Download citation
Download citation
link to html
In the title mononuclear complex, [Ag(C10H6N4)2]BF4, the AgI atom adopts a square-planar N4 coordination geometry and is surrounded by two 5-(2-pyrid­yl)pyrazine-2-carbonitrile ligands. The tetra­fluorido­borate anions link the mononuclear cations through inter­molecular C—H...F hydrogen-bonding inter­actions, forming an infinite tape structure along [110]. Other weak inter­actions occur: π–π stacking with centroid–centroid distances of 3.820 (2) and 3.898 (1) Å between pyridyl rings and 3.610 (2) and 3.926 (2) Å between pyrazinyl rings as well as F...π contacts involving the tetra­fluorido­borate anions and pyrazine rings [F...centroid = 2.999 (3) Å]; these combine with the hydrogen-bonding inter­actions to link the mononuclear cations into a three-dimensional supra­molecular architecture.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810035178/bg2359sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810035178/bg2359Isup2.hkl
Contains datablock I

CCDC reference: 797620

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.038
  • wR factor = 0.111
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ag1 -- N4 .. 8.69 su PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 19 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of B1 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 81
Alert level G PLAT371_ALERT_2_G Long C(sp2)-C(sp1) Bond C1 - C3 ... 1.45 Ang. PLAT371_ALERT_2_G Long C(sp2)-C(sp1) Bond C20 - C22 ... 1.45 Ang. PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

During the past decades, coordination chemistry based on multidentate N-containing ligands has been widely developed and received intense interests (Peedikakkal et al., 2010). 2,2'-bipyridine is a popular member of the pyridine-based family and attracts a great of attentions because of the potential medicinal applications (Casini et al., 2006) and the fascinating framework structures (Li et al., 2010; Wang et al., 2009) of its divers metal complexes. Many 2,2'-bipyridine derivatives together with their various metal complexes have also been synthesized and well characterized (Berghian et al., 2005; Mathieu et al., 2001).

Herein, we present the structure of the new complex [Ag(C10H6N4)2]BF4 derived from 5-(2-pyridyl)-2-cyanopyrazine ligand, a similar ligand to the 2,2'-bipyridine featuring a 2-cyanopyrazinyl group at the 2-pyridyl carbon atom (Scheme 1). In the mononuclear title complex, the two ligands surrounding the center Ag(I) ion are in an anti-relationship and almost in the same plane, thus each of them chelates the Ag(I) ion through one 2-pyridyl N atom and one 4-pyrazinyl N atom, leading to a square planar N4- coordination geometry. As shown in Fig.1, the Ag1—N1(pyridyl) and Ag1—N3(pyridyl) bonds equal to 2.196 (2) and 2.203 (2) Å, respectively, which are considerably shorter than the other two Ag—N(pyrazinyl) bonds with the distances of 2.659 (2) Å (Ag1—N4) and 2.685 (2) Å (Ag1—N2), respectively. The longer Ag—N(pyrazinyl) distance is comparable to that in [Ag(dafone)2]NO3.H2O (dafone = 4,5-diazafluoren-9-one) (Biju et al., 2008). For the tetrafluoridoborate anions, each one links two neighbor [Ag(C10H6N4)2]+ cationic moieties arranged along the [110] direction through C—H···F (Denis et al., 2004) hydrogen bonding (C13···F2 3.015 (1) Å, C13—H13a···F2 120.8°; C11i···F4 3.132 (2) Å, C11i—H11ai···F4 137.2°, i x-1, y-1, z), forming an infinite tape structure (Fig. 2). The tape arrays are arranged along [110] direction in a shoulder to shoulder mode and stack along [-110] direction via π-π and F(BF4-)···π(pyrazinyl) interactions (Fig. 3). The close centroid(pyridyl)···centroid(pyridyl)distances are 3.820 (2) and 3.898 (1) Å, while that of centroid(pyrazinyl)···centroid(pyrazinyl) are 3.610 (2) and 3.926 (2) Å. For the anion-π interaction, F4(BF4-)···centroid(pyrazinyl) distance is 2.999 (3) Å, comparable to that 3.097 (1) Å found in Cu[(2-C4H3N2)2C(OH)2]2(BF4-)2 (Wan, et al., 2008).

Related literature top

For coordination complexes with 2,2'-bipyridine, see: Casini et al. (2006); Li et al. (2010); Wang et al. (2009). For other related structures involving 2,2'-bipyridine derivatives, see: Berghian et al. (2005); Mathieu et al. (2001). For the coordination chemistry of multidentate N-containing ligands, see: Peedikakkal et al. (2010). For properties of pyridine-based ligands, see: Casini et al. (2006). For comparison Ag—N(pyrazinyl) distances, see: Biju et al. (2008). For C—H···F interactions ,see: Denis et al. (2004). For a comparable BF4 anion–pyrazinyl interaction, see: Wan et al. (2008).

Experimental top

The ligand 5-(2-pyridyl)-2-cyanopyrazine was obtained commercially.The ligand (0.182 g, 0.1 mmol) was dissolved in a mixture of methanol, 2 ml, and acetonitrile, 2 ml was added to AgBF4 (0.194g, 0.1mmol), with constantly stirring. After four hours, the clear solution was filtered and kept in air for one week at room temperature to yield colorless rod-like crystals (274 mg, 72% yeild).

Refinement top

The hydrogen atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C— H = 0.93 Å and Uĩso~(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme of the title [Ag(C10H6N4)2]BF4. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as sticks of arbitrary radii.
[Figure 2] Fig. 2. The tetrafluoridoborate linkages between the [Ag(C10H6N4)2]+moieties arranged along [110] direction. The red-dashed lines indicate the C—H···F hydrogen-bonding interactions. Symmetry code: i x-1, y-1, z.
[Figure 3] Fig. 3. Three-dimensional structure of the title complex. The red dashed lines represent ππ stacking interactions,while blue dashed lines indicate F(BF4-)···π(pyrazinyl) interactions. A, B, C and D red lettering indicate Cg2···Cg2i,Cg3···Cg3ii,Cg4···Cg4iii and Cg1···Cg1iv distances, respectively, while E represents F4···Cg1v distance. (See Table 2).
Bis[5-(2-pyridyl)pyrazine-2-carbonitrile]silver(I) tetrafluoridoborate top
Crystal data top
[Ag(C10H6N4)2]BF4Z = 2
Mr = 559.06F(000) = 552
Triclinic, P1Dx = 1.815 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8144 (12) ÅCell parameters from 255 reflections
b = 11.2492 (16) Åθ = 1.9–28.2°
c = 12.2697 (18) ŵ = 1.05 mm1
α = 104.168 (3)°T = 293 K
β = 90.789 (2)°Rod, colourless
γ = 101.429 (3)°0.45 × 0.40 × 0.30 mm
V = 1022.8 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4986 independent reflections
Radiation source: fine-focus sealed tube3929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.615, Tmax = 0.783k = 1511
7178 measured reflectionsl = 1116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.3679P]
where P = (Fo2 + 2Fc2)/3
4986 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Ag(C10H6N4)2]BF4γ = 101.429 (3)°
Mr = 559.06V = 1022.8 (3) Å3
Triclinic, P1Z = 2
a = 7.8144 (12) ÅMo Kα radiation
b = 11.2492 (16) ŵ = 1.05 mm1
c = 12.2697 (18) ÅT = 293 K
α = 104.168 (3)°0.45 × 0.40 × 0.30 mm
β = 90.789 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4986 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3929 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.783Rint = 0.017
7178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.04Δρmax = 0.95 e Å3
4986 reflectionsΔρmin = 0.73 e Å3
307 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.48906 (4)0.75499 (2)0.295313 (17)0.05808 (11)
N10.6368 (3)0.8859 (2)0.44508 (18)0.0413 (5)
C170.4863 (3)0.7511 (2)0.0256 (2)0.0354 (5)
C80.7174 (4)0.9522 (3)0.6418 (2)0.0488 (7)
H8A0.70960.93620.71260.059*
C90.8161 (4)1.0650 (3)0.6289 (3)0.0536 (7)
H9A0.87571.12510.69080.064*
N30.3487 (3)0.6200 (2)0.14425 (19)0.0440 (5)
N70.5870 (3)0.8837 (2)0.09560 (19)0.0448 (5)
C60.5258 (3)0.7428 (2)0.5588 (2)0.0349 (5)
C130.1720 (4)0.4170 (3)0.0664 (3)0.0552 (7)
H13A0.10520.34370.07840.066*
C70.6308 (3)0.8640 (2)0.5475 (2)0.0366 (5)
C100.8236 (4)1.0857 (3)0.5235 (3)0.0525 (7)
H10A0.88971.15960.51230.063*
C160.3722 (3)0.6342 (2)0.0397 (2)0.0366 (5)
C30.3250 (4)0.5376 (2)0.5951 (2)0.0396 (5)
C180.4773 (4)0.7863 (3)0.0758 (2)0.0437 (6)
H18A0.39120.73960.13140.052*
C110.7318 (4)0.9954 (3)0.4349 (3)0.0507 (7)
H11A0.73561.01080.36380.061*
C200.7024 (3)0.9492 (2)0.0119 (2)0.0403 (5)
C140.1954 (4)0.4306 (3)0.0405 (3)0.0511 (7)
H14A0.14370.36700.10250.061*
N50.9098 (4)1.1363 (3)0.0604 (3)0.0645 (7)
C220.8224 (4)1.0544 (3)0.0359 (2)0.0481 (6)
C210.7073 (4)0.9214 (3)0.0921 (2)0.0475 (6)
H21A0.78730.97250.14960.057*
C10.2107 (4)0.4315 (3)0.6209 (2)0.0509 (7)
C150.2969 (4)0.5401 (3)0.0547 (2)0.0458 (6)
H15A0.31500.55110.12660.055*
C120.2491 (4)0.5138 (3)0.1556 (3)0.0552 (7)
H12A0.23070.50460.22810.066*
N60.1246 (5)0.3511 (3)0.6475 (3)0.0784 (10)
F30.0390 (3)0.1799 (2)0.2096 (2)0.0787 (6)
B10.0554 (4)0.2501 (3)0.2781 (3)0.0411 (6)
F10.0294 (4)0.3082 (4)0.3781 (3)0.1278 (13)
F20.0835 (4)0.3504 (3)0.2347 (3)0.1227 (12)
F40.2181 (3)0.1894 (2)0.2873 (2)0.0778 (6)
N40.5982 (3)0.8218 (2)0.11044 (18)0.0445 (5)
N80.4633 (3)0.5922 (2)0.66795 (19)0.0418 (5)
C50.5636 (3)0.6942 (2)0.6495 (2)0.0387 (5)
H5A0.66170.73480.69800.046*
N20.3941 (3)0.6827 (2)0.48248 (18)0.0402 (5)
C20.2927 (4)0.5793 (2)0.5009 (2)0.0420 (6)
H2B0.19920.53500.44980.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0852 (2)0.05274 (16)0.02856 (13)0.00162 (12)0.00852 (11)0.00651 (9)
N10.0523 (13)0.0386 (11)0.0313 (11)0.0033 (10)0.0040 (9)0.0102 (9)
C170.0408 (13)0.0365 (12)0.0269 (11)0.0062 (10)0.0027 (9)0.0059 (9)
C80.0643 (18)0.0420 (14)0.0336 (13)0.0004 (13)0.0073 (12)0.0064 (11)
C90.0606 (18)0.0383 (14)0.0524 (17)0.0031 (13)0.0108 (14)0.0052 (12)
N30.0541 (13)0.0412 (11)0.0320 (11)0.0036 (10)0.0019 (10)0.0113 (9)
N70.0503 (13)0.0492 (13)0.0342 (11)0.0025 (10)0.0034 (10)0.0155 (10)
C60.0424 (13)0.0345 (11)0.0263 (11)0.0064 (10)0.0051 (9)0.0058 (9)
C130.0599 (18)0.0445 (15)0.0550 (18)0.0077 (13)0.0015 (14)0.0160 (13)
C70.0438 (13)0.0359 (12)0.0292 (11)0.0054 (10)0.0034 (10)0.0089 (9)
C100.0558 (17)0.0394 (14)0.0601 (19)0.0012 (12)0.0014 (14)0.0176 (13)
C160.0418 (13)0.0360 (12)0.0305 (12)0.0056 (10)0.0014 (10)0.0079 (9)
C30.0489 (14)0.0314 (11)0.0354 (13)0.0036 (10)0.0089 (11)0.0058 (10)
C180.0504 (15)0.0468 (14)0.0297 (12)0.0019 (12)0.0009 (11)0.0116 (11)
C110.0628 (18)0.0465 (15)0.0433 (15)0.0012 (13)0.0054 (13)0.0204 (12)
C200.0447 (14)0.0376 (12)0.0369 (13)0.0053 (11)0.0063 (11)0.0086 (10)
C140.0587 (17)0.0411 (14)0.0456 (16)0.0001 (12)0.0081 (13)0.0051 (12)
N50.0714 (18)0.0531 (15)0.0635 (18)0.0065 (14)0.0085 (15)0.0197 (14)
C220.0561 (17)0.0450 (15)0.0409 (15)0.0056 (13)0.0049 (13)0.0104 (12)
C210.0573 (17)0.0427 (14)0.0341 (13)0.0036 (12)0.0031 (12)0.0056 (11)
C10.0690 (19)0.0373 (13)0.0402 (15)0.0022 (13)0.0027 (13)0.0092 (11)
C150.0596 (17)0.0411 (13)0.0323 (13)0.0027 (12)0.0034 (12)0.0077 (11)
C120.0670 (19)0.0540 (17)0.0401 (15)0.0060 (14)0.0060 (14)0.0180 (13)
N60.102 (2)0.0543 (16)0.065 (2)0.0189 (16)0.0047 (18)0.0184 (15)
F30.0780 (14)0.0826 (14)0.0689 (14)0.0290 (12)0.0006 (11)0.0027 (11)
B10.0441 (16)0.0402 (15)0.0358 (14)0.0004 (12)0.0024 (12)0.0110 (12)
F10.0818 (17)0.168 (3)0.084 (2)0.0053 (18)0.0150 (15)0.0426 (19)
F20.143 (3)0.101 (2)0.159 (3)0.0464 (19)0.077 (2)0.079 (2)
F40.0647 (12)0.0723 (13)0.0895 (16)0.0018 (10)0.0035 (11)0.0202 (12)
N40.0574 (13)0.0404 (11)0.0293 (10)0.0027 (10)0.0018 (10)0.0074 (9)
N80.0501 (12)0.0392 (11)0.0364 (11)0.0061 (10)0.0037 (9)0.0129 (9)
C50.0427 (13)0.0403 (12)0.0323 (12)0.0051 (10)0.0012 (10)0.0103 (10)
N20.0486 (12)0.0394 (11)0.0293 (10)0.0030 (9)0.0003 (9)0.0078 (9)
C20.0491 (15)0.0391 (13)0.0321 (12)0.0005 (11)0.0017 (11)0.0066 (10)
Geometric parameters (Å, º) top
Ag1—N12.196 (2)C16—C151.394 (4)
Ag1—N32.203 (2)C3—N81.337 (4)
N1—C71.338 (3)C3—C21.387 (4)
N1—C111.341 (4)C3—C11.447 (4)
C17—N41.333 (3)C18—H18A0.9300
C17—C181.400 (3)C11—H11A0.9300
C17—C161.485 (3)C20—C211.388 (4)
C8—C71.390 (4)C20—C221.451 (4)
C8—C91.394 (4)C14—C151.378 (4)
C8—H8A0.9300C14—H14A0.9300
C9—C101.369 (5)N5—C221.139 (4)
C9—H9A0.9300C21—N41.335 (4)
N3—C121.329 (4)C21—H21A0.9300
N3—C161.341 (3)C1—N61.134 (4)
N7—C201.324 (4)C15—H15A0.9300
N7—C181.326 (4)C12—H12A0.9300
C6—N21.335 (3)F3—B11.340 (4)
C6—C51.406 (3)B1—F11.337 (4)
C6—C71.484 (3)B1—F41.340 (4)
C13—C141.368 (4)B1—F21.413 (4)
C13—C121.373 (4)N8—C51.326 (3)
C13—H13A0.9300C5—H5A0.9300
C10—C111.370 (4)N2—C21.341 (3)
C10—H10A0.9300C2—H2B0.9300
N1—Ag1—N3177.92 (8)C17—C18—H18A118.8
C7—N1—C11118.1 (2)N1—C11—C10123.6 (3)
C7—N1—Ag1123.04 (17)N1—C11—H11A118.2
C11—N1—Ag1118.76 (19)C10—C11—H11A118.2
N4—C17—C18120.3 (2)N7—C20—C21122.9 (2)
N4—C17—C16119.2 (2)N7—C20—C22115.0 (2)
C18—C17—C16120.5 (2)C21—C20—C22122.1 (3)
C7—C8—C9119.2 (3)C13—C14—C15118.9 (3)
C7—C8—H8A120.4C13—C14—H14A120.6
C9—C8—H8A120.4C15—C14—H14A120.6
C10—C9—C8118.8 (3)N5—C22—C20175.8 (3)
C10—C9—H9A120.6N4—C21—C20120.5 (2)
C8—C9—H9A120.6N4—C21—H21A119.7
C12—N3—C16118.1 (2)C20—C21—H21A119.7
C12—N3—Ag1118.73 (19)N6—C1—C3176.1 (3)
C16—N3—Ag1122.86 (17)C14—C15—C16119.4 (3)
C20—N7—C18116.0 (2)C14—C15—H15A120.3
N2—C6—C5121.1 (2)C16—C15—H15A120.3
N2—C6—C7118.7 (2)N3—C12—C13123.7 (3)
C5—C6—C7120.2 (2)N3—C12—H12A118.2
C14—C13—C12118.6 (3)C13—C12—H12A118.2
C14—C13—H13A120.7F1—B1—F4112.6 (3)
C12—C13—H13A120.7F1—B1—F3112.4 (3)
N1—C7—C8121.6 (2)F4—B1—F3114.0 (3)
N1—C7—C6118.2 (2)F1—B1—F2103.0 (3)
C8—C7—C6120.2 (2)F4—B1—F2103.0 (3)
C9—C10—C11118.7 (3)F3—B1—F2110.8 (3)
C9—C10—H10A120.7C17—N4—C21117.6 (2)
C11—C10—H10A120.7C5—N8—C3116.3 (2)
N3—C16—C15121.3 (2)N8—C5—C6121.8 (2)
N3—C16—C17118.7 (2)N8—C5—H5A119.1
C15—C16—C17120.0 (2)C6—C5—H5A119.1
N8—C3—C2122.5 (2)C6—N2—C2116.9 (2)
N8—C3—C1115.5 (2)N2—C2—C3121.0 (2)
C2—C3—C1122.1 (3)N2—C2—H2B119.5
N7—C18—C17122.4 (2)C3—C2—H2B119.5
N7—C18—H18A118.8
C7—C8—C9—C100.4 (5)C9—C10—C11—N11.3 (5)
C11—N1—C7—C81.1 (4)C18—N7—C20—C211.8 (4)
Ag1—N1—C7—C8176.0 (2)C18—N7—C20—C22179.3 (3)
C11—N1—C7—C6180.0 (2)C12—C13—C14—C150.7 (5)
Ag1—N1—C7—C63.0 (3)N7—C20—C21—N43.1 (4)
C9—C8—C7—N11.5 (4)C22—C20—C21—N4178.1 (3)
C9—C8—C7—C6179.6 (3)C13—C14—C15—C160.3 (5)
N2—C6—C7—N124.8 (3)N3—C16—C15—C140.4 (4)
C5—C6—C7—N1156.3 (2)C17—C16—C15—C14178.1 (3)
N2—C6—C7—C8154.2 (3)C16—N3—C12—C131.3 (5)
C5—C6—C7—C824.7 (4)Ag1—N3—C12—C13172.3 (3)
C8—C9—C10—C110.9 (5)C14—C13—C12—N31.3 (5)
C12—N3—C16—C150.9 (4)C18—C17—N4—C214.3 (4)
Ag1—N3—C16—C15172.5 (2)C16—C17—N4—C21175.4 (2)
C12—N3—C16—C17178.6 (3)C20—C21—N4—C170.2 (4)
Ag1—N3—C16—C175.3 (3)C2—C3—N8—C54.0 (4)
N4—C17—C16—N318.2 (4)C1—C3—N8—C5176.0 (2)
C18—C17—C16—N3162.2 (3)C3—N8—C5—C60.5 (4)
N4—C17—C16—C15159.6 (3)N2—C6—C5—N85.0 (4)
C18—C17—C16—C1520.0 (4)C7—C6—C5—N8173.9 (2)
C20—N7—C18—C172.4 (4)C5—C6—N2—C24.6 (4)
N4—C17—C18—N75.7 (4)C7—C6—N2—C2174.3 (2)
C16—C17—C18—N7174.0 (3)C6—N2—C2—C30.3 (4)
C7—N1—C11—C100.3 (5)N8—C3—C2—N24.3 (4)
Ag1—N1—C11—C10177.5 (2)C1—C3—C2—N2175.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5a···F3i0.932.493.398 (3)167
C13—H13a···F20.932.433.015 (5)121
C11—H11a···F4ii0.932.393.132 (4)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(C10H6N4)2]BF4
Mr559.06
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8144 (12), 11.2492 (16), 12.2697 (18)
α, β, γ (°)104.168 (3), 90.789 (2), 101.429 (3)
V3)1022.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.45 × 0.40 × 0.30
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.615, 0.783
No. of measured, independent and
observed [I > 2σ(I)] reflections
7178, 4986, 3929
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.04
No. of reflections4986
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.73

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5a···F3i0.932.493.398 (3)167
C13—H13a···F20.932.433.015 (5)121
C11—H11a···F4ii0.932.393.132 (4)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
ππ interactions top
CgCgCg···Cg (Å)Slippage angle
Cg1Cg1i3.610 (2)20.71
Cg2Cg2ii3.926 (2)33.28
Cg3Cg3iii3.820 (2)24.69
Cg4Cg4iv3.898 (1)25.89
Slippage angle = Angle Cg(I)-->Cg(J) normal to plane I Cg1,Cg2,Cg3,Cg4 are the centroids of C2-C3-N8-C5-C6-N2 (pyrazinyl) and C17-C18-N7-C20-C21-N4 (pyrazinyl), C7-C8-C9-C10-C11-N1(pyridyl) and C12-C13-C14-C15-C16-N3(pyridyl) respectively. Symmetry Codes: (i):-x+1, -y+1, -z+1; (ii): -x+1, -y+2, -z; (iii):-x+1, -y+2, -z+1; (iv): -x+1, -y+1, -z
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds