Download citation
Download citation
link to html
The four electron-transfer complexes trans-(di(N,N-diethyl-(2-phenyldiazenyl)thioformamide-κSN2))nickel, trans-(di(N,N-diethyl-(2-phenyldiazenyl)thioformamide-κSN2))copper, trans-(di(N,N-diethyl-(2-phenyldiazenyl)thioformamide-κSN2))palladium and trans-(di(N,N-diethyl-(2-phenyldiazenyl)thioformamide-κSN2))platinum have been crystallized, and their structures have been determined at low temperature. All the complexes are of the M-N2S2 type. The crystals of both the nickel and the copper complex belong to the tetragonal P41212 system, in which the central metal ion lies on a twofold axis. The tetrahedral molecular symmetry around the central metal ion is unusual for the M-N2S2 electron-transfer complexes. The crystals of the palladium and platinum complexes on the other hand belong to the monoclinic C2/c system in which the metal ion lies on an inversion centre. The molecular symmetry around these metal ions is square planar. It is demonstrated that the π electron density in the ligand planes has a high degree of delocalization. Furthermore, unusually large line broadening of the 1H NMR spectra was observed and investigated as a function of temperature for the palladium complex.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768106047306/bk5045sup1.cif
Contains datablocks global, NiL20, CuL20, PdL20, PtL20

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768106047306/bk5045NiL20sup2.hkl
Contains datablock NiL2O

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768106047306/bk5045CuL20sup3.hkl
Contains datablock CuL2O

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768106047306/bk5045PdL20sup4.hkl
Contains datablock PdL2O

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768106047306/bk5045PtL20sup5.hkl
Contains datablock PtL2O

CCDC references: 637760; 637761; 637762; 637763

Computing details top

Data collection: Bruker SMART (Bruker AXS,1998) for NiL20; Bruker SMART for CuL20, PdL20, PtL20. Cell refinement: Bruker SMART (Bruker AXS,1998) for NiL20; Bruker SMART for CuL20, PdL20, PtL20. Data reduction: Bruker SHELXTL (Sheldrick,2001) for NiL20; Bruker SHELXTL for CuL20, PdL20, PtL20. Program(s) used to solve structure: Bruker SHELXTL (Sheldrick,2001) for NiL20; Bruker SHELXTL for CuL20, PdL20, PtL20. Program(s) used to refine structure: Bruker SHELXTL (Sheldrick,2001) for NiL20; Bruker SHELXTL for CuL20, PdL20, PtL20. Molecular graphics: Bruker SHELXTL (Sheldrick,2001) for NiL20; Bruker SHELXTL for CuL20, PdL20, PtL20. For all compounds, software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
(NiL20) Trans-(di(N,N-diethyl-(2-phenyldiazenyl)thioformamide-κS,κN2))nickel top
Crystal data top
C22H30N6NiS2Dx = 1.413 Mg m3
Mr = 501.35Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 12044 reflections
a = 10.2852 (3) Åθ = 2.7–31.0°
c = 22.2862 (13) ŵ = 1.02 mm1
V = 2357.55 (17) Å3T = 118 K
Z = 4Quadratic bi-pyramidal shaped, brown
F(000) = 10560.50 × 0.30 × 0.05 mm
Data collection top
CCD area detector
diffractometer
3630 independent reflections
Radiation source: fine-focus sealed tube3436 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 8.192 pixels mm-1θmax = 31.0°, θmin = 2.2°
ω scansh = 1314
Absorption correction: empirical (using intensity measurements)
SADABS,ver2.03 (Sheldrick,2001)
k = 1414
Tmin = 0.74, Tmax = 0.96l = 3130
31608 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.3442P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
3630 reflectionsΔρmax = 0.61 e Å3
201 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.021 (12)
Crystal data top
C22H30N6NiS2Z = 4
Mr = 501.35Mo Kα radiation
Tetragonal, P41212µ = 1.02 mm1
a = 10.2852 (3) ÅT = 118 K
c = 22.2862 (13) Å0.50 × 0.30 × 0.05 mm
V = 2357.55 (17) Å3
Data collection top
CCD area detector
diffractometer
3630 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS,ver2.03 (Sheldrick,2001)
3436 reflections with I > 2σ(I)
Tmin = 0.74, Tmax = 0.96Rint = 0.043
31608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.61 e Å3
S = 1.16Δρmin = 0.26 e Å3
3630 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
201 parametersAbsolute structure parameter: 0.021 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.14902 (2)0.14902 (2)0.00000.01454 (8)
S0.01504 (4)0.16012 (4)0.06373 (2)0.01851 (10)
N10.07768 (13)0.29876 (13)0.03467 (6)0.0129 (3)
N20.03902 (13)0.34689 (14)0.02047 (6)0.0142 (3)
N30.20611 (14)0.33344 (15)0.04815 (6)0.0169 (3)
C10.09112 (16)0.28819 (16)0.02852 (7)0.0138 (3)
C20.27465 (17)0.44026 (18)0.01804 (8)0.0191 (4)
H2A0.21190.49550.00210.023*
H2B0.31960.49250.04780.023*
C30.3721 (2)0.3900 (2)0.02740 (9)0.0263 (4)
H3A0.41510.46210.04620.039*
H3B0.43520.33650.00750.039*
H3C0.32770.33950.05730.039*
C40.27118 (18)0.2763 (2)0.10021 (8)0.0210 (4)
H4A0.25350.18370.10130.025*
H4B0.36440.28790.09610.025*
C50.2266 (2)0.3375 (3)0.15886 (9)0.0325 (5)
H5A0.27140.29730.19180.049*
H5B0.24560.42890.15830.049*
H5C0.13470.32490.16350.049*
C60.13032 (15)0.35289 (16)0.08777 (7)0.0136 (3)
C70.05541 (18)0.41279 (17)0.13203 (8)0.0180 (3)
H70.03370.42270.12670.022*
C80.11433 (19)0.45755 (18)0.18413 (9)0.0219 (4)
H80.06410.49580.21400.026*
C90.24787 (19)0.44559 (18)0.19198 (9)0.0219 (4)
H90.28680.47610.22690.026*
C100.32319 (17)0.38794 (17)0.14757 (8)0.0193 (4)
H100.41270.38100.15260.023*
C110.26524 (16)0.34072 (17)0.09572 (8)0.0161 (3)
H110.31570.30110.06630.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.01353 (10)0.01353 (10)0.01657 (15)0.00528 (11)0.00051 (8)0.00051 (8)
S0.01692 (19)0.0200 (2)0.0186 (2)0.00595 (16)0.00190 (15)0.00582 (17)
N10.0119 (6)0.0121 (6)0.0146 (7)0.0022 (5)0.0013 (5)0.0006 (5)
N20.0108 (6)0.0150 (6)0.0169 (6)0.0035 (5)0.0008 (5)0.0000 (6)
N30.0133 (6)0.0196 (7)0.0177 (7)0.0042 (5)0.0025 (5)0.0028 (6)
C10.0126 (7)0.0148 (7)0.0142 (8)0.0018 (6)0.0016 (6)0.0007 (6)
C20.0150 (8)0.0188 (8)0.0235 (9)0.0067 (6)0.0032 (7)0.0015 (7)
C30.0301 (11)0.0274 (9)0.0214 (9)0.0130 (8)0.0049 (8)0.0004 (8)
C40.0147 (9)0.0277 (10)0.0206 (8)0.0023 (6)0.0049 (7)0.0038 (8)
C50.0294 (10)0.0487 (14)0.0194 (9)0.0000 (10)0.0022 (8)0.0008 (10)
C60.0146 (7)0.0113 (6)0.0151 (7)0.0004 (6)0.0003 (6)0.0016 (6)
C70.0161 (8)0.0172 (8)0.0208 (9)0.0030 (6)0.0000 (7)0.0002 (7)
C80.0275 (9)0.0197 (8)0.0184 (8)0.0030 (7)0.0005 (7)0.0034 (7)
C90.0295 (10)0.0158 (9)0.0205 (9)0.0016 (7)0.0079 (8)0.0008 (7)
C100.0162 (8)0.0154 (8)0.0262 (9)0.0016 (6)0.0054 (7)0.0048 (7)
C110.0153 (7)0.0144 (8)0.0187 (8)0.0011 (6)0.0003 (6)0.0018 (7)
Geometric parameters (Å, º) top
Ni—N1i1.8728 (14)C4—C51.521 (3)
Ni—N11.8728 (14)C4—H4A0.9700
Ni—Si2.2085 (4)C4—H4B0.9700
Ni—S2.2085 (4)C5—H5A0.9600
S—C11.7213 (17)C5—H5B0.9600
N1—N21.3363 (19)C5—H5C0.9600
N1—C61.415 (2)C6—C71.395 (2)
N2—C11.358 (2)C6—C111.405 (2)
N3—C11.344 (2)C7—C81.388 (2)
N3—C41.463 (2)C7—H70.9300
N3—C21.468 (2)C8—C91.390 (3)
C2—C31.515 (3)C8—H80.9300
C2—H2A0.9700C9—C101.390 (3)
C2—H2B0.9700C9—H90.9300
C3—H3A0.9600C10—C111.388 (2)
C3—H3B0.9600C10—H100.9300
C3—H3C0.9600C11—H110.9300
N1i—Ni—N1144.55 (9)N3—C4—H4A109.2
N1i—Ni—Si85.61 (4)C5—C4—H4A109.2
N1—Ni—Si112.53 (4)N3—C4—H4B109.2
N1i—Ni—S112.53 (4)C5—C4—H4B109.2
N1—Ni—S85.61 (4)H4A—C4—H4B107.9
Si—Ni—S119.50 (3)C4—C5—H5A109.5
C1—S—Ni95.38 (6)C4—C5—H5B109.5
N2—N1—C6113.32 (13)H5A—C5—H5B109.5
N2—N1—Ni123.97 (11)C4—C5—H5C109.5
C6—N1—Ni121.23 (11)H5A—C5—H5C109.5
N1—N2—C1112.35 (13)H5B—C5—H5C109.5
C1—N3—C4121.45 (15)C7—C6—C11119.72 (16)
C1—N3—C2122.21 (14)C7—C6—N1123.62 (15)
C4—N3—C2116.32 (14)C11—C6—N1116.64 (15)
N3—C1—N2117.06 (14)C8—C7—C6119.79 (17)
N3—C1—S121.11 (13)C8—C7—H7120.1
N2—C1—S121.83 (12)C6—C7—H7120.1
N3—C2—C3111.58 (16)C9—C8—C7120.49 (18)
N3—C2—H2A109.3C9—C8—H8119.8
C3—C2—H2A109.3C7—C8—H8119.8
N3—C2—H2B109.3C8—C9—C10119.92 (17)
C3—C2—H2B109.3C8—C9—H9120.0
H2A—C2—H2B108.0C10—C9—H9120.0
C2—C3—H3A109.5C11—C10—C9120.19 (17)
C2—C3—H3B109.5C11—C10—H10119.9
H3A—C3—H3B109.5C9—C10—H10119.9
C2—C3—H3C109.5C10—C11—C6119.88 (16)
H3A—C3—H3C109.5C10—C11—H11120.1
H3B—C3—H3C109.5C6—C11—H11120.1
N3—C4—C5112.19 (17)
N1i—Ni—S—C1153.90 (8)Ni—S—C1—N22.51 (14)
N1—Ni—S—C15.38 (7)C1—N3—C2—C393.7 (2)
Si—Ni—S—C1108.08 (6)C4—N3—C2—C385.0 (2)
N1i—Ni—N1—N2133.45 (13)C1—N3—C4—C587.1 (2)
Si—Ni—N1—N2110.45 (12)C2—N3—C4—C594.2 (2)
S—Ni—N1—N29.75 (12)N2—N1—C6—C721.5 (2)
N1i—Ni—N1—C661.33 (12)Ni—N1—C6—C7145.13 (14)
Si—Ni—N1—C654.77 (13)N2—N1—C6—C11160.30 (15)
S—Ni—N1—C6174.97 (12)Ni—N1—C6—C1133.0 (2)
C6—N1—N2—C1176.32 (13)C11—C6—C7—C81.3 (3)
Ni—N1—N2—C110.06 (19)N1—C6—C7—C8176.80 (16)
C4—N3—C1—N2179.44 (16)C6—C7—C8—C91.4 (3)
C2—N3—C1—N20.8 (2)C7—C8—C9—C100.3 (3)
C4—N3—C1—S0.2 (2)C8—C9—C10—C110.8 (3)
C2—N3—C1—S178.39 (14)C9—C10—C11—C60.9 (3)
N1—N2—C1—N3177.19 (14)C7—C6—C11—C100.2 (3)
N1—N2—C1—S3.6 (2)N1—C6—C11—C10178.04 (15)
Ni—S—C1—N3176.68 (13)
Symmetry code: (i) y, x, z.
(CuL20) Trans-(di(N,N-diethyl-(2-phenyldiazenyl)thioformamide-κS,κN2))copper top
Crystal data top
C22H30CuN6S2Dx = 1.428 Mg m3
Mr = 506.18Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 10241 reflections
a = 10.2643 (4) Åθ = 2.7–28.0°
c = 22.3519 (13) ŵ = 1.13 mm1
V = 2354.90 (19) Å3T = 118 K
Z = 4Quadratic bi-pyramidal shaped, black
F(000) = 10600.40 × 0.35 × 0.15 mm
Data collection top
CCD area detector
diffractometer
2832 independent reflections
Radiation source: fine-focus sealed tube2788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.192 pixels mm-1θmax = 28.0°, θmin = 2.2°
ω scansh = 1312
Absorption correction: empirical (using intensity measurements)
SADABS,ver2.03 (Sheldrick,2001)
k = 1313
Tmin = 0.661, Tmax = 0.849l = 2828
16807 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.P)2 + 0.1079P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2832 reflectionsΔρmax = 0.36 e Å3
141 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 1132 Fridel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (9)
Crystal data top
C22H30CuN6S2Z = 4
Mr = 506.18Mo Kα radiation
Tetragonal, P41212µ = 1.13 mm1
a = 10.2643 (4) ÅT = 118 K
c = 22.3519 (13) Å0.40 × 0.35 × 0.15 mm
V = 2354.90 (19) Å3
Data collection top
CCD area detector
diffractometer
2832 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS,ver2.03 (Sheldrick,2001)
2788 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.849Rint = 0.027
16807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.070Δρmax = 0.36 e Å3
S = 1.10Δρmin = 0.18 e Å3
2832 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 1132 Fridel pairs
141 parametersAbsolute structure parameter: 0.012 (9)
0 restraints
Special details top

Experimental. SADABS

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.151860 (16)0.151860 (16)0.00000.01397 (9)
S0.01348 (3)0.16903 (4)0.067367 (18)0.01868 (10)
C10.08987 (14)0.29169 (14)0.02823 (7)0.0139 (3)
C20.27499 (14)0.44307 (15)0.01431 (7)0.0193 (3)
H2A0.21150.49590.00860.023*
H2B0.31800.50090.04370.023*
C30.37665 (16)0.38819 (17)0.02821 (8)0.0244 (3)
H3A0.42090.45990.04880.037*
H3B0.44050.33730.00550.037*
H3C0.33410.33200.05780.037*
C40.27172 (15)0.28546 (16)0.09915 (7)0.0199 (3)
H4A0.25230.19120.10240.024*
H4B0.36700.29530.09410.024*
C50.23001 (17)0.35315 (19)0.15659 (8)0.0293 (4)
H5A0.27650.31470.19060.044*
H5B0.25070.44620.15400.044*
H5C0.13600.34210.16220.044*
C60.12967 (13)0.35602 (13)0.08980 (7)0.0140 (3)
C70.05412 (15)0.41548 (14)0.13431 (7)0.0179 (3)
H70.03710.42570.12900.022*
C80.11421 (15)0.45922 (15)0.18616 (7)0.0215 (3)
H80.06310.49800.21680.026*
C90.24836 (16)0.44715 (14)0.19406 (7)0.0206 (3)
H90.28820.47800.22970.025*
C100.32348 (15)0.38972 (14)0.14959 (7)0.0180 (3)
H100.41500.38180.15460.022*
C110.26463 (14)0.34395 (14)0.09783 (7)0.0157 (3)
H110.31610.30410.06760.019*
N10.07845 (11)0.30528 (11)0.03596 (6)0.0128 (2)
N20.04083 (11)0.34544 (12)0.02319 (5)0.0142 (2)
N30.20557 (12)0.33844 (12)0.04624 (6)0.0162 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.01257 (10)0.01257 (10)0.01677 (15)0.00385 (8)0.00076 (6)0.00076 (6)
S0.01651 (17)0.02061 (19)0.0189 (2)0.00520 (13)0.00276 (14)0.00644 (14)
C10.0132 (6)0.0147 (6)0.0140 (7)0.0002 (5)0.0012 (5)0.0015 (5)
C20.0161 (7)0.0176 (7)0.0243 (8)0.0069 (5)0.0016 (6)0.0014 (6)
C30.0250 (8)0.0267 (8)0.0216 (8)0.0102 (6)0.0030 (6)0.0019 (6)
C40.0151 (7)0.0250 (8)0.0195 (8)0.0017 (6)0.0039 (6)0.0010 (6)
C50.0271 (8)0.0413 (10)0.0196 (8)0.0002 (7)0.0014 (7)0.0027 (8)
C60.0150 (6)0.0121 (6)0.0147 (6)0.0011 (5)0.0002 (5)0.0016 (5)
C70.0156 (6)0.0174 (7)0.0208 (8)0.0039 (5)0.0013 (6)0.0004 (6)
C80.0260 (8)0.0211 (7)0.0175 (8)0.0041 (6)0.0017 (6)0.0027 (6)
C90.0293 (8)0.0154 (7)0.0171 (7)0.0004 (6)0.0055 (6)0.0015 (6)
C100.0173 (7)0.0149 (6)0.0219 (8)0.0009 (5)0.0029 (6)0.0050 (6)
C110.0149 (6)0.0146 (6)0.0177 (7)0.0011 (5)0.0001 (5)0.0017 (6)
N10.0107 (5)0.0122 (5)0.0156 (6)0.0013 (4)0.0001 (5)0.0016 (5)
N20.0126 (5)0.0138 (5)0.0161 (6)0.0017 (5)0.0000 (4)0.0006 (5)
N30.0133 (5)0.0178 (6)0.0175 (6)0.0032 (5)0.0026 (5)0.0017 (5)
Geometric parameters (Å, º) top
Cu—N1i1.9219 (12)C4—H4B0.9900
Cu—N11.9219 (12)C5—H5A0.9800
Cu—Si2.2756 (4)C5—H5B0.9800
Cu—S2.2756 (4)C5—H5C0.9800
S—C11.7220 (15)C6—C71.401 (2)
C1—N31.3427 (18)C6—C111.4024 (19)
C1—N21.3706 (18)C6—N11.4128 (19)
C2—N31.4733 (18)C7—C81.387 (2)
C2—C31.520 (2)C7—H70.9500
C2—H2A0.9900C8—C91.394 (2)
C2—H2B0.9900C8—H80.9500
C3—H3A0.9800C9—C101.389 (2)
C3—H3B0.9800C9—H90.9500
C3—H3C0.9800C10—C111.387 (2)
C4—N31.4682 (19)C10—H100.9500
C4—C51.521 (2)C11—H110.9500
C4—H4A0.9900N1—N21.3230 (16)
N1i—Cu—N1144.83 (7)H5A—C5—H5B109.5
N1i—Cu—Si85.46 (4)C4—C5—H5C109.5
N1—Cu—Si111.39 (4)H5A—C5—H5C109.5
N1i—Cu—S111.39 (4)H5B—C5—H5C109.5
N1—Cu—S85.46 (4)C7—C6—C11119.62 (14)
Si—Cu—S123.60 (2)C7—C6—N1124.01 (12)
C1—S—Cu93.44 (5)C11—C6—N1116.36 (13)
N3—C1—N2115.62 (12)C8—C7—C6119.20 (13)
N3—C1—S120.77 (11)C8—C7—H7120.4
N2—C1—S123.58 (10)C6—C7—H7120.4
N3—C2—C3111.40 (13)C7—C8—C9121.08 (14)
N3—C2—H2A109.3C7—C8—H8119.5
C3—C2—H2A109.3C9—C8—H8119.5
N3—C2—H2B109.3C10—C9—C8119.70 (15)
C3—C2—H2B109.3C10—C9—H9120.2
H2A—C2—H2B108.0C8—C9—H9120.2
C2—C3—H3A109.5C11—C10—C9119.92 (14)
C2—C3—H3B109.5C11—C10—H10120.0
H3A—C3—H3B109.5C9—C10—H10120.0
C2—C3—H3C109.5C10—C11—C6120.46 (14)
H3A—C3—H3C109.5C10—C11—H11119.8
H3B—C3—H3C109.5C6—C11—H11119.8
N3—C4—C5112.36 (13)N2—N1—C6114.41 (11)
N3—C4—H4A109.1N2—N1—Cu121.86 (9)
C5—C4—H4A109.1C6—N1—Cu120.82 (9)
N3—C4—H4B109.1N1—N2—C1113.29 (12)
C5—C4—H4B109.1C1—N3—C4121.22 (12)
H4A—C4—H4B107.9C1—N3—C2122.89 (12)
C4—C5—H5A109.5C4—N3—C2115.88 (11)
C4—C5—H5B109.5
Symmetry code: (i) y, x, z.
(PdL20) Trans-(di(N,N-diethyl-(2-phenyldiazenyl)thioformamide-κS,κN2))palladium top
Crystal data top
C22H30N6PdS2F(000) = 1128
Mr = 549.04Dx = 1.508 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.0360 (16) ÅCell parameters from 2763 reflections
b = 12.4564 (13) Åθ = 2.5–27.8°
c = 12.3311 (12) ŵ = 0.96 mm1
β = 100.952 (2)°T = 118 K
V = 2418.3 (4) Å3Plate, green
Z = 40.30 × 0.25 × 0.01 mm
Data collection top
CCD area detector
diffractometer
2847 independent reflections
Radiation source: fine-focus sealed tube2431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 8.192 pixels mm-1θmax = 28.0°, θmin = 2.1°
ω scansh = 1921
Absorption correction: empirical (using intensity measurements)
SADABS,ver2.03 (Sheldrick,2001)
k = 1616
Tmin = 0.761, Tmax = 0.990l = 916
8430 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0337P)2 + 16.6377P]
where P = (Fo2 + 2Fc2)/3
2847 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 1.47 e Å3
0 restraintsΔρmin = 2.28 e Å3
Crystal data top
C22H30N6PdS2V = 2418.3 (4) Å3
Mr = 549.04Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.0360 (16) ŵ = 0.96 mm1
b = 12.4564 (13) ÅT = 118 K
c = 12.3311 (12) Å0.30 × 0.25 × 0.01 mm
β = 100.952 (2)°
Data collection top
CCD area detector
diffractometer
2847 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS,ver2.03 (Sheldrick,2001)
2431 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 0.990Rint = 0.043
8430 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0337P)2 + 16.6377P]
where P = (Fo2 + 2Fc2)/3
2847 reflectionsΔρmax = 1.47 e Å3
191 parametersΔρmin = 2.28 e Å3
Special details top

Experimental. SADABS

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.25000.25000.00000.00766 (12)
S0.20585 (6)0.09864 (8)0.10047 (9)0.0124 (2)
N10.3590 (2)0.2174 (3)0.0483 (3)0.0105 (7)
N20.3672 (2)0.1407 (3)0.1216 (3)0.0130 (7)
N30.3036 (2)0.0007 (3)0.2235 (3)0.0166 (8)
C10.2987 (2)0.0782 (3)0.1514 (3)0.0133 (8)
C20.2362 (3)0.0810 (3)0.2519 (4)0.0181 (9)
H2A0.23480.10590.32680.022*
H2B0.18190.04790.24940.022*
C30.2491 (3)0.1763 (4)0.1742 (4)0.0267 (11)
H3A0.20370.22680.19560.040*
H3B0.24950.15230.10010.040*
H3C0.30230.21020.17750.040*
C40.3812 (3)0.0184 (4)0.2689 (4)0.0223 (10)
H4A0.38590.09400.28540.027*
H4B0.43040.00140.21380.027*
C50.3810 (3)0.0463 (4)0.3727 (4)0.0310 (12)
H5A0.43250.03270.39950.046*
H5B0.37740.12130.35660.046*
H5C0.33310.02590.42810.046*
C60.4352 (2)0.2783 (3)0.0210 (3)0.0119 (8)
C70.4701 (2)0.3000 (3)0.0893 (3)0.0133 (8)
H70.44400.27410.14530.016*
C80.5442 (3)0.3608 (3)0.1151 (4)0.0166 (9)
H80.56750.37560.18860.020*
C90.5835 (3)0.3992 (3)0.0325 (4)0.0198 (9)
H90.63300.43940.05020.024*
C100.5486 (3)0.3774 (3)0.0775 (4)0.0185 (9)
H100.57450.40410.13330.022*
C110.4749 (3)0.3156 (3)0.1045 (4)0.0148 (8)
H110.45250.29950.17790.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.00897 (19)0.00730 (18)0.0072 (2)0.00099 (16)0.00277 (14)0.00066 (17)
S0.0122 (4)0.0116 (4)0.0139 (5)0.0023 (4)0.0042 (4)0.0043 (4)
N10.0113 (15)0.0103 (14)0.0109 (17)0.0001 (12)0.0041 (13)0.0014 (12)
N20.0140 (16)0.0126 (15)0.0131 (18)0.0014 (12)0.0043 (13)0.0014 (13)
N30.0166 (17)0.0146 (17)0.020 (2)0.0006 (13)0.0072 (15)0.0078 (15)
C10.0140 (18)0.0126 (18)0.014 (2)0.0013 (14)0.0033 (16)0.0006 (15)
C20.018 (2)0.018 (2)0.019 (2)0.0026 (16)0.0047 (17)0.0100 (17)
C30.030 (2)0.017 (2)0.034 (3)0.0007 (18)0.007 (2)0.006 (2)
C40.017 (2)0.026 (2)0.027 (3)0.0016 (17)0.0103 (19)0.013 (2)
C50.026 (2)0.042 (3)0.027 (3)0.005 (2)0.011 (2)0.008 (2)
C60.0139 (18)0.0079 (17)0.014 (2)0.0016 (13)0.0038 (16)0.0008 (14)
C70.0159 (19)0.0139 (18)0.012 (2)0.0009 (15)0.0066 (16)0.0028 (16)
C80.017 (2)0.019 (2)0.013 (2)0.0020 (16)0.0019 (17)0.0029 (16)
C90.017 (2)0.017 (2)0.026 (3)0.0064 (16)0.0046 (18)0.0021 (18)
C100.018 (2)0.018 (2)0.022 (2)0.0045 (16)0.0100 (18)0.0005 (18)
C110.018 (2)0.0145 (19)0.013 (2)0.0024 (15)0.0045 (16)0.0020 (16)
Geometric parameters (Å, º) top
Pd—N1i1.993 (3)C4—C51.512 (7)
Pd—N11.993 (3)C4—H4A0.9700
Pd—S2.2930 (10)C4—H4B0.9700
Pd—Si2.2930 (10)C5—H5A0.9600
S—C11.741 (4)C5—H5B0.9600
N1—N21.339 (5)C5—H5C0.9600
N1—C61.423 (5)C6—C111.389 (6)
N2—C11.340 (5)C6—C71.396 (6)
N3—C11.338 (5)C7—C81.395 (6)
N3—C21.465 (5)C7—H70.9300
N3—C41.476 (5)C8—C91.381 (6)
C2—C31.515 (6)C8—H80.9300
C2—H2A0.9700C9—C101.392 (6)
C2—H2B0.9700C9—H90.9300
C3—H3A0.9600C10—C111.397 (6)
C3—H3B0.9600C10—H100.9300
C3—H3C0.9600C11—H110.9300
N1i—Pd—N1180.0N3—C4—H4A109.2
N1i—Pd—S97.51 (9)C5—C4—H4A109.2
N1—Pd—S82.49 (9)N3—C4—H4B109.2
N1i—Pd—Si82.49 (9)C5—C4—H4B109.2
N1—Pd—Si97.51 (9)H4A—C4—H4B107.9
S—Pd—Si180.00 (5)C4—C5—H5A109.5
C1—S—Pd96.75 (14)C4—C5—H5B109.5
N2—N1—C6110.5 (3)H5A—C5—H5B109.5
N2—N1—Pd123.5 (2)C4—C5—H5C109.5
C6—N1—Pd125.7 (3)H5A—C5—H5C109.5
N1—N2—C1114.8 (3)H5B—C5—H5C109.5
C1—N3—C2121.8 (4)C11—C6—C7120.2 (4)
C1—N3—C4121.5 (3)C11—C6—N1119.8 (4)
C2—N3—C4116.4 (3)C7—C6—N1120.1 (4)
N3—C1—N2117.4 (4)C8—C7—C6119.6 (4)
N3—C1—S120.6 (3)C8—C7—H7120.2
N2—C1—S122.0 (3)C6—C7—H7120.2
N3—C2—C3112.2 (4)C9—C8—C7120.5 (4)
N3—C2—H2A109.2C9—C8—H8119.7
C3—C2—H2A109.2C7—C8—H8119.7
N3—C2—H2B109.2C8—C9—C10119.8 (4)
C3—C2—H2B109.2C8—C9—H9120.1
H2A—C2—H2B107.9C10—C9—H9120.1
C2—C3—H3A109.5C9—C10—C11120.3 (4)
C2—C3—H3B109.5C9—C10—H10119.9
H3A—C3—H3B109.5C11—C10—H10119.9
C2—C3—H3C109.5C6—C11—C10119.6 (4)
H3A—C3—H3C109.5C6—C11—H11120.2
H3B—C3—H3C109.5C10—C11—H11120.2
N3—C4—C5112.1 (4)
Symmetry code: (i) x+1/2, y+1/2, z.
(PtL20) Trans-(di(N,N-diethyl-(2-phenyldiazenyl)thioformamide-κS,κN2))platinum top
Crystal data top
C22H30N6PtS2F(000) = 1256
Mr = 637.73Dx = 1.745 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.9317 (7) ÅCell parameters from 9821 reflections
b = 12.5300 (5) Åθ = 2.5–28.0°
c = 12.3798 (5) ŵ = 5.97 mm1
β = 100.755 (1)°T = 118 K
V = 2427.90 (17) Å3Plate, dark green
Z = 40.25 × 0.20 × 0.15 mm
Data collection top
CCD area detector
diffractometer
2937 independent reflections
Radiation source: fine-focus sealed tube2632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.120
Detector resolution: 8.192 pixels mm-1θmax = 28.0°, θmin = 2.1°
ω scansh = 2121
Absorption correction: empirical (using intensity measurements)
SADABS,ver2.03 (Sheldrick,2001)
k = 1616
Tmin = 0.255, Tmax = 0.408l = 1616
14253 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0604P)2]
where P = (Fo2 + 2Fc2)/3
2937 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 3.08 e Å3
0 restraintsΔρmin = 4.14 e Å3
Crystal data top
C22H30N6PtS2V = 2427.90 (17) Å3
Mr = 637.73Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.9317 (7) ŵ = 5.97 mm1
b = 12.5300 (5) ÅT = 118 K
c = 12.3798 (5) Å0.25 × 0.20 × 0.15 mm
β = 100.755 (1)°
Data collection top
CCD area detector
diffractometer
2937 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS,ver2.03 (Sheldrick,2001)
2632 reflections with I > 2σ(I)
Tmin = 0.255, Tmax = 0.408Rint = 0.120
14253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.09Δρmax = 3.08 e Å3
2937 reflectionsΔρmin = 4.14 e Å3
144 parameters
Special details top

Experimental. SADABS

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.25000.25000.50000.01078 (10)
S10.20567 (4)0.09968 (5)0.39979 (5)0.01557 (15)
N10.35741 (13)0.2183 (2)0.45030 (17)0.0132 (4)
N20.36679 (13)0.14186 (17)0.37671 (16)0.0161 (4)
N30.30312 (14)0.00106 (18)0.27523 (17)0.0219 (5)
C10.29868 (15)0.08026 (19)0.34732 (19)0.0164 (5)
C20.23519 (17)0.0786 (2)0.2480 (2)0.0230 (5)
H2A0.23320.10330.17320.028*
H2B0.18070.04560.25140.028*
C30.2486 (2)0.1735 (2)0.3253 (3)0.0314 (6)
H3A0.30310.20550.32330.047*
H3B0.20420.22490.30270.047*
H3C0.24720.15010.39870.047*
C40.38099 (17)0.0158 (2)0.2293 (2)0.0270 (6)
H4A0.38610.09110.21310.032*
H4B0.43050.00430.28370.032*
C50.38013 (19)0.0485 (3)0.1252 (2)0.0381 (7)
H5A0.32760.03580.07470.057*
H5B0.42740.02730.09190.057*
H5C0.38490.12310.14300.057*
C60.43498 (17)0.2789 (3)0.4786 (2)0.0153 (5)
C70.47029 (16)0.2975 (2)0.58875 (19)0.0178 (5)
H70.44400.27050.64400.021*
C80.54517 (16)0.3568 (2)0.6154 (2)0.0204 (5)
H80.56910.36880.68880.025*
C90.58436 (16)0.3981 (2)0.5334 (2)0.0225 (5)
H90.63390.43860.55140.027*
C100.54854 (17)0.3783 (2)0.4236 (2)0.0222 (5)
H100.57460.40580.36830.027*
C110.47520 (16)0.3185 (2)0.39599 (19)0.0193 (5)
H110.45250.30450.32260.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01491 (14)0.00946 (15)0.00856 (15)0.00097 (3)0.00371 (9)0.00063 (3)
S10.0192 (3)0.0136 (3)0.0150 (3)0.0025 (2)0.0058 (2)0.0044 (2)
N10.0152 (11)0.0119 (10)0.0132 (11)0.0016 (10)0.0042 (8)0.0002 (10)
N20.0202 (10)0.0158 (10)0.0132 (9)0.0009 (8)0.0051 (8)0.0035 (8)
N30.0237 (11)0.0210 (11)0.0227 (11)0.0027 (9)0.0088 (9)0.0097 (9)
C10.0216 (11)0.0151 (12)0.0139 (11)0.0022 (9)0.0067 (9)0.0005 (9)
C20.0266 (13)0.0212 (13)0.0211 (13)0.0022 (11)0.0041 (10)0.0104 (10)
C30.0376 (16)0.0213 (14)0.0353 (16)0.0019 (12)0.0064 (13)0.0048 (12)
C40.0248 (13)0.0286 (15)0.0297 (15)0.0013 (11)0.0104 (11)0.0141 (11)
C50.0330 (16)0.052 (2)0.0322 (16)0.0060 (15)0.0139 (13)0.0101 (15)
C60.0150 (13)0.0126 (11)0.0180 (13)0.0004 (12)0.0025 (10)0.0022 (12)
C70.0234 (12)0.0178 (13)0.0131 (11)0.0006 (10)0.0058 (9)0.0011 (9)
C80.0229 (12)0.0206 (13)0.0165 (12)0.0008 (10)0.0003 (9)0.0015 (10)
C90.0192 (11)0.0225 (13)0.0263 (13)0.0054 (10)0.0053 (10)0.0022 (10)
C100.0257 (12)0.0228 (13)0.0210 (13)0.0045 (10)0.0120 (10)0.0003 (10)
C110.0243 (12)0.0213 (12)0.0129 (11)0.0015 (10)0.0051 (9)0.0011 (9)
Geometric parameters (Å, º) top
Pt1—N1i1.964 (2)C4—C51.518 (4)
Pt1—N11.964 (2)C4—H4A0.9700
Pt1—S12.2932 (6)C4—H4B0.9700
Pt1—S1i2.2932 (6)C5—H5A0.9600
S1—C11.743 (2)C5—H5B0.9600
N1—N21.349 (3)C5—H5C0.9600
N1—C61.437 (4)C6—C71.394 (4)
N2—C11.326 (3)C6—C111.395 (4)
N3—C11.345 (3)C7—C81.392 (4)
N3—C21.465 (3)C7—H70.9300
N3—C41.474 (3)C8—C91.387 (3)
C2—C31.516 (4)C8—H80.9300
C2—H2A0.9700C9—C101.395 (4)
C2—H2B0.9700C9—H90.9300
C3—H3A0.9600C10—C111.376 (4)
C3—H3B0.9600C10—H100.9300
C3—H3C0.9600C11—H110.9300
N1i—Pt1—N1180.0N3—C4—H4A109.2
N1i—Pt1—S197.89 (7)C5—C4—H4A109.2
N1—Pt1—S182.11 (7)N3—C4—H4B109.2
N1i—Pt1—S1i82.11 (7)C5—C4—H4B109.2
N1—Pt1—S1i97.89 (7)H4A—C4—H4B107.9
S1—Pt1—S1i180.000 (17)C4—C5—H5A109.5
C1—S1—Pt196.82 (8)C4—C5—H5B109.5
N2—N1—C6109.9 (2)H5A—C5—H5B109.5
N2—N1—Pt1124.60 (17)C4—C5—H5C109.5
C6—N1—Pt1125.2 (2)H5A—C5—H5C109.5
C1—N2—N1114.23 (19)H5B—C5—H5C109.5
C1—N3—C2121.9 (2)C7—C6—C11120.0 (3)
C1—N3—C4121.0 (2)C7—C6—N1119.9 (2)
C2—N3—C4116.9 (2)C11—C6—N1120.1 (2)
N2—C1—N3118.0 (2)C8—C7—C6119.5 (2)
N2—C1—S1121.71 (18)C8—C7—H7120.2
N3—C1—S1120.26 (19)C6—C7—H7120.2
N3—C2—C3112.2 (2)C9—C8—C7120.6 (2)
N3—C2—H2A109.2C9—C8—H8119.7
C3—C2—H2A109.2C7—C8—H8119.7
N3—C2—H2B109.2C8—C9—C10119.2 (2)
C3—C2—H2B109.2C8—C9—H9120.4
H2A—C2—H2B107.9C10—C9—H9120.4
C2—C3—H3A109.5C11—C10—C9120.9 (2)
C2—C3—H3B109.5C11—C10—H10119.6
H3A—C3—H3B109.5C9—C10—H10119.6
C2—C3—H3C109.5C10—C11—C6119.8 (2)
H3A—C3—H3C109.5C10—C11—H11120.1
H3B—C3—H3C109.5C6—C11—H11120.1
N3—C4—C5112.1 (2)
N1i—Pt1—S1—C1175.13 (10)C1—N3—C2—C388.5 (3)
N1—Pt1—S1—C14.87 (10)C4—N3—C2—C385.2 (3)
S1—Pt1—N1—N27.3 (2)C1—N3—C4—C588.9 (3)
S1i—Pt1—N1—N2172.7 (2)C2—N3—C4—C597.4 (3)
S1—Pt1—N1—C6178.8 (2)N2—N1—C6—C7130.9 (3)
S1i—Pt1—N1—C61.2 (2)Pt1—N1—C6—C754.5 (4)
C6—N1—N2—C1178.7 (2)N2—N1—C6—C1148.7 (4)
Pt1—N1—N2—C16.6 (3)Pt1—N1—C6—C11125.9 (2)
N1—N2—C1—N3179.1 (2)C11—C6—C7—C80.8 (4)
N1—N2—C1—S10.7 (3)N1—C6—C7—C8179.6 (3)
C2—N3—C1—N2172.6 (2)C6—C7—C8—C90.6 (4)
C4—N3—C1—N20.8 (4)C7—C8—C9—C100.9 (4)
C2—N3—C1—S17.2 (3)C8—C9—C10—C110.0 (4)
C4—N3—C1—S1179.4 (2)C9—C10—C11—C61.3 (4)
Pt1—S1—C1—N23.8 (2)C7—C6—C11—C101.7 (4)
Pt1—S1—C1—N3176.34 (19)N1—C6—C11—C10178.7 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

(NiL20)(CuL20)(PdL20)(PtL20)
Crystal data
Chemical formulaC22H30N6NiS2C22H30CuN6S2C22H30N6PdS2C22H30N6PtS2
Mr501.35506.18549.04637.73
Crystal system, space groupTetragonal, P41212Tetragonal, P41212Monoclinic, C2/cMonoclinic, C2/c
Temperature (K)118118118118
a, b, c (Å)10.2852 (3), 10.2852 (3), 22.2862 (13)10.2643 (4), 10.2643 (4), 22.3519 (13)16.0360 (16), 12.4564 (13), 12.3311 (12)15.9317 (7), 12.5300 (5), 12.3798 (5)
α, β, γ (°)90, 90, 9090, 90, 9090, 100.952 (2), 9090, 100.755 (1), 90
V3)2357.55 (17)2354.90 (19)2418.3 (4)2427.90 (17)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.021.130.965.97
Crystal size (mm)0.50 × 0.30 × 0.050.40 × 0.35 × 0.150.30 × 0.25 × 0.010.25 × 0.20 × 0.15
Data collection
DiffractometerCCD area detector
diffractometer
CCD area detector
diffractometer
CCD area detector
diffractometer
CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
SADABS,ver2.03 (Sheldrick,2001)
Empirical (using intensity measurements)
SADABS,ver2.03 (Sheldrick,2001)
Empirical (using intensity measurements)
SADABS,ver2.03 (Sheldrick,2001)
Empirical (using intensity measurements)
SADABS,ver2.03 (Sheldrick,2001)
Tmin, Tmax0.74, 0.960.661, 0.8490.761, 0.9900.255, 0.408
No. of measured, independent and
observed [I > 2σ(I)] reflections
31608, 3630, 3436 16807, 2832, 2788 8430, 2847, 2431 14253, 2937, 2632
Rint0.0430.0270.0430.120
(sin θ/λ)max1)0.7250.6610.6610.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.078, 1.16 0.024, 0.070, 1.10 0.049, 0.105, 1.13 0.037, 0.098, 1.09
No. of reflections3630283228472937
No. of parameters201141191144
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0407P)2 + 0.3442P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.P)2 + 0.1079P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0337P)2 + 16.6377P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0604P)2]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.61, 0.260.36, 0.181.47, 2.283.08, 4.14
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881, 1132 Fridel pairs??
Absolute structure parameter0.021 (12)0.012 (9)??

Computer programs: Bruker SMART (Bruker AXS,1998), Bruker SMART, Bruker SHELXTL (Sheldrick,2001), Bruker SHELXTL, WinGX publication routines (Farrugia, 1999).

Selected geometric parameters (Å, º) for (CuL20) top
Cu—N1i1.9219 (12)C1—N21.3706 (18)
Cu—Si2.2756 (4)N1—N21.3230 (16)
S—C11.7220 (15)
N1i—Cu—N1144.83 (7)Si—Cu—S123.60 (2)
N1i—Cu—Si85.46 (4)
Symmetry code: (i) y, x, z.
Selected geometric parameters (Å, º) for (PtL20) top
Pt1—N1i1.964 (2)N1—N21.349 (3)
Pt1—S12.2932 (6)N2—C11.326 (3)
S1—C11.743 (2)
N1i—Pt1—N1180.0S1—Pt1—S1i180.000 (17)
N1—Pt1—S182.11 (7)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds