Download citation
Download citation
link to html
In the title compound, C21H25NO2, the piperidine ring adopts a twisted boat conformation characterized by puckering parameters θ = 89.5 (1) and φ = 257.5 (2)°. The phenyl groups are located in equatorial and axial positions on the central piperidine ring, while the methyl group is in an equatorial position. The dihedral angle between the phenyl rings is 49.8 (1)°. An intra­molecular C—H...O inter­action occurs. The crystal structure features weak inter­molecular C—H...O inter­actions and a stabilizing inter­molecular C—H...π contact involving the axial phenyl ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811019155/bh2353sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811019155/bh2353Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536811019155/bh2353Isup3.cml
Supplementary material

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.045
  • wR factor = 0.136
  • Data-to-parameter ratio = 16.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT480_ALERT_4_C Long H...A H-Bond Reported H18 .. O1 .. 2.91 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H14 .. O2 .. 2.82 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H10 .. O1 .. 2.67 Ang. PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 7
Alert level G PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n PLAT196_ALERT_1_G Missing _cell_measurement_theta_min datum .... ? PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT793_ALERT_4_G The Model has Chirality at C2 (Verify) .... R PLAT793_ALERT_4_G The Model has Chirality at C5 (Verify) .... S PLAT793_ALERT_4_G The Model has Chirality at C6 (Verify) .... S
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 4 ALERT level C = Check. Ensure it is not caused by an omission or oversight 7 ALERT level G = General information/check it is not something unexpected 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 8 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Piperidines and its N-substituted derivatives show significant pharmacological properties (Parthiban et al., 2009; Aridoss et al., 2007). Substitution by electron withdrawing groups (CHO, COCH2CH3, COPh, NO, etc.) at N-th position of piperidine ring causes major changes in the ring conformation (Ravindran et al., 1991; Krishna Kumar & Krishna Pillay, 1996). In the title compound (Fig. 1), the ethylacetate group substituting the piperidine ring shows extended conformation and the hetero π electron delocalization through the atoms N1, C20, O1 and O2 causes twisted boat conformation for the piperidine core, with puckering amplitude, QT = 0.718 (1) Å and phase angle = 89.5 (2)° (Nardelli, 1995; Cremer & Pople, 1975).

The phenyl rings at C2 and C6 atoms are oriented in the axial and equatorial positions, respectively, and the dihedral angle between them is 49.8 (1)°. Similarly, the methyl group at C5 is also oriented in equatorial position. All these substitutions are confirmed by the respective torsion angles. In addition, the substitution of ethylacetate group on N1 atom showed extended conformation with respect to the piperidine ring, which is also confirmed by the torsion angles.

The packing diagram of the title compound viewed down a-axis is shown in Fig. 2. The molecules did not present any classical H-bonds. However, the molecules are involved in weak intra- and intermolecular C—H···O interactions (Table 1), which stabilize the molecules in the crystal packing. Interestingly, a C—H···π interaction (C3—H3B···Cg1; Cg1 is the centroid of the ring C13···C18) also helps for the crystal packing.

Related literature top

For the biological activity of related piperidines, see: Parthiban et al. (2009); Aridoss et al. (2007). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1995). For the conformation of piperidine derivatives, see: Ravindran et al. (1991); Krishna Kumar & Krishna Pillay (1996). For the synthesis of the title compound, see: Sampath et al. (2003); Noller & Baliah (1948).

Experimental top

The compound, 3-methyl-2,6-diphenylpiperidin-4-one was obtained by adopting an earlier method (Sampath et al., 2003; Noller & Baliah, 1948) and it was reduced using amalgamated zinc in aqueous methanol solution in the presence of HCl, giving 3-methyl-2,6-diphenylpiperidine as a product. To a well stirred solution of 3,5-dimethyl-2,6-diphenylpiperidin-4-one (2 mM) and triethylamine (4 mM) in freshly distilled benzene (50 ml), a little excess amount of ethylchloroacetate (2.2 mM) in benzene (10 ml) was added drop-wise over about half an hour and stirring was continued until the completion of reaction. The reaction mixture was then poured into water and extracted with dichloromethane. Recrystallization of the title compound using pure ethanol resulted in suitable colorless crystals.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H, 0.97 Å for methylene, 0.98 Å for methine, and 0.96 Å for methyl H atoms. The Uiso parameters for H atoms were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq of the carrier atom for the remaining H atoms.

Structure description top

Piperidines and its N-substituted derivatives show significant pharmacological properties (Parthiban et al., 2009; Aridoss et al., 2007). Substitution by electron withdrawing groups (CHO, COCH2CH3, COPh, NO, etc.) at N-th position of piperidine ring causes major changes in the ring conformation (Ravindran et al., 1991; Krishna Kumar & Krishna Pillay, 1996). In the title compound (Fig. 1), the ethylacetate group substituting the piperidine ring shows extended conformation and the hetero π electron delocalization through the atoms N1, C20, O1 and O2 causes twisted boat conformation for the piperidine core, with puckering amplitude, QT = 0.718 (1) Å and phase angle = 89.5 (2)° (Nardelli, 1995; Cremer & Pople, 1975).

The phenyl rings at C2 and C6 atoms are oriented in the axial and equatorial positions, respectively, and the dihedral angle between them is 49.8 (1)°. Similarly, the methyl group at C5 is also oriented in equatorial position. All these substitutions are confirmed by the respective torsion angles. In addition, the substitution of ethylacetate group on N1 atom showed extended conformation with respect to the piperidine ring, which is also confirmed by the torsion angles.

The packing diagram of the title compound viewed down a-axis is shown in Fig. 2. The molecules did not present any classical H-bonds. However, the molecules are involved in weak intra- and intermolecular C—H···O interactions (Table 1), which stabilize the molecules in the crystal packing. Interestingly, a C—H···π interaction (C3—H3B···Cg1; Cg1 is the centroid of the ring C13···C18) also helps for the crystal packing.

For the biological activity of related piperidines, see: Parthiban et al. (2009); Aridoss et al. (2007). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1995). For the conformation of piperidine derivatives, see: Ravindran et al. (1991); Krishna Kumar & Krishna Pillay (1996). For the synthesis of the title compound, see: Sampath et al. (2003); Noller & Baliah (1948).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title molecule with displacement ellipsoid drawn at the 30% probability level. Hydrogen atoms were removed for clarity.
[Figure 2] Fig. 2. A unit cell packing of the crystal structure of the title compound viewed down a-axis.
Ethyl 3-methyl-2,6-diphenylpiperidine-1-carboxylate top
Crystal data top
C21H25NO2F(000) = 696
Mr = 323.42Dx = 1.201 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.4113 (3) Åθ = 0–90°
b = 10.6073 (6) ŵ = 0.60 mm1
c = 16.2782 (6) ÅT = 293 K
β = 95.960 (2)°Needle, colourless
V = 1787.98 (13) Å30.26 × 0.22 × 0.18 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.012
Radiation source: fine-focus sealed tubeθmax = 72.0°, θmin = 4.8°
Graphite monochromatorh = 012
ω scansk = 013
3698 measured reflectionsl = 2019
3502 independent reflections3 standard reflections every 60 min
2428 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.2748P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3502 reflectionsΔρmax = 0.17 e Å3
218 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0022 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H25NO2V = 1787.98 (13) Å3
Mr = 323.42Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.4113 (3) ŵ = 0.60 mm1
b = 10.6073 (6) ÅT = 293 K
c = 16.2782 (6) Å0.26 × 0.22 × 0.18 mm
β = 95.960 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.012
3698 measured reflections3 standard reflections every 60 min
3502 independent reflections intensity decay: none
2428 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
3502 reflectionsΔρmin = 0.20 e Å3
218 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.92030 (13)0.42372 (12)0.12110 (7)0.0586 (4)
O20.99447 (12)0.61660 (11)0.15872 (7)0.0516 (3)
N10.90776 (13)0.49725 (13)0.25183 (8)0.0427 (3)
C20.81474 (15)0.39802 (16)0.26812 (10)0.0455 (4)
H20.78410.36200.21420.055*
C30.69751 (17)0.45929 (18)0.30030 (11)0.0516 (4)
H3A0.63700.39390.31230.062*
H3B0.65500.51270.25740.062*
C40.73118 (18)0.5382 (2)0.37787 (12)0.0584 (5)
H4A0.70730.49180.42540.070*
H4B0.68100.61530.37350.070*
C50.87457 (16)0.57150 (17)0.39184 (10)0.0470 (4)
H50.92120.49750.41550.056*
C60.92925 (15)0.60452 (16)0.30998 (9)0.0414 (4)
H60.88200.67770.28570.050*
C71.07053 (16)0.63999 (16)0.32679 (9)0.0435 (4)
C81.16351 (18)0.55226 (19)0.35314 (13)0.0587 (5)
H81.14160.46750.35550.070*
C91.2899 (2)0.5901 (2)0.37612 (15)0.0718 (6)
H91.35160.53010.39420.086*
C101.3249 (2)0.7134 (2)0.37269 (14)0.0680 (6)
H101.40950.73780.38880.082*
C111.2344 (2)0.8007 (2)0.34532 (14)0.0686 (6)
H111.25760.88510.34210.082*
C121.10831 (19)0.76434 (18)0.32231 (12)0.0563 (5)
H121.04770.82490.30340.068*
C130.87742 (17)0.28998 (16)0.31910 (10)0.0459 (4)
C140.81423 (19)0.22492 (19)0.37698 (11)0.0565 (5)
H140.73390.25280.38970.068*
C150.8691 (2)0.1193 (2)0.41592 (12)0.0676 (6)
H150.82560.07680.45460.081*
C160.9876 (2)0.0766 (2)0.39778 (13)0.0685 (6)
H161.02410.00510.42370.082*
C171.0513 (2)0.1403 (2)0.34120 (13)0.0657 (5)
H171.13180.11210.32910.079*
C180.99719 (19)0.24578 (18)0.30200 (12)0.0558 (5)
H181.04160.28790.26360.067*
C190.8953 (2)0.6789 (2)0.45370 (11)0.0642 (5)
H19A0.98560.69920.46220.096*
H19B0.86590.65360.50520.096*
H19C0.84760.75150.43280.096*
C200.93902 (16)0.50599 (16)0.17288 (10)0.0440 (4)
C211.0362 (2)0.6314 (2)0.07700 (12)0.0637 (5)
H21A0.96440.61690.03510.076*
H21B1.10390.57130.06880.076*
C221.0848 (3)0.7612 (2)0.07088 (15)0.0802 (7)
H22A1.11320.77400.01720.120*
H22B1.15580.77440.11250.120*
H22C1.01690.81990.07890.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0793 (9)0.0536 (8)0.0446 (7)0.0032 (7)0.0148 (6)0.0103 (6)
O20.0663 (8)0.0519 (7)0.0388 (6)0.0084 (6)0.0165 (5)0.0009 (5)
N10.0506 (8)0.0425 (7)0.0355 (7)0.0050 (6)0.0076 (6)0.0007 (6)
C20.0476 (9)0.0477 (9)0.0408 (8)0.0065 (7)0.0024 (7)0.0012 (7)
C30.0453 (9)0.0592 (11)0.0500 (10)0.0015 (8)0.0038 (7)0.0055 (8)
C40.0522 (10)0.0690 (13)0.0566 (11)0.0021 (9)0.0179 (8)0.0046 (9)
C50.0513 (9)0.0530 (10)0.0378 (8)0.0001 (8)0.0095 (7)0.0017 (7)
C60.0464 (9)0.0409 (8)0.0376 (8)0.0002 (7)0.0068 (6)0.0019 (6)
C70.0476 (9)0.0451 (9)0.0386 (8)0.0019 (7)0.0077 (7)0.0015 (7)
C80.0526 (11)0.0519 (11)0.0712 (12)0.0010 (9)0.0048 (9)0.0060 (9)
C90.0508 (11)0.0749 (15)0.0881 (16)0.0031 (10)0.0001 (10)0.0103 (12)
C100.0519 (11)0.0813 (15)0.0705 (13)0.0152 (11)0.0052 (9)0.0012 (11)
C110.0689 (13)0.0583 (12)0.0788 (14)0.0205 (11)0.0080 (11)0.0033 (11)
C120.0594 (11)0.0460 (10)0.0630 (11)0.0039 (9)0.0044 (9)0.0018 (8)
C130.0528 (9)0.0429 (9)0.0414 (8)0.0076 (7)0.0023 (7)0.0010 (7)
C140.0594 (11)0.0592 (11)0.0507 (10)0.0094 (9)0.0047 (8)0.0073 (9)
C150.0900 (16)0.0600 (12)0.0514 (11)0.0104 (11)0.0015 (10)0.0136 (9)
C160.0953 (16)0.0522 (12)0.0539 (11)0.0051 (11)0.0124 (11)0.0025 (9)
C170.0695 (13)0.0556 (12)0.0705 (13)0.0114 (10)0.0005 (10)0.0046 (10)
C180.0613 (11)0.0481 (10)0.0591 (10)0.0012 (9)0.0116 (9)0.0002 (8)
C190.0748 (13)0.0732 (14)0.0466 (10)0.0042 (11)0.0162 (9)0.0146 (9)
C200.0492 (9)0.0448 (9)0.0389 (8)0.0021 (7)0.0094 (7)0.0016 (7)
C210.0800 (13)0.0707 (13)0.0445 (10)0.0055 (11)0.0266 (9)0.0037 (9)
C220.0898 (16)0.0844 (16)0.0706 (13)0.0249 (13)0.0288 (12)0.0115 (12)
Geometric parameters (Å, º) top
O1—C201.2148 (19)C10—C111.362 (3)
O2—C201.338 (2)C10—H100.9300
O2—C211.4500 (19)C11—C121.382 (3)
N1—C201.3612 (19)C11—H110.9300
N1—C21.473 (2)C12—H120.9300
N1—C61.482 (2)C13—C181.387 (2)
C2—C131.522 (2)C13—C141.388 (2)
C2—C31.523 (2)C14—C151.382 (3)
C2—H20.9800C14—H140.9300
C3—C41.525 (3)C15—C161.375 (3)
C3—H3A0.9700C15—H150.9300
C3—H3B0.9700C16—C171.368 (3)
C4—C51.528 (2)C16—H160.9300
C4—H4A0.9700C17—C181.379 (3)
C4—H4B0.9700C17—H170.9300
C5—C191.521 (2)C18—H180.9300
C5—C61.543 (2)C19—H19A0.9600
C5—H50.9800C19—H19B0.9600
C6—C71.515 (2)C19—H19C0.9600
C6—H60.9800C21—C221.474 (3)
C7—C81.379 (2)C21—H21A0.9700
C7—C121.381 (2)C21—H21B0.9700
C8—C91.389 (3)C22—H22A0.9600
C8—H80.9300C22—H22B0.9600
C9—C101.361 (3)C22—H22C0.9600
C9—H90.9300
C20—O2—C21115.37 (14)C10—C11—C12120.3 (2)
C20—N1—C2116.41 (13)C10—C11—H11119.9
C20—N1—C6121.04 (13)C12—C11—H11119.9
C2—N1—C6119.48 (12)C7—C12—C11121.33 (19)
N1—C2—C13112.56 (13)C7—C12—H12119.3
N1—C2—C3108.81 (14)C11—C12—H12119.3
C13—C2—C3116.58 (14)C18—C13—C14117.88 (17)
N1—C2—H2106.0C18—C13—C2119.25 (15)
C13—C2—H2106.0C14—C13—C2122.56 (16)
C3—C2—H2106.0C15—C14—C13120.83 (19)
C2—C3—C4113.29 (15)C15—C14—H14119.6
C2—C3—H3A108.9C13—C14—H14119.6
C4—C3—H3A108.9C16—C15—C14120.4 (2)
C2—C3—H3B108.9C16—C15—H15119.8
C4—C3—H3B108.9C14—C15—H15119.8
H3A—C3—H3B107.7C17—C16—C15119.4 (2)
C3—C4—C5112.78 (14)C17—C16—H16120.3
C3—C4—H4A109.0C15—C16—H16120.3
C5—C4—H4A109.0C16—C17—C18120.6 (2)
C3—C4—H4B109.0C16—C17—H17119.7
C5—C4—H4B109.0C18—C17—H17119.7
H4A—C4—H4B107.8C17—C18—C13120.92 (19)
C19—C5—C4109.96 (15)C17—C18—H18119.5
C19—C5—C6111.23 (15)C13—C18—H18119.5
C4—C5—C6111.50 (14)C5—C19—H19A109.5
C19—C5—H5108.0C5—C19—H19B109.5
C4—C5—H5108.0H19A—C19—H19B109.5
C6—C5—H5108.0C5—C19—H19C109.5
N1—C6—C7112.66 (13)H19A—C19—H19C109.5
N1—C6—C5109.43 (13)H19B—C19—H19C109.5
C7—C6—C5109.80 (13)O1—C20—O2123.46 (15)
N1—C6—H6108.3O1—C20—N1124.70 (16)
C7—C6—H6108.3O2—C20—N1111.84 (14)
C5—C6—H6108.3O2—C21—C22107.49 (17)
C8—C7—C12117.81 (17)O2—C21—H21A110.2
C8—C7—C6121.71 (16)C22—C21—H21A110.2
C12—C7—C6120.28 (16)O2—C21—H21B110.2
C7—C8—C9120.24 (19)C22—C21—H21B110.2
C7—C8—H8119.9H21A—C21—H21B108.5
C9—C8—H8119.9C21—C22—H22A109.5
C10—C9—C8121.1 (2)C21—C22—H22B109.5
C10—C9—H9119.4H22A—C22—H22B109.5
C8—C9—H9119.4C21—C22—H22C109.5
C9—C10—C11119.2 (2)H22A—C22—H22C109.5
C9—C10—H10120.4H22B—C22—H22C109.5
C11—C10—H10120.4
C20—N1—C2—C13108.65 (16)C8—C9—C10—C110.8 (4)
C6—N1—C2—C1390.94 (17)C9—C10—C11—C120.8 (3)
C20—N1—C2—C3120.56 (16)C8—C7—C12—C111.5 (3)
C6—N1—C2—C339.84 (19)C6—C7—C12—C11173.46 (16)
N1—C2—C3—C457.33 (19)C10—C11—C12—C70.4 (3)
C13—C2—C3—C471.2 (2)N1—C2—C13—C1841.5 (2)
C2—C3—C4—C517.3 (2)C3—C2—C13—C18168.23 (16)
C3—C4—C5—C19163.67 (16)N1—C2—C13—C14145.07 (16)
C3—C4—C5—C639.8 (2)C3—C2—C13—C1418.3 (2)
C20—N1—C6—C762.3 (2)C18—C13—C14—C150.2 (3)
C2—N1—C6—C7138.25 (14)C2—C13—C14—C15173.29 (17)
C20—N1—C6—C5175.28 (14)C13—C14—C15—C160.1 (3)
C2—N1—C6—C515.8 (2)C14—C15—C16—C170.5 (3)
C19—C5—C6—N1179.64 (15)C15—C16—C17—C180.5 (3)
C4—C5—C6—N157.23 (19)C16—C17—C18—C130.2 (3)
C19—C5—C6—C755.50 (19)C14—C13—C18—C170.2 (3)
C4—C5—C6—C7178.64 (15)C2—C13—C18—C17173.55 (17)
N1—C6—C7—C853.5 (2)C21—O2—C20—O12.2 (3)
C5—C6—C7—C868.8 (2)C21—O2—C20—N1177.33 (15)
N1—C6—C7—C12131.73 (16)C2—N1—C20—O117.4 (2)
C5—C6—C7—C12106.04 (18)C6—N1—C20—O1177.46 (16)
C12—C7—C8—C91.6 (3)C2—N1—C20—O2163.14 (14)
C6—C7—C8—C9173.36 (18)C6—N1—C20—O23.1 (2)
C7—C8—C9—C100.4 (3)C20—O2—C21—C22175.60 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.982.282.749 (2)109
C18—H18···O10.932.913.519 (2)125
C14—H14···O2i0.932.823.406 (2)122
C10—H10···O1ii0.932.673.460 (3)144
C3—H3B···Cg1iii0.972.703.666 (2)172
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+5/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H25NO2
Mr323.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.4113 (3), 10.6073 (6), 16.2782 (6)
β (°) 95.960 (2)
V3)1787.98 (13)
Z4
Radiation typeCu Kα
µ (mm1)0.60
Crystal size (mm)0.26 × 0.22 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3698, 3502, 2428
Rint0.012
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.136, 1.03
No. of reflections3502
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms, 1996), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C18—H18···O10.932.913.519 (2)125
C14—H14···O2i0.932.823.406 (2)122
C10—H10···O1ii0.932.673.460 (3)144
C3—H3B···Cg1iii0.972.703.666 (2)172
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+5/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds