Download citation
Download citation
link to html
In this CdII complex incorporating two monodentate acetate groups and two N,N′-chelating pyridine-2-carboxamide oxime ligands, mol­ecules are assembled into chains along the c axis via N—H...O hydrogen bonding. The resulting chains are further assembled by ethanol solvent mol­ecules into a three-dimensional supermolecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814017978/bg2533sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536814017978/bg2533Isup2.hkl
Contains datablock I

CCDC reference: 1017896

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.047
  • wR factor = 0.125
  • Data-to-parameter ratio = 13.9

checkCIF/PLATON results

No syntax errors found



Alert level B Crystal system given = monoclinic PLAT735_ALERT_1_B D-H Calc 0.85(6), Rep 0.851(10) ...... 6 su-Rat O4 -H4A 1.555 1.555 # 37
Alert level C PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for ..... C7 Check PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0086 Ang. PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C9 - C10 ... 1.41 Ang. PLAT731_ALERT_1_C Bond Calc 0.84(4), Rep 0.846(10) ...... 4 su-Rat O1 -H1 1.555 1.555 # 7 PLAT731_ALERT_1_C Bond Calc 0.85(4), Rep 0.851(10) ...... 4 su-Rat N2 -H2A 1.555 1.555 # 13 PLAT731_ALERT_1_C Bond Calc 0.85(4), Rep 0.847(10) ...... 4 su-Rat N2 -H2B 1.555 1.555 # 14 PLAT731_ALERT_1_C Bond Calc 0.85(6), Rep 0.851(10) ...... 6 su-Rat O4 -H4A 1.555 1.555 # 30 PLAT735_ALERT_1_C D-H Calc 0.84(4), Rep 0.846(10) ...... 4 su-Rat O1 -H1 1.555 1.555 # 37 PLAT735_ALERT_1_C D-H Calc 0.85(4), Rep 0.851(10) ...... 4 su-Rat N2 -H2A 1.555 1.555 # 37 PLAT735_ALERT_1_C D-H Calc 0.85(4), Rep 0.847(10) ...... 4 su-Rat N2 -H2B 1.555 1.555 # 37 PLAT736_ALERT_1_C H...A Calc 2.08(7), Rep 2.09(3) ...... 2.3 su-Rat H4A -O3 1.555 8.465 # 37 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 5 Report PLAT934_ALERT_3_C Number of (Iobs-Icalc)/SigmaW > 10 Outliers .... 1 Check
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 4 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 13 ALERT level C = Check. Ensure it is not caused by an omission or oversight 2 ALERT level G = General information/check it is not something unexpected 9 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Chemical context top

The monoanions of simple of 2-pyridyl oximes, (py)C(R)NOH (R = a non-coordinating group, e.g. H, Me, Ph etc.), are remarkable sources of homo- and heterometallic complexes with novel structures and inter­esting physical properties (Miyasaka et al., 2003; Stamatatos et al., 2007). A logical extension of such studies is the investigation of the coordination chemistry of analogous organic molecules in which the non-donor R group is replaced by a donor group (e.g. pyridine, cyano etc.; Alcazar et al., 2013; Escuer et al., 2011). When R is an amino group, the resulting ligand is pyridine-2-amidoxime (systematic name: N-hy­droxy-pyridine-2-carboxamidine), (py)C(NH2)NOH, which belongs to the class of amidoximes. The presence of the amine functionality is expected to alter the coordination behaviour of this ligand in comparison with that of the (py)C(R)NOH (R = a non-coordinating group) ligands. Characteristics that differentiate the amino group are its coordination capability, potential for deprotonation, different electronic properties and hydrogen-bonding effects. In the present work, we report the first use of (py)C(NH2)NOH in CdII coordination chemistry by describing the synthesis and structure of the mononuclear titlecompound.

Structural commentary top

The title complex consists of isolated [Cd(O2CMe)2{(py)C(NH2)NOH}2] complex molecules and ethanol solvent molecules. It crystallizes in the monoclinic space group C2/c and the central CdII atom is located on a twofold axis (Wyckoff site 4e). The CdII atom is coordinated by two monodentate MeCO2- groups and two N,N'-chelating (η2)(py)C(NH2)NOH ligands (Fig. 1 and Table 1). The (py)C(NH2)NOH donor atoms are the N atoms of the neutral oxime and the 2-pyridyl groups. The amino N atom of each ligand remains uncoordinated albeit participating in an extensive inter­molecular hydrogen-bonding network. Each of the two coordinating (py)C(NH2)NOH molecules results in the formation of a five-membered chelate ring including a CdII atom, in which the chelate angle N1—Cd1—N1 [86.7 (2)°] is noteably larger than comparable angles found in [Cd(HCO2)2(pya)2] (pya = pyridine-2-aldoxime; Croitor et al., 2013) and Cd—N distances of 2.413 (4) and 2.315 (3) Å.

Supra­molecular features top

Table 2 shows the hydrogen-bonding inter­actions. There are two very strong symmetry-related intra­molecular hydrogen bonds between the unbound oxime (–O1—H1) group and uncoordinating acetate atom O3. Uncoordinating amino atom N2 acts as a donor for two hydrogen bonds; in one of these, the acceptor is coordinating atom O2 from the acetate group, which leads to the formation of chains running along the c-axis direction (Fig. 2). These chains are further linked by hydrogen bonds involving the ethanol solvent molecule (O4), acting as a donor for the uncoordinating carboxyl­ate O atom (O3) and as an acceptor for the remaining amino H atom H2B (Table 2 and Fig. 3).

Synthesis and crystallization top

A stoichiometric amount in the ratio of 2:1 of (py)C(NH2)NOH and Cd(OAc)2·3H2O were dissolved in 20 ml ethanol and 10 ml DMF, and the solution left to evaporate slowly to afford colourless block-like crystals after three weeks at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms bonded to C atoms were placed in geometrically calculated position and were refined using a riding model, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2Ueq(C). The N- and O-bound H atoms were located in a difference map and the coordinates were refined with N—H = 0.86 (1) Å and Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).

Related literature top

For related literature, see: Alcazar et al. (2013); Escuer et al. (2011); Miyasaka et al. (2003); Stamatatos et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x+1, y, -z+3/2.]
[Figure 2] Fig. 2. The hydrogen-bonded chain along the c axis. Dashed lines represent hydrogen bonds and H atoms bonded to C atoms have been omitted for clarity.
[Figure 3] Fig. 3. The crystal structure projected along the c axis. Dashed lines represent hydrogen bonds and H atoms bonded to C atoms have been omitted for clarity.
Bis(acetato-κO)bis(pyridine-2-carboxamide oxime-κ2N,N')cadmium ethanol disolvate top
Crystal data top
[Cd(C2H3O2)2(C6H7N3O)2]·2C2H6OF(000) = 1224
Mr = 596.92Dx = 1.515 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.894 (3) ÅCell parameters from 1816 reflections
b = 10.9654 (17) Åθ = 2.9–29.6°
c = 15.0212 (16) ŵ = 0.89 mm1
β = 91.746 (12)°T = 294 K
V = 2616.7 (7) Å3Block, colourless
Z = 40.28 × 0.26 × 0.2 mm
Data collection top
Agilent Xcalibur, Atlas, Gemini ultra
diffractometer
2400 independent reflections
Radiation source: Enhance (Mo) X-ray Source2017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 10.3592 pixels mm-1θmax = 25.4°, θmin = 3.5°
ω scansh = 1916
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1311
Tmin = 0.910, Tmax = 1.000l = 1816
5661 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0689P)2]
where P = (Fo2 + 2Fc2)/3
2400 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.85 e Å3
4 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cd(C2H3O2)2(C6H7N3O)2]·2C2H6OV = 2616.7 (7) Å3
Mr = 596.92Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.894 (3) ŵ = 0.89 mm1
b = 10.9654 (17) ÅT = 294 K
c = 15.0212 (16) Å0.28 × 0.26 × 0.2 mm
β = 91.746 (12)°
Data collection top
Agilent Xcalibur, Atlas, Gemini ultra
diffractometer
2400 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2017 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.050
5661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0474 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.85 e Å3
2400 reflectionsΔρmin = 0.48 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.55546 (4)0.75000.0336 (2)
O10.3289 (2)0.5799 (3)0.6185 (2)0.0456 (9)
H10.323 (4)0.623 (5)0.664 (2)0.068*
O20.5829 (2)0.6898 (3)0.67588 (19)0.0448 (8)
O30.6590 (3)0.7760 (3)0.7846 (2)0.0627 (11)
N10.5479 (2)0.3954 (4)0.6536 (2)0.0349 (9)
N20.3668 (3)0.4189 (4)0.5009 (3)0.0411 (10)
H2A0.384 (3)0.381 (4)0.456 (2)0.049*
H2B0.333 (3)0.478 (3)0.493 (4)0.049*
N30.4048 (2)0.5170 (4)0.6337 (2)0.0348 (9)
C10.6196 (3)0.3347 (5)0.6661 (3)0.0510 (13)
H1A0.65280.35200.71660.061*
C20.6469 (4)0.2478 (5)0.6083 (4)0.0574 (14)
H20.69690.20590.62000.069*
C30.5988 (3)0.2237 (5)0.5326 (4)0.0548 (14)
H30.61650.16660.49140.066*
C40.5238 (3)0.2855 (4)0.5189 (3)0.0421 (12)
H40.49000.26980.46860.051*
C50.4994 (3)0.3717 (4)0.5812 (3)0.0304 (10)
C60.4200 (3)0.4393 (4)0.5716 (3)0.0307 (10)
C70.6314 (3)0.7709 (5)0.7064 (3)0.0423 (12)
C80.6594 (5)0.8661 (6)0.6421 (4)0.077 (2)
H8A0.67820.82730.58900.115*
H8B0.70470.91250.66880.115*
H8C0.61320.91940.62730.115*
O40.2093 (3)0.5194 (5)0.3968 (3)0.0762 (13)
H4A0.207 (6)0.583 (5)0.364 (5)0.114*
C90.1674 (7)0.4180 (8)0.3623 (6)0.105 (3)
H9A0.17660.35050.40320.126*
H9B0.19270.39610.30660.126*
C100.0799 (7)0.4315 (9)0.3466 (8)0.146 (5)
H10A0.05410.45650.40060.219*
H10B0.05630.35510.32710.219*
H10C0.06980.49220.30140.219*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0343 (3)0.0403 (3)0.0260 (3)0.0000.00478 (18)0.000
O10.0355 (19)0.053 (2)0.047 (2)0.0123 (16)0.0101 (15)0.0073 (16)
O20.054 (2)0.046 (2)0.0348 (17)0.0145 (18)0.0026 (14)0.0009 (15)
O30.089 (3)0.042 (2)0.055 (2)0.020 (2)0.027 (2)0.0086 (17)
N10.036 (2)0.034 (2)0.0340 (19)0.0011 (18)0.0032 (16)0.0007 (16)
N20.043 (2)0.045 (3)0.034 (2)0.005 (2)0.0100 (18)0.0086 (18)
N30.031 (2)0.040 (2)0.033 (2)0.0060 (18)0.0039 (15)0.0039 (17)
C10.039 (3)0.065 (4)0.049 (3)0.013 (3)0.012 (2)0.008 (3)
C20.048 (3)0.051 (3)0.073 (4)0.019 (3)0.004 (3)0.002 (3)
C30.058 (3)0.048 (3)0.059 (3)0.008 (3)0.008 (3)0.009 (3)
C40.046 (3)0.041 (3)0.039 (2)0.004 (2)0.001 (2)0.010 (2)
C50.035 (2)0.028 (2)0.028 (2)0.003 (2)0.0008 (18)0.0048 (17)
C60.031 (2)0.035 (2)0.026 (2)0.003 (2)0.0000 (17)0.0072 (18)
C70.043 (3)0.046 (3)0.038 (3)0.001 (2)0.001 (2)0.006 (2)
C80.097 (5)0.075 (5)0.057 (4)0.045 (4)0.008 (3)0.020 (3)
O40.081 (3)0.068 (3)0.079 (3)0.001 (3)0.021 (2)0.015 (2)
C90.148 (9)0.080 (6)0.086 (6)0.003 (6)0.029 (6)0.001 (4)
C100.139 (10)0.150 (11)0.147 (9)0.070 (8)0.041 (8)0.044 (7)
Geometric parameters (Å, º) top
Cd1—O22.288 (3)C2—C31.376 (8)
Cd1—O2i2.288 (3)C3—H30.9300
Cd1—N12.413 (4)C3—C41.381 (7)
Cd1—N1i2.413 (4)C4—H40.9300
Cd1—N3i2.315 (3)C4—C51.394 (6)
Cd1—N32.315 (3)C5—C61.468 (6)
O1—H10.846 (10)C7—C81.498 (7)
O1—N31.404 (5)C8—H8A0.9600
O2—C71.254 (6)C8—H8B0.9600
O3—C71.244 (5)C8—H8C0.9600
N1—C11.328 (6)O4—H4A0.851 (10)
N1—C51.339 (5)O4—C91.388 (10)
N2—H2A0.851 (10)C9—H9A0.9700
N2—H2B0.847 (10)C9—H9B0.9700
N2—C61.355 (6)C9—C101.412 (14)
N3—C61.291 (6)C10—H10A0.9600
C1—H1A0.9300C10—H10B0.9600
C1—C21.368 (7)C10—H10C0.9600
C2—H20.9300
O2—Cd1—O2i99.86 (18)C2—C3—C4118.9 (5)
O2—Cd1—N188.81 (13)C4—C3—H3120.5
O2i—Cd1—N1163.16 (12)C3—C4—H4120.4
O2—Cd1—N1i163.16 (12)C3—C4—C5119.3 (4)
O2i—Cd1—N1i88.81 (13)C5—C4—H4120.4
O2—Cd1—N3i96.42 (12)N1—C5—C4120.8 (4)
O2—Cd1—N397.07 (12)N1—C5—C6117.0 (4)
O2i—Cd1—N396.42 (12)C4—C5—C6122.2 (4)
O2i—Cd1—N3i97.07 (12)N2—C6—C5120.5 (4)
N1i—Cd1—N186.69 (19)N3—C6—N2123.3 (4)
N3—Cd1—N168.01 (13)N3—C6—C5116.1 (4)
N3—Cd1—N1i96.27 (13)O2—C7—C8116.7 (4)
N3i—Cd1—N1i68.01 (13)O3—C7—O2124.9 (5)
N3i—Cd1—N196.27 (13)O3—C7—C8118.3 (5)
N3i—Cd1—N3159.0 (2)C7—C8—H8A109.5
N3—O1—H1106 (4)C7—C8—H8B109.5
C7—O2—Cd1129.4 (3)C7—C8—H8C109.5
C1—N1—Cd1124.4 (3)H8A—C8—H8B109.5
C1—N1—C5119.2 (4)H8A—C8—H8C109.5
C5—N1—Cd1116.4 (3)H8B—C8—H8C109.5
H2A—N2—H2B119 (5)C9—O4—H4A116 (6)
C6—N2—H2A120 (4)O4—C9—H9A108.3
C6—N2—H2B111 (4)O4—C9—H9B108.3
O1—N3—Cd1124.9 (3)O4—C9—C10115.9 (9)
C6—N3—Cd1122.3 (3)H9A—C9—H9B107.4
C6—N3—O1112.6 (3)C10—C9—H9A108.3
N1—C1—H1A118.5C10—C9—H9B108.3
N1—C1—C2123.1 (4)C9—C10—H10A109.5
C2—C1—H1A118.5C9—C10—H10B109.5
C1—C2—H2120.7C9—C10—H10C109.5
C1—C2—C3118.7 (5)H10A—C10—H10B109.5
C3—C2—H2120.7H10A—C10—H10C109.5
C2—C3—H3120.5H10B—C10—H10C109.5
Cd1—O2—C7—O317.9 (8)N1—Cd1—N3—O1178.6 (4)
Cd1—O2—C7—C8164.0 (4)N1—Cd1—N3—C63.7 (3)
Cd1—N1—C1—C2177.2 (4)N1i—Cd1—N3—C687.6 (4)
Cd1—N1—C5—C4176.5 (3)N1—C1—C2—C31.3 (9)
Cd1—N1—C5—C64.1 (5)N1—C5—C6—N2178.9 (4)
Cd1—N3—C6—N2177.2 (3)N1—C5—C6—N30.9 (6)
Cd1—N3—C6—C53.0 (5)N3—Cd1—O2—C7157.2 (4)
O1—N3—C6—N21.7 (6)N3i—Cd1—O2—C738.9 (4)
O1—N3—C6—C5178.5 (3)N3i—Cd1—N1—C113.3 (4)
O2i—Cd1—O2—C759.4 (4)N3—Cd1—N1—C1178.9 (4)
O2i—Cd1—N1—C1155.5 (4)N3i—Cd1—N1—C5169.5 (3)
O2—Cd1—N1—C183.0 (4)N3—Cd1—N1—C53.9 (3)
O2—Cd1—N1—C594.2 (3)N3i—Cd1—N3—O1137.7 (3)
O2i—Cd1—N1—C527.3 (6)N3i—Cd1—N3—C647.4 (3)
O2i—Cd1—N3—O18.1 (4)C1—N1—C5—C40.8 (7)
O2—Cd1—N3—O192.8 (3)C1—N1—C5—C6178.6 (4)
O2i—Cd1—N3—C6177.1 (4)C1—C2—C3—C41.7 (9)
O2—Cd1—N3—C682.1 (4)C2—C3—C4—C50.9 (8)
N1—Cd1—O2—C7135.1 (4)C3—C4—C5—N10.4 (7)
N1i—Cd1—O2—C760.6 (6)C3—C4—C5—C6179.0 (4)
N1i—Cd1—N1—C180.8 (4)C4—C5—C6—N20.5 (6)
N1i—Cd1—N1—C5102.1 (3)C4—C5—C6—N3179.7 (4)
N1i—Cd1—N3—O197.6 (3)C5—N1—C1—C20.1 (8)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.85 (1)1.86 (4)2.600 (5)145 (6)
N2—H2A···O2ii0.85 (1)2.20 (2)3.040 (5)169 (5)
N2—H2B···O40.85 (1)2.45 (4)3.113 (6)136 (5)
O4—H4A···O3iii0.85 (1)2.09 (3)2.903 (5)161 (8)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z1/2.
Selected bond lengths (Å) top
Cd1—O22.288 (3)Cd1—N32.315 (3)
Cd1—N12.413 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.846 (10)1.86 (4)2.600 (5)145 (6)
N2—H2A···O2ii0.851 (10)2.200 (15)3.040 (5)169 (5)
N2—H2B···O40.847 (10)2.45 (4)3.113 (6)136 (5)
O4—H4A···O3iii0.851 (10)2.09 (3)2.903 (5)161 (8)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(C2H3O2)2(C6H7N3O)2]·2C2H6O
Mr596.92
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)15.894 (3), 10.9654 (17), 15.0212 (16)
β (°) 91.746 (12)
V3)2616.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.28 × 0.26 × 0.2
Data collection
DiffractometerAgilent Xcalibur, Atlas, Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5661, 2400, 2017
Rint0.050
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.05
No. of reflections2400
No. of parameters173
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.48

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Olex2 (Dolomanov et al., 2009).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds