9)0.0120 (8)0.0068 (7)0.0108 (7)
C40.0299 (9)0.0262 (8)0.0231 (8)0.0073 (7)0.0028 (7)0.0048 (7)
C50.0291 (9)0.0329 (10)0.0260 (9)0.0043 (8)0.0027 (7)0.0052 (8)
C60.0327 (10)0.0333 (10)0.0248 (9)0.0077 (8)0.0026 (7)0.0008 (8)
C70.0322 (9)0.0345 (10)0.0163 (8)0.0142 (8)0.0062 (7)0.0037 (7)
N40.0637 (14)0.0823 (16)0.0274 (10)0.0407 (13)0.0125 (9)0.0150 (10)
O10.0690 (11)0.0510 (9)0.0277 (7)0.0306 (9)0.0198 (7)0.0143 (7)
O20.0378 (8)0.0585 (10)0.0247 (7)0.0191 (7)0.0001 (6)0.0074 (7)
O50.0513 (14)0.0524 (13)0.0298 (10)0.0267 (11)0.0064 (8)0.0162 (9)
O5'0.107 (9)0.048 (5)0.029 (4)0.031 (5)0.014 (4)0.011 (3)
Geometric parameters (Å, º) top
Co1—N22.0903 (18)C1—C21.524 (2)
Co1—N2i2.0903 (18)C2—C31.382 (3)
Co1—O3i2.1152 (14)C2—C61.384 (3)
Co1—O32.1152 (14)C3—C41.375 (3)
Co1—O4i2.1230 (13)C3—H3A0.9300
Co1—O42.1230 (13)C4—H4A0.9300
N1—C51.340 (2)C5—C61.376 (3)
N1—C41.350 (2)C5—H5A0.9300
N1—C71.479 (2)C6—H6A0.9300
N2—N31.154 (2)C7—C7ii1.519 (4)
N3—N41.159 (3)C7—H7A0.9700
O3—H310.826 (16)C7—H7B0.9700
O3—H320.847 (16)O5—H50.824 (17)
O4—H420.846 (16)O5—H510.802 (17)
O4—H410.812 (16)O5'—H50.894 (17)
C1—O11.239 (3)O5'—H520.85 (2)
C1—O21.256 (3)
N2—Co1—N2i180.0O1—C1—O2126.83 (18)
N2—Co1—O3i89.06 (7)O1—C1—C2116.63 (18)
N2i—Co1—O3i90.94 (7)O2—C1—C2116.51 (18)
N2—Co1—O390.94 (7)C3—C2—C6118.98 (16)
N2i—Co1—O389.06 (7)C3—C2—C1120.08 (18)
O3i—Co1—O3180.00 (8)C6—C2—C1120.92 (18)
N2—Co1—O4i87.27 (7)C4—C3—C2119.67 (17)
N2i—Co1—O4i92.73 (7)C4—C3—H3A120.2
O3i—Co1—O4i88.65 (5)C2—C3—H3A120.2
O3—Co1—O4i91.35 (5)N1—C4—C3120.32 (17)
N2—Co1—O492.73 (7)N1—C4—H4A119.8
N2i—Co1—O487.27 (7)C3—C4—H4A119.8
O3i—Co1—O491.35 (5)N1—C5—C6120.57 (18)
O3—Co1—O488.65 (5)N1—C5—H5A119.7
O4i—Co1—O4180.00 (3)C6—C5—H5A119.7
C5—N1—C4120.90 (15)C5—C6—C2119.56 (18)
C5—N1—C7120.17 (15)C5—C6—H6A120.2
C4—N1—C7118.94 (15)C2—C6—H6A120.2
N3—N2—Co1148.27 (17)N1—C7—C7ii109.17 (18)
N2—N3—N4177.0 (2)N1—C7—H7A109.8
Co1—O3—H31109.2 (19)C7ii—C7—H7A109.8
Co1—O3—H32113.4 (18)N1—C7—H7B109.8
H31—O3—H32108 (2)C7ii—C7—H7B109.8
Co1—O4—H42111.1 (18)H7A—C7—H7B108.3
Co1—O4—H41110.5 (19)H5—O5—H51121 (3)
H42—O4—H41112 (2)H5—O5'—H52107 (3)
O3i—Co1—N2—N3129.7 (4)C5—N1—C4—C30.1 (3)
O3—Co1—N2—N350.3 (4)C7—N1—C4—C3179.88 (17)
O4i—Co1—N2—N3141.6 (4)C2—C3—C4—N10.1 (3)
O4—Co1—N2—N338.4 (4)C4—N1—C5—C60.2 (3)
O1—C1—C2—C37.4 (3)C7—N1—C5—C6179.94 (18)
O2—C1—C2—C3174.40 (18)N1—C5—C6—C20.2 (3)
O1—C1—C2—C6170.78 (19)C3—C2—C6—C50.1 (3)
O2—C1—C2—C67.4 (3)C1—C2—C6—C5178.15 (18)
C6—C2—C3—C40.0 (3)C5—N1—C7—C7ii107.1 (2)
C1—C2—C3—C4178.22 (17)C4—N1—C7—C7ii73.1 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O5iii0.83 (2)1.91 (2)2.727 (2)170 (2)
O3—H31···O5iii0.83 (2)1.96 (2)2.664 (8)143 (3)
O4—H41···O2iv0.81 (2)2.07 (2)2.870 (2)167 (3)
O5—H51···O2v0.80 (2)2.11 (2)2.877 (3)160 (4)
O3—H32···O10.85 (2)1.85 (2)2.694 (2)178 (3)
O4—H42···O20.85 (2)1.85 (2)2.687 (2)172 (2)
O5—H5···N40.82 (2)2.19 (2)2.864 (3)139 (2)
Symmetry codes: (iii) x, y, z1; (iv) x, y+1, z; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(N3)2(H2O)4]·C14H12N2O4·2H2O
Mr523.34
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.1951 (5), 9.0354 (7), 9.0915 (5)
α, β, γ (°)71.402 (3), 85.568 (2), 69.752 (2)
V3)525.20 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.08 × 0.08 × 0.02
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.932, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
6498, 2029, 2016
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.089, 1.18
No. of reflections2029
No. of parameters183
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.35

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O5i0.826 (16)1.908 (18)2.727 (2)170 (2)
O3—H31···O5'i0.826 (16)1.96 (2)2.664 (8)143 (3)
O4—H41···O2ii0.812 (16)2.072 (18)2.870 (2)167 (3)
O5—H51···O2iii0.802 (17)2.110 (18)2.877 (3)160 (4)
O3—H32···O10.847 (16)1.847 (17)2.694 (2)178 (3)
O4—H42···O20.846 (16)1.847 (17)2.687 (2)172 (2)
O5—H5···N40.824 (17)2.19 (2)2.864 (3)138.6 (19)
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z; (iii) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds