Download citation
Download citation
link to html
Single-crystal X-ray structures are presented for three forms of 5H,10H-dithiolo[2,3-b]-2,5-benzodithiocine-2-thione. The α (at 150 K) and α′ (at ambient) forms are very similar and differ only in the presence of crystallographic m symmetry in the molecules of α′, which is absent in the case of α. This pair is related by an order–disorder transition. The β phase (also determined at 150 K) has a different structure in terms of the molecular packing from either of the other two and therefore constitutes a true polymorph. Molecular mechanics calculations indicated that the most stable CHCl3-solvated conformations for the title compound were a pair of twisted U-shaped enantiomers, UR and UL, i.e. similar to the arrangements found in the α and β phases, with the low-lying saddle point between them corresponding to the situation in the α′ phase. These calculations also indicated that the most stable CHCl3-solvated conformation for the related dibromo-5H,10H-dithiolo[2,3-b]-2,5-benzodithiocine-2-thione was Z-shaped, in agreement with the crystal structure determined earlier for its DMSO solvate [Wang et al. (1998). Synthesis, pp. 1615–1618].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768100010636/bm0027sup1.cif
Contains datablocks global, alpha-2, alphaprime-2, beta-2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100010636/bm0027alpha-2sup2.hkl
Contains datablock alpha-2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100010636/bm0027alphaprime-2sup3.hkl
Contains datablock alphaprime-2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100010636/bm0027beta2sup4.hkl
Contains datablock beta-2

CCDC references: 156658; 156659; 156660

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997), COLLECT (Hooft, 1998) for alpha-2, beta-2; Nicolet P3 software (Nicolet, 1980) for alphaprime-2. Cell refinement: DENZO, COLLECT for alpha-2, beta-2; Nicolet P3 software (Nicolet, 1980) for alphaprime-2. Data reduction: DENZO, COLLECT for alpha-2, beta-2; RDNIC (Howie, 1980) for alphaprime-2. For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 for Windows (Farrugia, 19970 for alpha-2; ORTEX (McArdle, 1994) for alphaprime-2, beta-2. For all compounds, software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

(alpha-2) 5H, 10H-dithiolo[2,3-b][2,5]benzodithiocine-2-thione [low temperature (150 K) P monoclinic form] top
Crystal data top
C11H8S5F(000) = 616
Mr = 300.47Dx = 1.617 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 21934 reflections
a = 11.9290 (2) Åθ = 2.3–27.5°
b = 11.7639 (2) ŵ = 0.91 mm1
c = 9.0612 (2) ÅT = 150 K
β = 103.9498 (10)°Block, red
V = 1234.07 (4) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf Nonius KappaCCD area detector
diffractometer
2825 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 1515
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
k = 1515
Tmin = 0.728, Tmax = 0.835l = 1111
21934 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.05Calculated w = 1/[σ2(Fo2) + (0.037P)2 + 0.4749P]
where P = (Fo2 + 2Fc2)/3
2825 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C11H8S5V = 1234.07 (4) Å3
Mr = 300.47Z = 4
Monoclinic, P21/aMo Kα radiation
a = 11.9290 (2) ŵ = 0.91 mm1
b = 11.7639 (2) ÅT = 150 K
c = 9.0612 (2) Å0.30 × 0.20 × 0.20 mm
β = 103.9498 (10)°
Data collection top
Enraf Nonius KappaCCD area detector
diffractometer
2825 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
2500 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.835Rint = 0.047
21934 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
2825 reflectionsΔρmin = 0.38 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H placed in calculated positions and refined with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.87835 (4)0.54914 (4)0.84600 (4)0.03210 (12)
S20.85623 (3)0.64034 (3)0.53120 (4)0.02204 (11)
S30.84961 (3)0.62066 (4)0.19853 (4)0.02360 (11)
S40.83794 (3)0.39943 (3)0.57473 (4)0.02268 (11)
S50.82017 (3)0.33413 (3)0.25468 (5)0.02480 (11)
C10.85892 (12)0.53227 (14)0.66189 (17)0.0220 (3)
C20.84468 (12)0.55589 (13)0.36993 (16)0.0180 (3)
C30.69534 (13)0.64069 (13)0.10425 (18)0.0237 (3)
H3A0.67560.72190.11140.028*
H3B0.68360.62200.00490.028*
C40.61356 (12)0.57030 (13)0.16900 (16)0.0187 (3)
C50.53441 (13)0.62641 (14)0.23388 (18)0.0241 (3)
H50.53420.70710.23620.029*
C60.45613 (13)0.56720 (15)0.2950 (2)0.0293 (4)
H60.40310.60700.33920.035*
C70.83572 (12)0.44249 (13)0.38986 (16)0.0182 (3)
C80.69827 (13)0.38524 (14)0.10249 (17)0.0227 (3)
H8A0.72830.43420.03180.027*
H8B0.65900.31940.04410.027*
C90.61277 (12)0.45108 (13)0.16521 (16)0.0184 (3)
C100.53292 (12)0.39238 (13)0.22565 (17)0.0224 (3)
H100.53150.31170.22170.027*
C110.45562 (13)0.44895 (15)0.29134 (19)0.0272 (4)
H110.40260.40740.33360.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0337 (2)0.0465 (3)0.0158 (2)0.00308 (19)0.00529 (16)0.00005 (17)
S20.0263 (2)0.0205 (2)0.01767 (19)0.00004 (15)0.00196 (15)0.00267 (14)
S30.02189 (19)0.0296 (2)0.0187 (2)0.00717 (15)0.00363 (15)0.00461 (15)
S40.0239 (2)0.0225 (2)0.0209 (2)0.00112 (15)0.00373 (15)0.00565 (15)
S50.0241 (2)0.0208 (2)0.0270 (2)0.00640 (15)0.00149 (16)0.00574 (16)
C10.0166 (7)0.0298 (8)0.0189 (7)0.0030 (6)0.0029 (6)0.0012 (6)
C20.0162 (7)0.0213 (7)0.0158 (7)0.0003 (5)0.0025 (5)0.0006 (5)
C30.0249 (8)0.0223 (8)0.0217 (8)0.0006 (6)0.0009 (6)0.0056 (6)
C40.0169 (7)0.0193 (7)0.0165 (7)0.0006 (6)0.0027 (5)0.0002 (6)
C50.0203 (7)0.0195 (7)0.0295 (8)0.0018 (6)0.0003 (6)0.0045 (6)
C60.0202 (7)0.0336 (9)0.0344 (9)0.0026 (7)0.0072 (7)0.0072 (7)
C70.0156 (6)0.0210 (7)0.0173 (7)0.0014 (5)0.0025 (5)0.0009 (6)
C80.0242 (7)0.0227 (8)0.0189 (7)0.0013 (6)0.0009 (6)0.0038 (6)
C90.0178 (7)0.0187 (7)0.0155 (7)0.0004 (5)0.0022 (5)0.0017 (5)
C100.0203 (7)0.0194 (8)0.0237 (8)0.0030 (6)0.0020 (6)0.0003 (6)
C110.0193 (7)0.0323 (9)0.0295 (9)0.0050 (6)0.0047 (6)0.0021 (7)
Geometric parameters (Å, º) top
S1—C11.6400 (15)C2—C71.354 (2)
S2—C11.7324 (16)C3—C41.502 (2)
S2—C21.7449 (15)C4—C51.393 (2)
S3—C21.7436 (14)C4—C91.403 (2)
S3—C31.8477 (16)C5—C61.383 (2)
S4—C11.7416 (17)C6—C111.391 (3)
S4—C71.7442 (15)C8—C91.498 (2)
S5—C71.7466 (15)C9—C101.391 (2)
S5—C81.8468 (16)C10—C111.383 (2)
C1—S2—C298.01 (7)C9—C4—C3122.86 (13)
C2—S3—C3102.93 (7)C6—C5—C4121.47 (15)
C1—S4—C798.17 (7)C5—C6—C11119.57 (15)
C7—S5—C8102.55 (7)C2—C7—S4115.53 (11)
S1—C1—S2125.54 (10)C2—C7—S5128.61 (12)
S1—C1—S4122.65 (10)S4—C7—S5115.85 (9)
S2—C1—S4111.81 (8)C9—C8—S5111.76 (10)
C7—C2—S3124.76 (12)C10—C9—C4119.20 (13)
C7—C2—S2116.24 (11)C10—C9—C8119.10 (14)
S3—C2—S2118.97 (9)C4—C9—C8121.67 (13)
C4—C3—S3114.66 (10)C11—C10—C9121.43 (15)
C5—C4—C9118.86 (14)C10—C11—C6119.46 (15)
C5—C4—C3118.27 (14)
C2—S2—C1—S1175.33 (10)S2—C2—C7—S5178.67 (8)
C2—S2—C1—S44.76 (9)C1—S4—C7—C22.70 (13)
C7—S4—C1—S1175.44 (9)C1—S4—C7—S5178.19 (8)
C7—S4—C1—S24.65 (9)C8—S5—C7—C250.73 (15)
C3—S3—C2—C786.98 (14)C8—S5—C7—S4128.25 (9)
C3—S3—C2—S295.04 (9)C7—S5—C8—C933.34 (13)
C1—S2—C2—C73.16 (13)C5—C4—C9—C100.2 (2)
C1—S2—C2—S3174.99 (9)C3—C4—C9—C10178.99 (13)
C2—S3—C3—C417.10 (13)C5—C4—C9—C8177.68 (13)
S3—C3—C4—C5117.42 (14)C3—C4—C9—C83.1 (2)
S3—C3—C4—C963.35 (17)S5—C8—C9—C1079.69 (15)
C9—C4—C5—C60.4 (2)S5—C8—C9—C498.22 (15)
C3—C4—C5—C6179.67 (14)C4—C9—C10—C111.0 (2)
C4—C5—C6—C110.3 (2)C8—C9—C10—C11176.97 (14)
S3—C2—C7—S4177.72 (8)C9—C10—C11—C61.1 (2)
S2—C2—C7—S40.31 (16)C5—C6—C11—C100.5 (2)
S3—C2—C7—S53.3 (2)
(alphaprime-2) 5H,10H-Dithiolo[2,3-b][2,5]benzodithiocine-2-thione (C-centred monoclinic form) top
Crystal data top
C11H8S5F(000) = 616
Mr = 300.47Dx = 1.582 Mg m3
Monoclinic, C2/mMelting point: 479 K
Hall symbol: -C 2yMo Kα radiation, λ = 0.71073 Å
a = 12.075 (8) ÅCell parameters from 14 reflections
b = 11.825 (8) Åθ = 10.8–12.9°
c = 9.063 (6) ŵ = 0.89 mm1
β = 102.80 (5)°T = 298 K
V = 1261.9 (15) Å3Block, pale brown
Z = 40.60 × 0.46 × 0.40 mm
Data collection top
Nicolet P3
diffractometer
1166 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 30.1°, θmin = 2.3°
θ–2θ scansh = 1616
Absorption correction: ψ
?
k = 160
Tmin = 0.619, Tmax = 0.719l = 012
2034 measured reflections2 standard reflections every 50 reflections
1932 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215Only H-atom displacement parameters refined
S = 1.05Calculated w = 1/[σ2(Fo2) + (0.0535P)2 + 8.1837P]
where P = (Fo2 + 2Fc2)/3
1932 reflections(Δ/σ)max < 0.001
78 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.95 e Å3
Crystal data top
C11H8S5V = 1261.9 (15) Å3
Mr = 300.47Z = 4
Monoclinic, C2/mMo Kα radiation
a = 12.075 (8) ŵ = 0.89 mm1
b = 11.825 (8) ÅT = 298 K
c = 9.063 (6) Å0.60 × 0.46 × 0.40 mm
β = 102.80 (5)°
Data collection top
Nicolet P3
diffractometer
1166 reflections with I > 2σ(I)
Absorption correction: ψ
?
Rint = 0.024
Tmin = 0.619, Tmax = 0.7192 standard reflections every 50 reflections
2034 measured reflections intensity decay: 0.0%
1932 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0860 restraints
wR(F2) = 0.215Only H-atom displacement parameters refined
S = 1.05Δρmax = 0.92 e Å3
1932 reflectionsΔρmin = 0.95 e Å3
78 parameters
Special details top

Experimental. Variable scan rates, dependent upon pre-scan intensity (Ip), were in the range 5.33 (Ip<150) to 58.6 (Ip>2500) degrees 2θ per min. Scan widths, dependent upon 2θ were in the range 2.4 to 2.8 degrees 2θ. The total background count time (on either side of the peak) and the scan time were set equal.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All non-H aniso. H in calculated positions refined with a riding model with separate group Uiso for methylene and aryl H.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.3778 (2)0.00000.3365 (3)0.147 (2)
S20.34509 (12)0.12081 (14)0.04410 (17)0.0728 (5)
S30.32964 (15)0.1438 (2)0.2844 (2)0.1171 (10)
C10.3580 (6)0.00000.1521 (8)0.076 (3)
C20.3363 (3)0.0564 (4)0.1288 (5)0.0438 (10)
C30.1916 (4)0.1264 (5)0.3999 (6)0.0654 (15)
H3A0.15920.20080.42590.12 (2)*
H3B0.19870.09010.49330.12 (2)*
C40.1097 (3)0.0589 (4)0.3320 (5)0.0430 (10)
C50.0330 (4)0.1159 (4)0.2676 (6)0.0541 (12)
H50.03300.19460.26750.074 (13)*
C60.0439 (4)0.0585 (5)0.2031 (6)0.0669 (15)
H60.09530.09820.16000.074 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0658 (15)0.340 (6)0.0355 (10)0.0000.0101 (10)0.000
S20.0597 (8)0.0762 (10)0.0714 (9)0.0100 (7)0.0094 (6)0.0334 (8)
S30.0766 (11)0.148 (2)0.1040 (14)0.0657 (12)0.0280 (9)0.0790 (14)
C10.030 (3)0.153 (9)0.043 (4)0.0000.002 (3)0.000
C20.036 (2)0.051 (2)0.043 (2)0.0041 (18)0.0052 (16)0.006 (2)
C30.059 (3)0.079 (4)0.054 (3)0.013 (3)0.003 (2)0.018 (3)
C40.037 (2)0.051 (2)0.0369 (19)0.0004 (18)0.0012 (16)0.0057 (18)
C50.045 (2)0.047 (3)0.063 (3)0.008 (2)0.002 (2)0.004 (2)
C60.043 (3)0.087 (4)0.069 (3)0.011 (3)0.010 (2)0.012 (3)
Geometric parameters (Å, º) top
S1—C11.635 (8)C2—C2i1.334 (9)
S2—C11.719 (4)C3—C41.506 (7)
S2—C21.724 (5)C4—C51.376 (6)
S3—C21.735 (5)C4—C4i1.392 (9)
S3—C31.773 (5)C5—C61.380 (7)
C1—S2i1.719 (4)C6—C6i1.384 (12)
C1—S2—C297.5 (3)S2—C2—S3117.2 (3)
C2—S3—C3106.2 (2)C4—C3—S3115.9 (3)
S1—C1—S2i123.8 (2)C5—C4—C4i119.4 (3)
S1—C1—S2123.8 (2)C5—C4—C3118.6 (5)
S2i—C1—S2112.4 (4)C4i—C4—C3122.1 (3)
C2i—C2—S2116.20 (16)C4—C5—C6121.2 (5)
C2i—C2—S3126.55 (18)C5—C6—C6i119.5 (3)
C2—S2—C1—S1176.4 (4)C4i—C4—C5—C60.0 (5)
C2—S2—C1—S2i4.8 (4)C3—C4—C5—C6179.8 (4)
C1—S2—C2—C2i3.0 (3)C4—C5—C6—C6i0.0 (5)
C1—S2—C2—S3176.4 (3)S2—C2—C2i—S2i0.0
C3—S3—C2—C2i68.6 (3)S2—C2—C2i—S3i179.4 (3)
C3—S3—C2—S2112.1 (3)C3—C4—C4i—C3i0.0
C2—S3—C3—C48.7 (5)C3—C4—C4i—C5i179.7 (5)
S3—C3—C4—C598.5 (5)C5—C6—C6i—C5i0.0
S3—C3—C4—C4i81.2 (4)
Symmetry code: (i) x, y, z.
(beta-2) 5H,10H-Dithiolo[2,3-b][2,5]benzodithiocine-2-thione (P monoclinic form) top
Crystal data top
C11H8S5F(000) = 1232
Mr = 300.47Dx = 1.618 Mg m3
Monoclinic, P21/nMelting point: 479 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.5683 (2) ÅCell parameters from 31494 reflections
b = 16.2080 (4) Åθ = 1.7–26.4°
c = 17.8980 (4) ŵ = 0.91 mm1
β = 97.1103 (14)°T = 150 K
V = 2466.47 (10) Å3Block, orange
Z = 80.20 × 0.10 × 0.10 mm
Data collection top
Enraf Nonius KappaCCD area detector
diffractometer
5044 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode3825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 9.091 pixels mm-1θmax = 26.4°, θmin = 1.7°
ω scansh = 1010
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
k = 2020
Tmin = 0.809, Tmax = 0.914l = 2222
31494 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.03Calculated w = 1/[σ2(Fo2) + (0.0422P)2 + 0.3638P]
where P = (Fo2 + 2Fc2)/3
5044 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C11H8S5V = 2466.47 (10) Å3
Mr = 300.47Z = 8
Monoclinic, P21/nMo Kα radiation
a = 8.5683 (2) ŵ = 0.91 mm1
b = 16.2080 (4) ÅT = 150 K
c = 17.8980 (4) Å0.20 × 0.10 × 0.10 mm
β = 97.1103 (14)°
Data collection top
Enraf Nonius KappaCCD area detector
diffractometer
5044 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
3825 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.914Rint = 0.073
31494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
5044 reflectionsΔρmin = 0.29 e Å3
289 parameters
Special details top

Experimental. Sample crystal recrystallized from acetone.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.41703 (11)0.31394 (5)0.39816 (4)0.0468 (2)
S2A0.48290 (8)0.38802 (4)0.25226 (3)0.02541 (16)
S3A0.46775 (7)0.39657 (4)0.08388 (4)0.02700 (16)
S4A0.24084 (8)0.26506 (4)0.25101 (4)0.03178 (18)
S5A0.15965 (8)0.25728 (4)0.08623 (4)0.03138 (18)
C1A0.3854 (3)0.32143 (15)0.30606 (14)0.0294 (6)
C2A0.3926 (3)0.35800 (14)0.16329 (13)0.0217 (5)
C3A0.3343 (3)0.48286 (15)0.05067 (14)0.0266 (6)
H3A10.39090.53540.06240.032*
H3A20.31090.47910.00480.032*
C4A0.1812 (3)0.48626 (15)0.08333 (13)0.0225 (5)
C5A0.1461 (3)0.55690 (15)0.12264 (14)0.0275 (6)
H5A0.22080.60040.12940.033*
C6A0.0049 (3)0.56489 (17)0.15197 (15)0.0335 (7)
H6A0.01740.61370.17810.040*
C7A0.2779 (3)0.30056 (15)0.16268 (14)0.0237 (6)
C8A0.0960 (3)0.34753 (15)0.02830 (14)0.0279 (6)
H8A10.17700.36000.00500.033*
H8A20.00240.33350.00420.033*
C9A0.0684 (3)0.42316 (15)0.07276 (13)0.0226 (5)
C10A0.0715 (3)0.43167 (16)0.10326 (14)0.0279 (6)
H10A0.14720.38860.09670.034*
C11A0.1033 (3)0.50155 (18)0.14299 (15)0.0330 (6)
H11A0.19950.50590.16410.040*
S1B0.59044 (10)0.69235 (5)0.10370 (4)0.0388 (2)
S2B0.73645 (8)0.72871 (4)0.26118 (4)0.02855 (17)
S3B0.76456 (8)0.71429 (4)0.42977 (4)0.03245 (18)
S4B0.52733 (7)0.59062 (4)0.23427 (3)0.02455 (16)
S5B0.52065 (7)0.54543 (4)0.39349 (4)0.02760 (17)
C1B0.6167 (3)0.67286 (15)0.19431 (14)0.0251 (6)
C2B0.6929 (3)0.67593 (15)0.34142 (13)0.0232 (5)
C3B0.9397 (3)0.65037 (16)0.45796 (15)0.0339 (7)
H3B11.03440.68370.45240.041*
H3B20.94260.63660.51200.041*
C4B0.9490 (3)0.57132 (16)0.41449 (14)0.0259 (6)
C5B1.0746 (3)0.55999 (16)0.37282 (15)0.0304 (6)
H5B1.14950.60290.37120.036*
C6B1.0924 (3)0.48764 (18)0.33384 (15)0.0342 (7)
H6B1.17910.48120.30600.041*
C7B0.5942 (3)0.61072 (14)0.32847 (13)0.0207 (5)
C8B0.6976 (3)0.51571 (16)0.45687 (14)0.0288 (6)
H8B10.71920.55790.49680.035*
H8B20.67810.46260.48140.035*
C9B0.8387 (3)0.50722 (15)0.41546 (13)0.0237 (6)
C10B0.8589 (3)0.43479 (15)0.37602 (14)0.0271 (6)
H10B0.78490.39130.37710.032*
C11B0.9846 (3)0.42494 (17)0.33541 (15)0.0341 (7)
H11B0.99650.37520.30870.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0757 (6)0.0385 (4)0.0265 (4)0.0075 (4)0.0074 (4)0.0102 (3)
S2A0.0279 (4)0.0234 (3)0.0244 (3)0.0015 (3)0.0013 (3)0.0022 (3)
S3A0.0208 (4)0.0347 (4)0.0266 (3)0.0020 (3)0.0070 (3)0.0057 (3)
S4A0.0346 (4)0.0254 (4)0.0376 (4)0.0007 (3)0.0132 (3)0.0073 (3)
S5A0.0285 (4)0.0221 (3)0.0419 (4)0.0027 (3)0.0018 (3)0.0029 (3)
C1A0.0377 (16)0.0214 (13)0.0299 (14)0.0094 (12)0.0070 (12)0.0065 (11)
C2A0.0212 (14)0.0199 (13)0.0243 (13)0.0034 (11)0.0039 (10)0.0028 (10)
C3A0.0237 (14)0.0279 (14)0.0283 (14)0.0003 (11)0.0036 (11)0.0082 (11)
C4A0.0187 (13)0.0243 (13)0.0232 (13)0.0025 (11)0.0026 (10)0.0049 (10)
C5A0.0258 (15)0.0222 (14)0.0321 (14)0.0011 (11)0.0061 (11)0.0012 (11)
C6A0.0346 (17)0.0309 (16)0.0337 (16)0.0095 (13)0.0006 (12)0.0051 (12)
C7A0.0196 (14)0.0220 (13)0.0296 (14)0.0043 (11)0.0038 (11)0.0016 (10)
C8A0.0262 (15)0.0287 (14)0.0278 (14)0.0008 (12)0.0010 (11)0.0010 (11)
C9A0.0233 (14)0.0226 (13)0.0212 (13)0.0013 (11)0.0002 (10)0.0026 (10)
C10A0.0205 (14)0.0298 (15)0.0326 (15)0.0001 (12)0.0006 (11)0.0050 (11)
C11A0.0237 (15)0.0408 (17)0.0362 (16)0.0089 (13)0.0103 (12)0.0014 (13)
S1B0.0581 (5)0.0357 (4)0.0233 (4)0.0034 (4)0.0072 (3)0.0058 (3)
S2B0.0298 (4)0.0235 (3)0.0325 (4)0.0047 (3)0.0045 (3)0.0036 (3)
S3B0.0376 (4)0.0277 (4)0.0299 (4)0.0062 (3)0.0043 (3)0.0080 (3)
S4B0.0262 (4)0.0226 (3)0.0242 (3)0.0014 (3)0.0006 (3)0.0021 (2)
S5B0.0222 (4)0.0331 (4)0.0286 (4)0.0007 (3)0.0075 (3)0.0078 (3)
C1B0.0282 (15)0.0230 (13)0.0248 (13)0.0062 (11)0.0056 (11)0.0036 (10)
C2B0.0230 (14)0.0230 (13)0.0234 (13)0.0059 (11)0.0025 (10)0.0000 (10)
C3B0.0297 (16)0.0327 (16)0.0361 (16)0.0041 (13)0.0084 (12)0.0074 (12)
C4B0.0221 (14)0.0286 (14)0.0250 (13)0.0059 (11)0.0045 (11)0.0001 (11)
C5B0.0184 (14)0.0303 (15)0.0411 (16)0.0004 (12)0.0017 (12)0.0036 (12)
C6B0.0207 (15)0.0422 (17)0.0405 (17)0.0080 (13)0.0067 (12)0.0014 (13)
C7B0.0178 (13)0.0225 (13)0.0221 (12)0.0043 (10)0.0037 (10)0.0024 (10)
C8B0.0298 (15)0.0324 (15)0.0242 (14)0.0032 (12)0.0033 (11)0.0049 (11)
C9B0.0203 (14)0.0263 (14)0.0232 (13)0.0048 (11)0.0025 (10)0.0057 (10)
C10B0.0224 (14)0.0232 (14)0.0337 (15)0.0017 (11)0.0040 (11)0.0028 (11)
C11B0.0298 (16)0.0303 (15)0.0409 (17)0.0090 (13)0.0013 (13)0.0065 (12)
Geometric parameters (Å, º) top
S1A—C1A1.642 (3)S1B—C1B1.640 (2)
S2A—C1A1.729 (3)S2B—C1B1.732 (3)
S2A—C2A1.751 (2)S2B—C2B1.751 (2)
S2A—S4B3.3259 (9)S2B—S2Aii3.5568 (9)
S2A—S2Bi3.5568 (9)S3B—C2B1.739 (2)
S3A—C2A1.747 (2)S3B—C3B1.842 (3)
S3A—C3A1.857 (2)S4B—C1B1.735 (3)
S4A—C1A1.743 (3)S4B—C7B1.743 (2)
S4A—C7A1.748 (2)S5B—C7B1.747 (2)
S5A—C7A1.746 (3)S5B—C8B1.842 (3)
S5A—C8A1.836 (2)C2B—C7B1.355 (3)
C2A—C7A1.353 (3)C3B—C4B1.506 (3)
C3A—C4A1.502 (3)C4B—C5B1.395 (3)
C4A—C5A1.396 (3)C4B—C9B1.406 (3)
C4A—C9A1.404 (3)C5B—C6B1.383 (4)
C5A—C6A1.383 (4)C6B—C11B1.376 (4)
C6A—C11A1.379 (4)C8B—C9B1.500 (3)
C8A—C9A1.496 (3)C9B—C10B1.392 (3)
C9A—C10A1.385 (3)C10B—C11B1.381 (3)
C10A—C11A1.382 (4)
C1A—S2A—C2A98.25 (12)C1B—S2B—C2B98.23 (12)
C1A—S2A—S4B137.67 (9)C1B—S2B—S2Aii132.86 (9)
C2A—S2A—S4B103.26 (8)C2B—S2B—S2Aii128.66 (9)
C1A—S2A—S2Bi87.81 (9)C2B—S3B—C3B103.42 (11)
C2A—S2A—S2Bi87.88 (8)C1B—S4B—C7B98.40 (12)
S4B—S2A—S2Bi128.59 (3)C1B—S4B—S2A149.32 (9)
C2A—S3A—C3A104.81 (11)C7B—S4B—S2A96.82 (8)
C1A—S4A—C7A98.21 (12)C7B—S5B—C8B103.37 (11)
C7A—S5A—C8A103.03 (11)S1B—C1B—S2B125.42 (15)
S1A—C1A—S2A125.05 (17)S1B—C1B—S4B122.83 (16)
S1A—C1A—S4A123.12 (16)S2B—C1B—S4B111.74 (13)
S2A—C1A—S4A111.78 (14)C7B—C2B—S3B125.24 (19)
C7A—C2A—S3A125.47 (19)C7B—C2B—S2B115.63 (18)
C7A—C2A—S2A115.93 (18)S3B—C2B—S2B118.94 (14)
S3A—C2A—S2A118.34 (14)C4B—C3B—S3B115.48 (18)
C4A—C3A—S3A115.85 (17)C5B—C4B—C9B118.3 (2)
C5A—C4A—C9A118.5 (2)C5B—C4B—C3B118.8 (2)
C5A—C4A—C3A118.7 (2)C9B—C4B—C3B122.9 (2)
C9A—C4A—C3A122.7 (2)C6B—C5B—C4B121.5 (2)
C6A—C5A—C4A121.4 (2)C11B—C6B—C5B120.0 (2)
C11A—C6A—C5A119.5 (2)C2B—C7B—S4B115.76 (18)
C2A—C7A—S5A129.31 (19)C2B—C7B—S5B128.85 (19)
C2A—C7A—S4A115.62 (19)S4B—C7B—S5B115.37 (14)
S5A—C7A—S4A115.07 (14)C9B—C8B—S5B111.83 (17)
C9A—C8A—S5A114.06 (17)C10B—C9B—C4B119.4 (2)
C10A—C9A—C4A119.3 (2)C10B—C9B—C8B119.1 (2)
C10A—C9A—C8A119.5 (2)C4B—C9B—C8B121.5 (2)
C4A—C9A—C8A121.2 (2)C11B—C10B—C9B121.3 (2)
C11A—C10A—C9A121.3 (2)C6B—C11B—C10B119.6 (2)
C6A—C11A—C10A119.8 (2)
C2A—S2A—C1A—S1A178.05 (17)C1A—S2A—S4B—C7B54.73 (16)
S4B—S2A—C1A—S1A61.7 (2)C2A—S2A—S4B—C7B173.26 (11)
S2Bi—S2A—C1A—S1A90.51 (17)S2Bi—S2A—S4B—C7B88.74 (8)
C2A—S2A—C1A—S4A4.60 (16)C2B—S2B—C1B—S1B176.40 (17)
S4B—S2A—C1A—S4A115.62 (13)S2Aii—S2B—C1B—S1B9.1 (2)
S2Bi—S2A—C1A—S4A92.13 (12)C2B—S2B—C1B—S4B4.63 (16)
C7A—S4A—C1A—S1A178.29 (17)S2Aii—S2B—C1B—S4B169.84 (6)
C7A—S4A—C1A—S2A4.29 (16)C7B—S4B—C1B—S1B176.40 (16)
C3A—S3A—C2A—C7A86.3 (2)S2A—S4B—C1B—S1B64.6 (3)
C3A—S3A—C2A—S2A99.86 (15)C7B—S4B—C1B—S2B4.60 (16)
C1A—S2A—C2A—C7A3.3 (2)S2A—S4B—C1B—S2B114.36 (15)
S4B—S2A—C2A—C7A139.96 (17)C3B—S3B—C2B—C7B86.0 (2)
S2Bi—S2A—C2A—C7A90.81 (19)C3B—S3B—C2B—S2B99.32 (16)
C1A—S2A—C2A—S3A171.09 (14)C1B—S2B—C2B—C7B3.0 (2)
S4B—S2A—C2A—S3A45.63 (14)S2Aii—S2B—C2B—C7B171.86 (14)
S2Bi—S2A—C2A—S3A83.61 (13)C1B—S2B—C2B—S3B172.25 (15)
C2A—S3A—C3A—C4A14.4 (2)S2Aii—S2B—C2B—S3B12.9 (2)
S3A—C3A—C4A—C5A121.3 (2)C2B—S3B—C3B—C4B17.3 (2)
S3A—C3A—C4A—C9A62.0 (3)S3B—C3B—C4B—C5B118.4 (2)
C9A—C4A—C5A—C6A1.1 (4)S3B—C3B—C4B—C9B63.2 (3)
C3A—C4A—C5A—C6A177.9 (2)C9B—C4B—C5B—C6B0.6 (4)
C4A—C5A—C6A—C11A0.6 (4)C3B—C4B—C5B—C6B177.8 (2)
S3A—C2A—C7A—S5A7.5 (4)C4B—C5B—C6B—C11B0.2 (4)
S2A—C2A—C7A—S5A178.54 (14)S3B—C2B—C7B—S4B174.76 (14)
S3A—C2A—C7A—S4A173.22 (13)S2B—C2B—C7B—S4B0.1 (3)
S2A—C2A—C7A—S4A0.7 (3)S3B—C2B—C7B—S5B3.4 (3)
C8A—S5A—C7A—C2A46.2 (3)S2B—C2B—C7B—S5B178.28 (14)
C8A—S5A—C7A—S4A133.08 (14)C1B—S4B—C7B—C2B2.8 (2)
C1A—S4A—C7A—C2A2.2 (2)S2A—S4B—C7B—C2B150.49 (18)
C1A—S4A—C7A—S5A178.41 (14)C1B—S4B—C7B—S5B175.63 (13)
C7A—S5A—C8A—C9A35.6 (2)S2A—S4B—C7B—S5B31.09 (13)
C5A—C4A—C9A—C10A1.8 (3)C8B—S5B—C7B—C2B49.2 (3)
C3A—C4A—C9A—C10A178.5 (2)C8B—S5B—C7B—S4B132.60 (14)
C5A—C4A—C9A—C8A177.3 (2)C7B—S5B—C8B—C9B35.1 (2)
C3A—C4A—C9A—C8A0.6 (3)C5B—C4B—C9B—C10B0.8 (3)
S5A—C8A—C9A—C10A80.4 (3)C3B—C4B—C9B—C10B177.6 (2)
S5A—C8A—C9A—C4A100.5 (2)C5B—C4B—C9B—C8B178.0 (2)
C4A—C9A—C10A—C11A0.9 (4)C3B—C4B—C9B—C8B3.7 (4)
C8A—C9A—C10A—C11A178.3 (2)S5B—C8B—C9B—C10B80.9 (3)
C5A—C6A—C11A—C10A1.6 (4)S5B—C8B—C9B—C4B97.9 (2)
C9A—C10A—C11A—C6A0.8 (4)C4B—C9B—C10B—C11B0.6 (4)
C1A—S2A—S4B—C1B174.1 (2)C8B—C9B—C10B—C11B178.2 (2)
C2A—S2A—S4B—C1B67.40 (19)C5B—C6B—C11B—C10B0.0 (4)
S2Bi—S2A—S4B—C1B30.61 (18)C9B—C10B—C11B—C6B0.2 (4)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

(alpha-2)(alphaprime-2)(beta-2)
Crystal data
Chemical formulaC11H8S5C11H8S5C11H8S5
Mr300.47300.47300.47
Crystal system, space groupMonoclinic, P21/aMonoclinic, C2/mMonoclinic, P21/n
Temperature (K)150298150
a, b, c (Å)11.9290 (2), 11.7639 (2), 9.0612 (2)12.075 (8), 11.825 (8), 9.063 (6)8.5683 (2), 16.2080 (4), 17.8980 (4)
β (°) 103.9498 (10) 102.80 (5) 97.1103 (14)
V3)1234.07 (4)1261.9 (15)2466.47 (10)
Z448
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.910.890.91
Crystal size (mm)0.30 × 0.20 × 0.200.60 × 0.46 × 0.400.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf Nonius KappaCCD area detector
diffractometer
Nicolet P3
diffractometer
Enraf Nonius KappaCCD area detector
diffractometer
Absorption correctionMulti-scan
SORTAV (Blessing, 1997)
ψMulti-scan
SORTAV (Blessing, 1997)
Tmin, Tmax0.728, 0.8350.619, 0.7190.809, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
21934, 2825, 2500 2034, 1932, 1166 31494, 5044, 3825
Rint0.0470.0240.073
(sin θ/λ)max1)0.6490.7050.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 1.05 0.086, 0.215, 1.05 0.036, 0.092, 1.03
No. of reflections282519325044
No. of parameters14578289
H-atom treatmentH-atom parameters constrainedOnly H-atom displacement parameters refinedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.380.92, 0.950.45, 0.29

Computer programs: DENZO (Otwinowski & Minor, 1997), COLLECT (Hooft, 1998), Nicolet P3 software (Nicolet, 1980), DENZO, COLLECT, RDNIC (Howie, 1980), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 19970, ORTEX (McArdle, 1994).

Selected geometric parameters (Å, º) for (alpha-2) top
S1—C11.6400 (15)C2—C71.354 (2)
S2—C11.7324 (16)C3—C41.502 (2)
S2—C21.7449 (15)C4—C51.393 (2)
S3—C21.7436 (14)C4—C91.403 (2)
S3—C31.8477 (16)C5—C61.383 (2)
S4—C11.7416 (17)C6—C111.391 (3)
S4—C71.7442 (15)C8—C91.498 (2)
S5—C71.7466 (15)C9—C101.391 (2)
S5—C81.8468 (16)C10—C111.383 (2)
C1—S2—C298.01 (7)C9—C4—C3122.86 (13)
C2—S3—C3102.93 (7)C6—C5—C4121.47 (15)
C1—S4—C798.17 (7)C5—C6—C11119.57 (15)
C7—S5—C8102.55 (7)C2—C7—S4115.53 (11)
S1—C1—S2125.54 (10)C2—C7—S5128.61 (12)
S1—C1—S4122.65 (10)S4—C7—S5115.85 (9)
S2—C1—S4111.81 (8)C9—C8—S5111.76 (10)
C7—C2—S3124.76 (12)C10—C9—C4119.20 (13)
C7—C2—S2116.24 (11)C10—C9—C8119.10 (14)
S3—C2—S2118.97 (9)C4—C9—C8121.67 (13)
C4—C3—S3114.66 (10)C11—C10—C9121.43 (15)
C5—C4—C9118.86 (14)C10—C11—C6119.46 (15)
C5—C4—C3118.27 (14)
Selected geometric parameters (Å, º) for (alphaprime-2) top
S1—C11.635 (8)C2—C2i1.334 (9)
S2—C11.719 (4)C3—C41.506 (7)
S2—C21.724 (5)C4—C51.376 (6)
S3—C21.735 (5)C4—C4i1.392 (9)
S3—C31.773 (5)C5—C61.380 (7)
C1—S2i1.719 (4)C6—C6i1.384 (12)
C1—S2—C297.5 (3)S2—C2—S3117.2 (3)
C2—S3—C3106.2 (2)C4—C3—S3115.9 (3)
S1—C1—S2i123.8 (2)C5—C4—C4i119.4 (3)
S1—C1—S2123.8 (2)C5—C4—C3118.6 (5)
S2i—C1—S2112.4 (4)C4i—C4—C3122.1 (3)
C2i—C2—S2116.20 (16)C4—C5—C6121.2 (5)
C2i—C2—S3126.55 (18)C5—C6—C6i119.5 (3)
Symmetry code: (i) x, y, z.
Selected geometric parameters (Å, º) for (beta-2) top
S1A—C1A1.642 (3)S1B—C1B1.640 (2)
S2A—C1A1.729 (3)S2B—C1B1.732 (3)
S2A—C2A1.751 (2)S2B—C2B1.751 (2)
S2A—S4B3.3259 (9)S2B—S2Aii3.5568 (9)
S2A—S2Bi3.5568 (9)S3B—C2B1.739 (2)
S3A—C2A1.747 (2)S3B—C3B1.842 (3)
S3A—C3A1.857 (2)S4B—C1B1.735 (3)
S4A—C1A1.743 (3)S4B—C7B1.743 (2)
S4A—C7A1.748 (2)S5B—C7B1.747 (2)
S5A—C7A1.746 (3)S5B—C8B1.842 (3)
S5A—C8A1.836 (2)C2B—C7B1.355 (3)
C2A—C7A1.353 (3)C3B—C4B1.506 (3)
C3A—C4A1.502 (3)C4B—C5B1.395 (3)
C4A—C5A1.396 (3)C4B—C9B1.406 (3)
C4A—C9A1.404 (3)C5B—C6B1.383 (4)
C5A—C6A1.383 (4)C6B—C11B1.376 (4)
C6A—C11A1.379 (4)C8B—C9B1.500 (3)
C8A—C9A1.496 (3)C9B—C10B1.392 (3)
C9A—C10A1.385 (3)C10B—C11B1.381 (3)
C10A—C11A1.382 (4)
C1A—S2A—C2A98.25 (12)C1B—S2B—C2B98.23 (12)
C1A—S2A—S4B137.67 (9)C1B—S2B—S2Aii132.86 (9)
C2A—S2A—S4B103.26 (8)C2B—S2B—S2Aii128.66 (9)
C1A—S2A—S2Bi87.81 (9)C2B—S3B—C3B103.42 (11)
C2A—S2A—S2Bi87.88 (8)C1B—S4B—C7B98.40 (12)
S4B—S2A—S2Bi128.59 (3)C1B—S4B—S2A149.32 (9)
C2A—S3A—C3A104.81 (11)C7B—S4B—S2A96.82 (8)
C1A—S4A—C7A98.21 (12)C7B—S5B—C8B103.37 (11)
C7A—S5A—C8A103.03 (11)S1B—C1B—S2B125.42 (15)
S1A—C1A—S2A125.05 (17)S1B—C1B—S4B122.83 (16)
S1A—C1A—S4A123.12 (16)S2B—C1B—S4B111.74 (13)
S2A—C1A—S4A111.78 (14)C7B—C2B—S3B125.24 (19)
C7A—C2A—S3A125.47 (19)C7B—C2B—S2B115.63 (18)
C7A—C2A—S2A115.93 (18)S3B—C2B—S2B118.94 (14)
S3A—C2A—S2A118.34 (14)C4B—C3B—S3B115.48 (18)
C4A—C3A—S3A115.85 (17)C5B—C4B—C9B118.3 (2)
C5A—C4A—C9A118.5 (2)C5B—C4B—C3B118.8 (2)
C5A—C4A—C3A118.7 (2)C9B—C4B—C3B122.9 (2)
C9A—C4A—C3A122.7 (2)C6B—C5B—C4B121.5 (2)
C6A—C5A—C4A121.4 (2)C11B—C6B—C5B120.0 (2)
C11A—C6A—C5A119.5 (2)C2B—C7B—S4B115.76 (18)
C2A—C7A—S5A129.31 (19)C2B—C7B—S5B128.85 (19)
C2A—C7A—S4A115.62 (19)S4B—C7B—S5B115.37 (14)
S5A—C7A—S4A115.07 (14)C9B—C8B—S5B111.83 (17)
C9A—C8A—S5A114.06 (17)C10B—C9B—C4B119.4 (2)
C10A—C9A—C4A119.3 (2)C10B—C9B—C8B119.1 (2)
C10A—C9A—C8A119.5 (2)C4B—C9B—C8B121.5 (2)
C4A—C9A—C8A121.2 (2)C11B—C10B—C9B121.3 (2)
C11A—C10A—C9A121.3 (2)C6B—C11B—C10B119.6 (2)
C6A—C11A—C10A119.8 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds