Download citation
Download citation
link to html
The title compound, C27H34O2, was hemisynthesized through direct benzoyl­ation of the naturally occurring meroterpene totarol. The central fused six-membered ring has a half-chair conformation, whereas the terminal six-membered ring displays a chair conformation. The dihedral angle between the fused benzene ring and the benzoyl benzene ring is 73.05 (14)°. The S,S chirality of the mol­ecule is consistent with the synthetic pathway, and confirmed by the refinement of the Flack parameter.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814015827/bh2501sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536814015827/bh2501Isup2.hkl
Contains datablock I

CCDC reference: 1012402

Key indicators

  • Single-crystal X-ray study
  • T = 180 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.038
  • wR factor = 0.095
  • Data-to-parameter ratio = 11.7

checkCIF/PLATON results

No syntax errors found



Alert level B Crystal system given = monoclinic THETM01_ALERT_3_B The value of sine(theta_max)/wavelength is less than 0.575 Calculated sin(theta_max)/wavelength = 0.5661 PLAT019_ALERT_1_B _diffrn_measured_fraction_theta_full/_max < 1.0 0.837 Why ? PLAT023_ALERT_3_B Resolution (too) Low [sin(theta)/Lambda < 0.6].. 60.79 Degree
Alert level C PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18) ........ 6.86 Note PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.566 7 Why ? PLAT915_ALERT_3_C Low Friedel Pair Coverage ...................... 84 %
Alert level G PLAT791_ALERT_4_G The Model has Chirality at C4B ............. S Verify PLAT791_ALERT_4_G The Model has Chirality at C8A ............. S Verify PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 85 % PLAT910_ALERT_3_G Missing # of FCF Reflections Below Th(Min) ..... 1 Why ?
0 ALERT level A = Most likely a serious problem - resolve or explain 3 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 4 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 7 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Results and discussion top

Totarol is a naturally produced terpenoid isolated from several plants such as Podocarpus totara (Short & Stromberg, 1937) and Tetra­clinis articulata (Barrero et al., 2003). It has been attracting great inter­est because of its biological properties ranging from anti­microbial (Haraguchi et al., 1996), anti-oxidant (Bernabeu et al., 2002), anti-inflammatory, analgesic, anti-tumoral (Marcos et al., 2003) to anti-plasmodial (Tacon et al., 2012).

In our ongoing studies on the synthesis of totarol derivatives of potential inter­est, we carried out the reaction of totarol with benzoyl chloride in pyridine, which provides the expected benzoyl­ated product, (4bS,8aS)-1-iso­propyl-4b,8,8-tri­methyl-4b,5,6,7,8,8a,9,10-o­cta­hydro­phenanthren-2-yl benzoate, as colorless crystals in 92% yield. Its structure was characterized by mass and NMR spectroscopy, and was fully confirmed by an X-ray single crystal structure analysis.

This compound is built up from three fused six-membered rings, an unsaturated benzene ring (I) and two saturated rings (II) and (III) (Fig. 1). The central saturated ring (II) has a half chair conformation with puckering parameters Q = 0.527 (3) Å, θ= 48.6 (3)° and ϕ= 128.9 (4)° (Cremer & Pople, 1975), whereas the second saturated six-membered ring, (III), displays a chair conformation with puckering parameters Q = 0.546 (3) Å, θ= 175.8 (3)° and ϕ= 301 (4)°. Similar conformation for the three fused rings has been reported previously with hydroxyl substituent or methyl acetate in place of the benzoate of the title compound (Zeroual et al., 2008; Oubabi et al., 2014), and with either an hydroxyl or a meth­oxy substituent on the central ring (Pettit et al., 2004).

The 4bS,8aS absolute configuration is deduced from the synthetic pathway. Although the Flack (Flack, 1983; Flack & Bernardinelli, 2000; Parsons et al., 2013) and Hooft parameters (Spek, 2009) display large standard deviations, their values, -0.11 (17) and 0.09 (15), confirmed the expected absolute configuration.

Experimental top

Synthesis and crystallization top

A solution of totarol (110 mg, 0.384 mmol) in benzoyl chloride (3 mL) and pyridine (20 mL) was refluxed for 24 hours. After cooling, the mixture was acidified with HCl (1N solution), and then extracted with ether (3×20 mL). The organic layer was washed with water, dried on anhydrous Na2SO4 and then evaporated under reduced pressure. The obtained residue was chromatographed on a silica gel column using hexane and ethyl acetate (97/3) as eluent, to give the title compound in 92 % yield. X-ray quality crystals were obtained by slow evaporation from a petroleum ether solution of the title compound.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For the synthesis and the biological activity of totarol [systematic name: (4bS,8aS)-4b,8,8-trimethyl-1-propan-2-yl-5,6,7,8a,9,10-hexahydrophenanthren-2-ol], see: Short & Stromberg (1937); Barrero et al. (2003); Haraguchi et al. (1996); Bernabeu et al. (2002); Marcos et al. (2003); Tacon et al. (2012). For conformational analysis and absolute configuration determination, see: Cremer & Pople (1975); Flack (1983); Flack & Bernardinelli (2000); Parsons et al. (2013); Spek (2009). For related structures, see: Zeroual et al. (2008); Oubabi et al. (2014); Pettit et al. (2004).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), 0.98 Å (methyl), 1.0 Å (methine) and 0.95 Å (aromatic), and with Uiso(H) = 1.2Ueq(CH, CH2, aromatic) or Uiso(H) = 1.5Ueq(CH3). Owing to physical limitations on the diffractometer, the maximum value of θ used was 60.8° for a complete data set, resulting in the value of sin(θmax)/λ less than 0.6 and, consequently, a low fraction of unique reflections (0.834) measured at the best achieved resolution (θ=67.7°).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with ellipsoids for non-H atoms drawn at the 50% probability level. H atoms are represented as small circle of arbitrary radii.
(4bS,8aS)-1-Isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octahydrophenanthren-2-yl benzoate top
Crystal data top
C27H34O2F(000) = 424
Mr = 390.54Dx = 1.166 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 7.7369 (3) ÅCell parameters from 4294 reflections
b = 7.2079 (4) Åθ = 4.4–60.4°
c = 20.2499 (9) ŵ = 0.55 mm1
β = 99.816 (4)°T = 180 K
V = 1112.74 (9) Å3Flattened, colourless
Z = 20.50 × 0.25 × 0.07 mm
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
3116 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2926 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 16.1978 pixels mm-1θmax = 60.8°, θmin = 4.4°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 87
Tmin = 0.689, Tmax = 1.0l = 2222
9197 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.1662P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3116 reflectionsΔρmax = 0.13 e Å3
267 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack x determined using 1138 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 constraintsAbsolute structure parameter: 0.11 (17)
Primary atom site location: structure-invariant direct methods
Crystal data top
C27H34O2V = 1112.74 (9) Å3
Mr = 390.54Z = 2
Monoclinic, P21Cu Kα radiation
a = 7.7369 (3) ŵ = 0.55 mm1
b = 7.2079 (4) ÅT = 180 K
c = 20.2499 (9) Å0.50 × 0.25 × 0.07 mm
β = 99.816 (4)°
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
3116 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2926 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 1.0Rint = 0.033
9197 measured reflectionsθmax = 60.8°
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.095Δρmax = 0.13 e Å3
S = 1.04Δρmin = 0.21 e Å3
3116 reflectionsAbsolute structure: Flack x determined using 1138 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
267 parametersAbsolute structure parameter: 0.11 (17)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0825 (2)0.2023 (3)0.33409 (8)0.0388 (5)
O21.2632 (2)0.2265 (4)0.25828 (10)0.0661 (7)
C10.8685 (3)0.4403 (4)0.29484 (14)0.0413 (7)
C20.9421 (3)0.2698 (4)0.28549 (13)0.0359 (6)
C30.8814 (3)0.1570 (4)0.23162 (13)0.0385 (7)
H30.93380.03950.22700.046*
C40.7432 (3)0.2179 (4)0.18449 (13)0.0374 (6)
H40.70190.14160.14680.045*
C4A0.6625 (3)0.3879 (4)0.19052 (12)0.0319 (6)
C4B0.5137 (3)0.4506 (4)0.13429 (12)0.0330 (6)
C50.4014 (3)0.2837 (4)0.10522 (14)0.0405 (7)
H5A0.47300.20220.08120.049*
H5B0.36750.21130.14260.049*
C60.2361 (4)0.3401 (5)0.05730 (15)0.0462 (8)
H6A0.26910.40280.01780.055*
H6B0.16760.22790.04150.055*
C70.1239 (3)0.4697 (4)0.09132 (14)0.0425 (7)
H7A0.08350.40240.12850.051*
H7B0.01880.50500.05870.051*
C80.2197 (3)0.6458 (4)0.11908 (13)0.0390 (7)
C8A0.3948 (3)0.5887 (4)0.16448 (12)0.0334 (6)
H8A0.35850.52090.20300.040*
C90.5059 (4)0.7494 (4)0.19617 (15)0.0431 (7)
H9A0.56730.80710.16230.052*
H9B0.42900.84450.21130.052*
C100.6400 (4)0.6854 (4)0.25540 (15)0.0470 (7)
H10A0.58170.67680.29520.056*
H10B0.73280.78100.26490.056*
C10A0.7261 (3)0.5000 (4)0.24594 (13)0.0379 (6)
C110.9377 (5)0.5598 (5)0.35593 (17)0.0653 (11)
H110.86810.67740.35050.078*
C121.1296 (6)0.6161 (8)0.36183 (19)0.0941 (16)
H12A1.20450.50790.37450.141*
H12B1.15680.71270.39610.141*
H12C1.15080.66410.31860.141*
C130.9041 (5)0.4715 (8)0.42098 (18)0.0814 (14)
H13A0.77880.44400.41740.122*
H13B0.94040.55740.45830.122*
H13C0.97160.35620.42900.122*
C140.6051 (3)0.5319 (5)0.07852 (14)0.0494 (8)
H14A0.66720.64600.09470.074*
H14B0.51700.55980.03900.074*
H14C0.68920.44140.06660.074*
C150.2425 (4)0.7775 (5)0.06206 (17)0.0540 (8)
H15A0.29170.70920.02770.081*
H15B0.32220.87830.07960.081*
H15C0.12830.82930.04230.081*
C160.1036 (4)0.7443 (6)0.16232 (18)0.0629 (10)
H16A0.01210.76800.13550.094*
H16B0.15800.86220.17850.094*
H16C0.09070.66550.20060.094*
C171.2417 (3)0.1844 (4)0.31324 (14)0.0413 (7)
C181.3781 (3)0.1078 (4)0.36592 (13)0.0366 (6)
C191.3442 (4)0.0440 (5)0.42702 (13)0.0424 (7)
H191.22890.05260.43710.051*
C201.4771 (4)0.0320 (5)0.47326 (15)0.0546 (8)
H201.45350.07620.51500.066*
C211.6455 (4)0.0433 (5)0.45829 (16)0.0532 (8)
H211.73720.09580.48990.064*
C221.6800 (4)0.0207 (5)0.39825 (16)0.0513 (8)
H221.79570.01330.38860.062*
C231.5477 (3)0.0959 (5)0.35175 (14)0.0457 (7)
H231.57210.13950.31000.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0294 (9)0.0476 (12)0.0387 (9)0.0043 (9)0.0037 (7)0.0049 (9)
O20.0380 (11)0.110 (2)0.0515 (13)0.0043 (13)0.0107 (9)0.0304 (14)
C10.0373 (14)0.0389 (17)0.0442 (15)0.0012 (13)0.0026 (12)0.0076 (13)
C20.0268 (12)0.0423 (18)0.0375 (14)0.0014 (13)0.0026 (10)0.0028 (13)
C30.0338 (13)0.0370 (17)0.0453 (15)0.0043 (13)0.0085 (11)0.0029 (13)
C40.0334 (13)0.0381 (17)0.0406 (14)0.0010 (13)0.0064 (11)0.0082 (13)
C4A0.0281 (13)0.0335 (16)0.0342 (14)0.0025 (11)0.0059 (10)0.0010 (11)
C4B0.0303 (13)0.0361 (16)0.0324 (12)0.0024 (12)0.0047 (10)0.0001 (12)
C50.0369 (14)0.0390 (17)0.0428 (15)0.0014 (13)0.0008 (12)0.0081 (13)
C60.0404 (16)0.0428 (19)0.0500 (17)0.0026 (14)0.0078 (13)0.0094 (14)
C70.0303 (13)0.0460 (18)0.0491 (15)0.0025 (13)0.0011 (11)0.0001 (14)
C80.0324 (13)0.0398 (18)0.0432 (14)0.0010 (13)0.0022 (11)0.0012 (13)
C8A0.0324 (13)0.0338 (16)0.0336 (13)0.0001 (12)0.0049 (10)0.0004 (12)
C90.0420 (15)0.0328 (17)0.0509 (16)0.0027 (13)0.0023 (12)0.0047 (13)
C100.0468 (16)0.0366 (18)0.0512 (16)0.0047 (14)0.0100 (13)0.0096 (14)
C10A0.0345 (13)0.0347 (16)0.0429 (15)0.0011 (12)0.0018 (11)0.0053 (12)
C110.069 (2)0.053 (2)0.061 (2)0.0181 (18)0.0263 (16)0.0213 (18)
C120.122 (4)0.091 (3)0.057 (2)0.063 (3)0.021 (2)0.000 (2)
C130.056 (2)0.129 (4)0.060 (2)0.009 (2)0.0117 (16)0.046 (3)
C140.0359 (14)0.070 (2)0.0441 (15)0.0045 (16)0.0121 (12)0.0086 (16)
C150.0504 (17)0.046 (2)0.0610 (19)0.0002 (15)0.0043 (14)0.0134 (16)
C160.0399 (16)0.076 (3)0.071 (2)0.0171 (18)0.0046 (15)0.018 (2)
C170.0321 (13)0.0477 (19)0.0441 (16)0.0019 (13)0.0061 (11)0.0081 (14)
C180.0345 (13)0.0351 (16)0.0391 (14)0.0002 (12)0.0033 (11)0.0020 (12)
C190.0370 (14)0.0466 (18)0.0426 (15)0.0003 (14)0.0040 (12)0.0001 (14)
C200.0525 (18)0.065 (2)0.0442 (15)0.0038 (17)0.0011 (14)0.0082 (16)
C210.0441 (16)0.052 (2)0.0562 (18)0.0095 (16)0.0109 (14)0.0003 (16)
C220.0340 (15)0.058 (2)0.0602 (19)0.0077 (15)0.0039 (13)0.0046 (17)
C230.0344 (14)0.055 (2)0.0471 (15)0.0033 (14)0.0057 (12)0.0011 (15)
Geometric parameters (Å, º) top
O1—C171.374 (3)C10—C10A1.520 (4)
O1—C21.422 (3)C10—H10A0.9900
O2—C171.192 (3)C10—H10B0.9900
C1—C21.381 (4)C11—C121.524 (6)
C1—C10A1.417 (4)C11—C131.524 (6)
C1—C111.528 (4)C11—H111.0000
C2—C31.377 (4)C12—H12A0.9800
C3—C41.378 (4)C12—H12B0.9800
C3—H30.9500C12—H12C0.9800
C4—C4A1.390 (4)C13—H13A0.9800
C4—H40.9500C13—H13B0.9800
C4A—C10A1.402 (4)C13—H13C0.9800
C4A—C4B1.542 (3)C14—H14A0.9800
C4B—C51.540 (4)C14—H14B0.9800
C4B—C141.547 (4)C14—H14C0.9800
C4B—C8A1.550 (4)C15—H15A0.9800
C5—C61.523 (4)C15—H15B0.9800
C5—H5A0.9900C15—H15C0.9800
C5—H5B0.9900C16—H16A0.9800
C6—C71.518 (4)C16—H16B0.9800
C6—H6A0.9900C16—H16C0.9800
C6—H6B0.9900C17—C181.474 (4)
C7—C81.528 (4)C18—C191.387 (4)
C7—H7A0.9900C18—C231.392 (4)
C7—H7B0.9900C19—C201.380 (4)
C8—C151.528 (4)C19—H190.9500
C8—C161.531 (4)C20—C211.390 (5)
C8—C8A1.557 (4)C20—H200.9500
C8A—C91.518 (4)C21—C221.369 (5)
C8A—H8A1.0000C21—H210.9500
C9—C101.518 (4)C22—C231.378 (4)
C9—H9A0.9900C22—H220.9500
C9—H9B0.9900C23—H230.9500
C17—O1—C2116.01 (19)C10A—C10—H10B108.5
C2—C1—C10A117.7 (2)H10A—C10—H10B107.5
C2—C1—C11121.2 (3)C4A—C10A—C1120.6 (3)
C10A—C1—C11121.2 (3)C4A—C10A—C10120.4 (2)
C3—C2—C1122.8 (2)C1—C10A—C10119.0 (2)
C3—C2—O1117.6 (2)C12—C11—C13110.5 (3)
C1—C2—O1119.6 (2)C12—C11—C1114.6 (3)
C2—C3—C4118.7 (3)C13—C11—C1112.1 (3)
C2—C3—H3120.7C12—C11—H11106.3
C4—C3—H3120.7C13—C11—H11106.3
C3—C4—C4A121.8 (2)C1—C11—H11106.3
C3—C4—H4119.1C11—C12—H12A109.5
C4A—C4—H4119.1C11—C12—H12B109.5
C4—C4A—C10A118.5 (2)H12A—C12—H12B109.5
C4—C4A—C4B118.9 (2)C11—C12—H12C109.5
C10A—C4A—C4B122.6 (2)H12A—C12—H12C109.5
C5—C4B—C4A110.8 (2)H12B—C12—H12C109.5
C5—C4B—C14108.4 (2)C11—C13—H13A109.5
C4A—C4B—C14105.85 (19)C11—C13—H13B109.5
C5—C4B—C8A108.6 (2)H13A—C13—H13B109.5
C4A—C4B—C8A108.4 (2)C11—C13—H13C109.5
C14—C4B—C8A114.9 (2)H13A—C13—H13C109.5
C6—C5—C4B113.1 (2)H13B—C13—H13C109.5
C6—C5—H5A109.0C4B—C14—H14A109.5
C4B—C5—H5A109.0C4B—C14—H14B109.5
C6—C5—H5B109.0H14A—C14—H14B109.5
C4B—C5—H5B109.0C4B—C14—H14C109.5
H5A—C5—H5B107.8H14A—C14—H14C109.5
C7—C6—C5111.0 (2)H14B—C14—H14C109.5
C7—C6—H6A109.4C8—C15—H15A109.5
C5—C6—H6A109.4C8—C15—H15B109.5
C7—C6—H6B109.4H15A—C15—H15B109.5
C5—C6—H6B109.4C8—C15—H15C109.5
H6A—C6—H6B108.0H15A—C15—H15C109.5
C6—C7—C8113.5 (2)H15B—C15—H15C109.5
C6—C7—H7A108.9C8—C16—H16A109.5
C8—C7—H7A108.9C8—C16—H16B109.5
C6—C7—H7B108.9H16A—C16—H16B109.5
C8—C7—H7B108.9C8—C16—H16C109.5
H7A—C7—H7B107.7H16A—C16—H16C109.5
C15—C8—C7110.4 (2)H16B—C16—H16C109.5
C15—C8—C16107.4 (3)O2—C17—O1122.5 (2)
C7—C8—C16107.5 (2)O2—C17—C18125.0 (2)
C15—C8—C8A114.1 (2)O1—C17—C18112.4 (2)
C7—C8—C8A108.4 (2)C19—C18—C23119.5 (3)
C16—C8—C8A108.7 (2)C19—C18—C17123.3 (2)
C9—C8A—C4B109.0 (2)C23—C18—C17117.2 (2)
C9—C8A—C8114.9 (2)C20—C19—C18120.3 (3)
C4B—C8A—C8116.9 (2)C20—C19—H19119.9
C9—C8A—H8A104.9C18—C19—H19119.9
C4B—C8A—H8A104.9C19—C20—C21119.5 (3)
C8—C8A—H8A104.9C19—C20—H20120.2
C10—C9—C8A111.3 (3)C21—C20—H20120.2
C10—C9—H9A109.4C22—C21—C20120.4 (3)
C8A—C9—H9A109.4C22—C21—H21119.8
C10—C9—H9B109.4C20—C21—H21119.8
C8A—C9—H9B109.4C21—C22—C23120.3 (3)
H9A—C9—H9B108.0C21—C22—H22119.8
C9—C10—C10A115.0 (2)C23—C22—H22119.8
C9—C10—H10A108.5C22—C23—C18120.0 (3)
C10A—C10—H10A108.5C22—C23—H23120.0
C9—C10—H10B108.5C18—C23—H23120.0

Experimental details

Crystal data
Chemical formulaC27H34O2
Mr390.54
Crystal system, space groupMonoclinic, P21
Temperature (K)180
a, b, c (Å)7.7369 (3), 7.2079 (4), 20.2499 (9)
β (°) 99.816 (4)
V3)1112.74 (9)
Z2
Radiation typeCu Kα
µ (mm1)0.55
Crystal size (mm)0.50 × 0.25 × 0.07
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.689, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
9197, 3116, 2926
Rint0.033
θmax (°)60.8
(sin θ/λ)max1)0.566
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.04
No. of reflections3116
No. of parameters267
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.21
Absolute structureFlack x determined using 1138 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.11 (17)

Computer programs: CrysAlis PRO (Agilent, 2012), SIR97 (Altomare et al., 1999), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds