Download citation
Download citation
link to html
The asymmetric unit of the title compound, C3H6N6·2C6H5NO3, contains one melamine and two 3-nitro­phenol mol­ecules. The mean planes of the 3-nitro­phenol mol­ecules are almost orthogonal to the plane of melamine, making dihedral angles of 82.77 (4) and 88.36 (5)°. In the crystal, mol­ecules are linked via O—H...N, N—H...N and N—H...O hydrogen bonds, forming a three-dimensional network. The crystal also features weak C—H...π and π–π inter­actions [centroid–centroid distance = 3.9823 (9) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536813011148/bh2476sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536813011148/bh2476Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536813011148/bh2476Isup3.cml
Supplementary material

CCDC reference: 954870

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.042
  • wR factor = 0.119
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N1 PLAT420_ALERT_2_C D-H Without Acceptor N6 - H6A ... ? PLAT420_ALERT_2_C D-H Without Acceptor N6 - H6B ... ?
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 13 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ ? PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 2 C6 H5 N O3 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 8 PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 2
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Melamine (1,3,5-triazine-2,4,6-triamine) and its derivatives can develop well defined non-covalent supramolecular nanoarchitectures via multiple hydrogen bonds by self-assembly of components containing complementary arrays of hydrogen-bonding sites (Desiraju, 1990; Krische & Lehn, 2000). The geometric parameters of the title compound (Fig. 1) are comparable to those reported for similar structures (Kanagathara et al., 2012; Wang et al., 2007). The mean planes of the two nitrophenol molecules (C1···C6) and (C10···C15) are almost orthogonal to the melamine (N2/C7/N4/C9/N3/C8) molecule, with dihedral angles of 82.77 (4) and 88.36 (5)°, respectively.

The crystal packing of the title compound is influenced by intermolecular O—H···N, N—H···N and N—H···O hydrogen bonds, as well as weak C—H···π (Table 1 and Fig. 2) and ππ interactions: Cg1···Cg2 (x, 1/2-y, 3/2+z) distance of 3.9823 (9) Å; Cg2···Cg1 (-1/2+x, 1/2-y, 1-z) distance of 3.9823 (9) Å; Cg1···Cg2 (-x, 1-y, 1-z) distance of 4.2397 (9) Å; Cg3···Cg1 (1/2-x, 1/2+y, z) distance of 5.0406 (8) Å; where Cg1, Cg2 and Cg3 are the centroids of the rings C1···C6, C10···C15, and N2/C7/N4/C9/N3/C8, respectively.

Related literature top

For general background to melamine derivatives, see: Desiraju et al. (1990); Krische & Lehn (2000). For related structures, see: Kanagathara et al. (2012); Wang et al. (2007).

Experimental top

Melamine (1.261 g, 10 mmol) was dissolved in 200 ml of hot distilled water. 3-Nitrophenol (1.391 g, 10 mmol) was dissolved in 100 ml of distilled water, separately. The 3-nitrophenol solution was added gently to the hot solution of melamine, and the mixture stirred well for nearly five hours to get an homogeneous solution. Water was then allowed to evaporate. Within few days, tiny transparent, yellowish crystals were formed.

Refinement top

H atoms of aromatic CH groups were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms bound to O and N atoms were found in a difference map and refined isotropically, with distances restrained to N—H = 0.88 (1) Å and O—H = 0.82 (1) Å (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.
3-Nitrophenol–1,3,5-triazine-2,4,6-triamine (2/1) top
Crystal data top
C3H6N6·2C6H5NO3F(000) = 1680
Mr = 404.36Dx = 1.503 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4327 reflections
a = 15.5150 (6) Åθ = 2.3–28.3°
b = 12.9137 (6) ŵ = 0.12 mm1
c = 17.8323 (6) ÅT = 295 K
V = 3572.8 (2) Å3Block, yellow
Z = 80.28 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4447 independent reflections
Radiation source: fine-focus sealed tube3352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2013
Tmin = 0.967, Tmax = 0.977k = 177
19568 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.7906P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4447 reflectionsΔρmax = 0.24 e Å3
295 parametersΔρmin = 0.20 e Å3
8 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0028 (5)
Primary atom site location: structure-invariant direct methods
Crystal data top
C3H6N6·2C6H5NO3V = 3572.8 (2) Å3
Mr = 404.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.5150 (6) ŵ = 0.12 mm1
b = 12.9137 (6) ÅT = 295 K
c = 17.8323 (6) Å0.28 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4447 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3352 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.977Rint = 0.028
19568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0428 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
4447 reflectionsΔρmin = 0.20 e Å3
295 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20295 (11)0.13223 (11)0.30457 (8)0.0472 (4)
C20.18602 (9)0.11918 (10)0.22906 (8)0.0406 (3)
H20.13050.10480.21230.049*
C30.25379 (9)0.12802 (10)0.17907 (8)0.0365 (3)
C40.33676 (9)0.14713 (12)0.20566 (9)0.0475 (4)
H40.38260.15210.17230.057*
C50.35064 (12)0.15871 (14)0.28162 (10)0.0597 (5)
H50.40620.17120.29890.072*
C60.28408 (13)0.15216 (13)0.33219 (9)0.0586 (5)
H60.29350.16090.38330.070*
C70.01234 (8)0.66741 (10)0.47227 (7)0.0337 (3)
C80.08123 (8)0.82016 (10)0.49038 (7)0.0337 (3)
C90.14073 (8)0.67001 (10)0.53192 (7)0.0322 (3)
C100.15540 (9)0.60489 (10)0.68536 (8)0.0383 (3)
C110.07322 (10)0.59736 (15)0.65597 (9)0.0546 (4)
H110.06430.58510.60520.066*
C120.00506 (10)0.60861 (16)0.70459 (10)0.0595 (5)
H120.05100.60400.68640.071*
C130.01848 (9)0.62665 (13)0.78025 (9)0.0464 (4)
H130.02830.63400.81240.056*
C140.10170 (8)0.63378 (10)0.80810 (8)0.0365 (3)
C150.17126 (8)0.62232 (10)0.76020 (8)0.0369 (3)
H150.22740.62630.77820.044*
N10.13017 (13)0.12490 (12)0.35762 (9)0.0659 (4)
N20.01376 (7)0.77043 (9)0.46051 (6)0.0361 (3)
N30.14703 (7)0.77395 (8)0.52606 (6)0.0354 (2)
N40.07430 (6)0.61329 (8)0.50739 (6)0.0345 (3)
N50.05479 (8)0.61359 (11)0.44621 (8)0.0461 (3)
N60.08276 (9)0.92415 (10)0.48582 (8)0.0457 (3)
N70.20470 (8)0.61983 (10)0.56654 (8)0.0445 (3)
N80.22955 (8)0.59341 (10)0.63461 (7)0.0459 (3)
O10.23651 (6)0.11610 (8)0.10455 (6)0.0433 (3)
O20.14494 (13)0.13811 (14)0.42402 (8)0.1006 (6)
O30.05950 (11)0.10386 (16)0.33363 (10)0.0968 (5)
O40.11865 (7)0.65065 (10)0.88192 (6)0.0537 (3)
O50.30194 (7)0.60094 (10)0.66114 (7)0.0583 (3)
O60.21580 (9)0.57499 (12)0.56836 (6)0.0716 (4)
H10.2744 (10)0.1481 (14)0.0807 (10)0.068 (6)*
H4A0.0754 (9)0.6682 (15)0.9062 (9)0.064 (6)*
H6A0.0446 (9)0.9511 (14)0.4564 (9)0.065 (5)*
H6B0.1328 (8)0.9538 (13)0.4931 (10)0.061 (5)*
H7A0.2051 (10)0.5516 (7)0.5665 (9)0.048 (4)*
H7B0.2525 (8)0.6534 (12)0.5769 (9)0.050 (5)*
H5A0.0593 (11)0.5475 (8)0.4593 (10)0.061 (5)*
H5B0.1003 (8)0.6483 (13)0.4321 (10)0.058 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0631 (10)0.0362 (7)0.0423 (8)0.0015 (7)0.0035 (7)0.0051 (6)
C20.0372 (7)0.0385 (7)0.0461 (7)0.0032 (6)0.0005 (6)0.0041 (6)
C30.0350 (7)0.0346 (6)0.0398 (7)0.0048 (5)0.0051 (5)0.0045 (5)
C40.0369 (8)0.0514 (8)0.0542 (8)0.0108 (6)0.0080 (7)0.0107 (7)
C50.0587 (10)0.0596 (10)0.0608 (10)0.0195 (8)0.0260 (9)0.0123 (8)
C60.0849 (13)0.0476 (9)0.0433 (8)0.0136 (8)0.0168 (9)0.0063 (7)
C70.0258 (6)0.0459 (7)0.0293 (6)0.0013 (5)0.0018 (5)0.0003 (5)
C80.0298 (6)0.0419 (7)0.0295 (6)0.0021 (5)0.0051 (5)0.0018 (5)
C90.0252 (6)0.0416 (7)0.0300 (6)0.0001 (5)0.0010 (5)0.0011 (5)
C100.0370 (7)0.0373 (6)0.0405 (7)0.0007 (5)0.0052 (6)0.0000 (5)
C110.0469 (9)0.0779 (11)0.0391 (7)0.0020 (8)0.0061 (7)0.0013 (7)
C120.0330 (8)0.0935 (13)0.0520 (9)0.0002 (8)0.0107 (7)0.0027 (9)
C130.0281 (7)0.0632 (9)0.0479 (8)0.0024 (6)0.0015 (6)0.0034 (7)
C140.0300 (7)0.0396 (6)0.0399 (7)0.0037 (5)0.0012 (5)0.0049 (5)
C150.0271 (6)0.0389 (6)0.0447 (7)0.0028 (5)0.0000 (5)0.0056 (5)
N10.0904 (13)0.0530 (8)0.0543 (9)0.0022 (8)0.0230 (9)0.0047 (7)
N20.0293 (6)0.0447 (6)0.0342 (5)0.0039 (5)0.0022 (4)0.0046 (4)
N30.0287 (5)0.0406 (6)0.0370 (6)0.0036 (4)0.0031 (4)0.0018 (4)
N40.0259 (5)0.0399 (6)0.0377 (6)0.0000 (4)0.0052 (4)0.0012 (4)
N50.0306 (6)0.0515 (7)0.0561 (7)0.0013 (6)0.0156 (6)0.0033 (6)
N60.0431 (8)0.0406 (6)0.0535 (7)0.0022 (6)0.0009 (6)0.0055 (5)
N70.0294 (6)0.0457 (7)0.0585 (8)0.0017 (5)0.0150 (6)0.0062 (6)
N80.0481 (8)0.0436 (6)0.0460 (7)0.0003 (6)0.0104 (6)0.0007 (5)
O10.0350 (5)0.0563 (6)0.0386 (5)0.0122 (5)0.0010 (4)0.0022 (4)
O20.1446 (16)0.1092 (13)0.0480 (8)0.0043 (11)0.0257 (9)0.0016 (8)
O30.0729 (10)0.1297 (15)0.0876 (11)0.0121 (10)0.0340 (9)0.0054 (10)
O40.0298 (5)0.0893 (8)0.0421 (6)0.0117 (5)0.0014 (4)0.0207 (5)
O50.0396 (6)0.0704 (8)0.0648 (7)0.0011 (5)0.0132 (5)0.0101 (6)
O60.0719 (9)0.1012 (10)0.0417 (6)0.0024 (8)0.0125 (6)0.0077 (6)
Geometric parameters (Å, º) top
C1—C61.376 (2)C10—N81.4712 (18)
C1—C21.382 (2)C11—C121.375 (2)
C1—N11.476 (2)C11—H110.9300
C2—C31.383 (2)C12—C131.385 (2)
C2—H20.9300C12—H120.9300
C3—O11.3644 (16)C13—C141.3865 (19)
C3—C41.3938 (19)C13—H130.9300
C4—C51.380 (2)C14—O41.3599 (16)
C4—H40.9300C14—C151.3842 (18)
C5—C61.374 (3)C15—H150.9300
C5—H50.9300N1—O31.208 (2)
C6—H60.9300N1—O21.218 (2)
C7—N51.3356 (17)N5—H5A0.888 (9)
C7—N41.3434 (16)N5—H5B0.874 (9)
C7—N21.3469 (18)N6—H6A0.863 (9)
C8—N21.3385 (16)N6—H6B0.875 (9)
C8—N31.3429 (16)N7—H7A0.881 (9)
C8—N61.3456 (19)N7—H7B0.878 (9)
C9—N71.3364 (17)N8—O51.2226 (16)
C9—N41.3380 (16)N8—O61.2238 (17)
C9—N31.3498 (17)O1—H10.835 (9)
C10—C151.3756 (19)O4—H4A0.830 (9)
C10—C111.382 (2)
C6—C1—C2123.05 (15)C11—C12—C13121.09 (14)
C6—C1—N1118.84 (15)C11—C12—H12119.5
C2—C1—N1118.10 (15)C13—C12—H12119.5
C1—C2—C3118.25 (14)C12—C13—C14120.01 (14)
C1—C2—H2120.9C12—C13—H13120.0
C3—C2—H2120.9C14—C13—H13120.0
O1—C3—C2117.97 (12)O4—C14—C15117.63 (12)
O1—C3—C4122.19 (13)O4—C14—C13122.51 (12)
C2—C3—C4119.83 (13)C15—C14—C13119.86 (13)
C5—C4—C3119.82 (15)C10—C15—C14118.47 (12)
C5—C4—H4120.1C10—C15—H15120.8
C3—C4—H4120.1C14—C15—H15120.8
C6—C5—C4121.37 (15)O3—N1—O2123.13 (18)
C6—C5—H5119.3O3—N1—C1118.81 (16)
C4—C5—H5119.3O2—N1—C1118.04 (19)
C5—C6—C1117.66 (15)C8—N2—C7115.13 (11)
C5—C6—H6121.2C8—N3—C9115.05 (11)
C1—C6—H6121.2C9—N4—C7114.76 (11)
N5—C7—N4116.71 (12)C7—N5—H5A118.0 (12)
N5—C7—N2118.20 (12)C7—N5—H5B117.7 (12)
N4—C7—N2125.08 (11)H5A—N5—H5B120.4 (17)
N2—C8—N3124.74 (12)C8—N6—H6A115.2 (13)
N2—C8—N6117.95 (12)C8—N6—H6B116.3 (12)
N3—C8—N6117.30 (12)H6A—N6—H6B121.5 (19)
N7—C9—N4117.24 (12)C9—N7—H7A119.3 (11)
N7—C9—N3117.65 (12)C9—N7—H7B119.0 (11)
N4—C9—N3125.09 (11)H7A—N7—H7B119.2 (15)
C15—C10—C11122.99 (13)O5—N8—O6123.30 (13)
C15—C10—N8118.25 (12)O5—N8—C10118.19 (12)
C11—C10—N8118.76 (13)O6—N8—C10118.50 (13)
C12—C11—C10117.58 (14)C3—O1—H1107.5 (14)
C12—C11—H11121.2C14—O4—H4A113.1 (13)
C10—C11—H11121.2
C6—C1—C2—C30.9 (2)C6—C1—N1—O3177.46 (17)
N1—C1—C2—C3178.75 (12)C2—C1—N1—O32.9 (2)
C1—C2—C3—O1179.35 (12)C6—C1—N1—O20.8 (2)
C1—C2—C3—C41.5 (2)C2—C1—N1—O2178.81 (16)
O1—C3—C4—C5179.91 (14)N3—C8—N2—C73.86 (18)
C2—C3—C4—C51.0 (2)N6—C8—N2—C7174.73 (12)
C3—C4—C5—C60.2 (3)N5—C7—N2—C8177.70 (12)
C4—C5—C6—C10.8 (3)N4—C7—N2—C83.47 (18)
C2—C1—C6—C50.3 (2)N2—C8—N3—C91.28 (18)
N1—C1—C6—C5179.92 (14)N6—C8—N3—C9177.32 (12)
C15—C10—C11—C120.4 (3)N7—C9—N3—C8179.61 (12)
N8—C10—C11—C12179.86 (15)N4—C9—N3—C82.16 (18)
C10—C11—C12—C130.1 (3)N7—C9—N4—C7179.26 (12)
C11—C12—C13—C140.1 (3)N3—C9—N4—C72.50 (18)
C12—C13—C14—O4179.52 (15)N5—C7—N4—C9179.35 (12)
C12—C13—C14—C150.3 (2)N2—C7—N4—C90.50 (18)
C11—C10—C15—C140.6 (2)C15—C10—N8—O50.72 (19)
N8—C10—C15—C14179.63 (12)C11—C10—N8—O5179.50 (14)
O4—C14—C15—C10179.81 (12)C15—C10—N8—O6177.97 (14)
C13—C14—C15—C100.6 (2)C11—C10—N8—O61.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the melamine triamine ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.84 (1)1.86 (1)2.6907 (14)176 (2)
O4—H4A···N2ii0.83 (1)1.87 (1)2.6876 (14)170 (2)
N5—H5A···N4iii0.89 (1)2.17 (1)3.0594 (18)178 (17)
N5—H5B···O1iv0.87 (1)2.25 (1)2.9613 (16)138 (15)
N7—H7A···O1v0.88 (1)2.32 (1)3.1600 (17)159 (14)
N7—H7B···O4vi0.88 (1)2.13 (1)2.9180 (16)149 (15)
C6—H6···Cg3vii0.932.953.7504 (18)145
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1/2, y, z+3/2; (vii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC3H6N6·2C6H5NO3
Mr404.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)15.5150 (6), 12.9137 (6), 17.8323 (6)
V3)3572.8 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
19568, 4447, 3352
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.03
No. of reflections4447
No. of parameters295
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the melamine triamine ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.835 (9)1.857 (10)2.6907 (14)176 (2)
O4—H4A···N2ii0.830 (9)1.865 (10)2.6876 (14)170 (2)
N5—H5A···N4iii0.888 (9)2.172 (10)3.0594 (18)178 (17)
N5—H5B···O1iv0.874 (9)2.250 (14)2.9613 (16)138 (15)
N7—H7A···O1v0.881 (9)2.321 (10)3.1600 (17)159 (14)
N7—H7B···O4vi0.878 (9)2.131 (12)2.9180 (16)149 (15)
C6—H6···Cg3vii0.932.9533.7504 (18)145
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1/2, y, z+3/2; (vii) x+1/2, y1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds