Download citation
Download citation
link to html
The crystal structures of the Ln3Ag1 − δGeS7 (Ln = La–Nd, Sm, Gd–Er, Y; δ = 0.11–0.50, space group P63) compounds were determined by means of X-ray single-crystal diffraction and the similarities among the crystal structures of all Ln3M1 − δTX7 (space group P63; Ln – lanthanide element, M – monovalent element; T – tetravalent element and X – S, Se) compounds deposited in the Inorganic Crystal Structure Database (ICSD) are discussed. Substitutions of each element in Ln3M1 − δTX7 result in a different structural effect. On the basis of the data deposited in the ICSD the large family of the Ln3M1 − δTX7 compounds was divided into three groups depending on the position of the monovalent element in the lattice. This position determines what kind of stereoisomer is present in the structure, either the ++ enantiomer or the +− diastereoisomer. Since the silver ions can occupy a different position and the energy barriers between positions are low the ions can move through the channel. It was shown that this movement is not a stochastic process but a correlated one.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010876810900144X/bp5017sup1.cif
Contains datablocks la, ce, pr, nd, sm, gd, tb, dy, ho, er, y

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810900144X/bp5017lasup2.hkl
Contains datablock la

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810900144X/bp5017cesup3.hkl
Contains datablock ce

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810900144X/bp5017prsup4.hkl
Contains datablock pr

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810900144X/bp5017ndsup5.hkl
Contains datablock nd

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810900144X/bp5017smsup6.hkl
Contains datablock sm

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810900144X/bp5017gdsup7.hkl
Contains datablock gd

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810900144X/bp5017tbsup8.hkl
Contains datablock tb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810900144X/bp5017dysup9.hkl
Contains datablock dy

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810900144X/bp5017hosup10.hkl
Contains datablock ho

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810900144X/bp5017ersup11.hkl
Contains datablock er

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810900144X/bp5017ysup12.hkl
Contains datablock y

Computing details top

For all compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
(la) top
Crystal data top
Ag0.82GeLa3S7Dx = 4.875 Mg m3
Mr = 802.19Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 729 reflections
Hall symbol: P 6cθ = 4.2–26.4°
a = 10.4056 (15) ŵ = 16.91 mm1
c = 5.8280 (12) ÅT = 295 K
V = 546.49 (16) Å3Prism, dark red
Z = 20.09 × 0.04 × 0.03 mm
F(000) = 707
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
743 independent reflections
Radiation source: fine-focus sealed tube729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 26.4°, θmin = 4.2°
ω–scanh = 1212
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
k = 1212
Tmin = 0.097, Tmax = 0.599l = 77
5858 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0107P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.011(Δ/σ)max = 0.001
wR(F2) = 0.022Δρmax = 0.37 e Å3
S = 1.04Δρmin = 0.44 e Å3
743 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
43 parametersExtinction coefficient: 0.0042 (2)
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 334 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.014 (12)
Crystal data top
Ag0.82GeLa3S7Z = 2
Mr = 802.19Mo Kα radiation
Hexagonal, P63µ = 16.91 mm1
a = 10.4056 (15) ÅT = 295 K
c = 5.8280 (12) Å0.09 × 0.04 × 0.03 mm
V = 546.49 (16) Å3
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
743 independent reflections
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
729 reflections with I > 2σ(I)
Tmin = 0.097, Tmax = 0.599Rint = 0.039
5858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0111 restraint
wR(F2) = 0.022Δρmax = 0.37 e Å3
S = 1.04Δρmin = 0.44 e Å3
743 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 334 Friedel pairs
43 parametersAbsolute structure parameter: 0.014 (12)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La0.875611 (18)0.641442 (18)0.24144 (6)0.00881 (6)
Ag10.00000.00000.18424 (19)0.0387 (6)0.719 (3)
Ag20.00000.00000.9766 (13)0.018 (2)0.102 (3)
Ge10.33330.66670.32488 (9)0.00826 (14)
S10.33330.66670.9515 (2)0.0114 (3)
S20.90929 (9)0.73775 (9)0.72749 (15)0.01254 (16)
S30.58764 (10)0.47816 (10)0.97462 (12)0.00978 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La0.00902 (10)0.00790 (10)0.00959 (8)0.00429 (8)0.00087 (11)0.00073 (9)
Ag10.0098 (3)0.0098 (3)0.0966 (17)0.00489 (16)0.0000.000
Ag20.0101 (18)0.0101 (18)0.034 (5)0.0050 (9)0.0000.000
Ge10.0089 (2)0.0089 (2)0.0070 (2)0.00445 (10)0.0000.000
S10.0132 (5)0.0132 (5)0.0078 (7)0.0066 (3)0.0000.000
S20.0097 (4)0.0169 (4)0.0111 (3)0.0066 (3)0.0010 (4)0.0007 (4)
S30.0102 (5)0.0084 (4)0.0114 (3)0.0051 (4)0.0013 (3)0.0011 (3)
Geometric parameters (Å, º) top
La—S3i2.9145 (9)Ag2—S2xvi2.811 (4)
La—S2ii2.9399 (9)Ag2—S2xvii2.811 (4)
La—S2iii2.9452 (9)Ag2—S2xviii2.811 (4)
La—S22.9665 (11)Ag2—Ag2viii2.9140 (6)
La—S3iv3.0319 (9)Ag2—Ag2xi2.9140 (6)
La—S3iii3.0732 (9)Ag2—Laxvii3.556 (3)
La—S1v3.0878 (7)Ag2—Laxvi3.556 (3)
La—S2iv3.1221 (11)Ge1—S1iv2.1758 (14)
La—Ag1vi3.2981 (5)Ge1—S3ii2.2245 (9)
La—Ag2v3.556 (3)Ge1—S3xix2.2245 (9)
La—Ag2vii3.626 (3)Ge1—S3v2.2245 (9)
Ag1—Ag2iv1.210 (7)S1—Ge1xv2.1758 (14)
Ag1—Ag2viii1.704 (7)S1—Laxx3.0878 (7)
Ag1—S2ix2.4136 (9)S1—Laxvi3.0878 (7)
Ag1—S2v2.4136 (9)S1—Laxxi3.0878 (7)
Ag1—S2x2.4136 (9)S2—Ag1xvi2.4136 (9)
Ag1—Ag1viii2.9140 (6)S2—Ag2vi2.805 (4)
Ag1—Ag1xi2.9140 (6)S2—Ag2v2.811 (4)
Ag1—Laxii3.2981 (5)S2—Laxxii2.9399 (9)
Ag1—Laxiii3.2981 (5)S2—Laxxi2.9452 (9)
Ag1—Laxiv3.2981 (5)S2—Laxv3.1221 (11)
Ag2—Ag1xv1.210 (7)S3—Ge1xvi2.2245 (9)
Ag2—Ag1xi1.704 (7)S3—Laxxiii2.9145 (9)
Ag2—S2xiii2.805 (4)S3—Laxv3.0319 (9)
Ag2—S2xiv2.805 (4)S3—Laxxi3.0732 (9)
Ag2—S2xii2.805 (4)
S3i—La—S2ii140.33 (3)Ag1xi—Ag2—S2xiii58.84 (13)
S3i—La—S2iii107.53 (2)Ag1xv—Ag2—S2xiv121.16 (13)
S2ii—La—S2iii89.89 (3)Ag1xi—Ag2—S2xiv58.84 (13)
S3i—La—S2137.75 (2)S2xiii—Ag2—S2xiv95.64 (18)
S2ii—La—S279.46 (2)Ag1xv—Ag2—S2xii121.16 (13)
S2iii—La—S279.38 (2)Ag1xi—Ag2—S2xii58.84 (13)
S3i—La—S3iv73.14 (3)S2xiii—Ag2—S2xii95.64 (18)
S2ii—La—S3iv71.59 (2)S2xiv—Ag2—S2xii95.64 (18)
S2iii—La—S3iv142.08 (3)Ag1xv—Ag2—S2xvi58.65 (13)
S2—La—S3iv126.57 (2)Ag1xi—Ag2—S2xvi121.35 (13)
S3i—La—S3iii73.508 (19)S2xiii—Ag2—S2xvi179.8 (3)
S2ii—La—S3iii145.66 (3)S2xiv—Ag2—S2xvi84.483 (14)
S2iii—La—S3iii68.66 (2)S2xii—Ag2—S2xvi84.483 (14)
S2—La—S3iii70.65 (2)Ag1xv—Ag2—S2xvii58.65 (13)
S3iv—La—S3iii140.85 (2)Ag1xi—Ag2—S2xvii121.35 (13)
S3i—La—S1v70.13 (2)S2xiii—Ag2—S2xvii84.483 (14)
S2ii—La—S1v112.021 (18)S2xiv—Ag2—S2xvii84.483 (14)
S2iii—La—S1v148.62 (2)S2xii—Ag2—S2xvii179.8 (3)
S2—La—S1v82.82 (3)S2xvi—Ag2—S2xvii95.39 (18)
S3iv—La—S1v68.65 (2)Ag1xv—Ag2—S2xviii58.65 (13)
S3iii—La—S1v81.15 (2)Ag1xi—Ag2—S2xviii121.35 (13)
S3i—La—S2iv72.98 (2)S2xiii—Ag2—S2xviii84.483 (14)
S2ii—La—S2iv76.97 (2)S2xiv—Ag2—S2xviii179.8 (3)
S2iii—La—S2iv76.90 (2)S2xii—Ag2—S2xviii84.483 (14)
S2—La—S2iv146.34 (3)S2xvi—Ag2—S2xviii95.39 (18)
S3iv—La—S2iv66.96 (2)S2xvii—Ag2—S2xviii95.39 (18)
S3iii—La—S2iv120.71 (2)Ag1xv—Ag2—Ag2viii180.000 (4)
S1v—La—S2iv128.42 (3)Ag1xi—Ag2—Ag2viii0.000 (1)
S3i—La—Ag1vi136.06 (3)S2xiii—Ag2—Ag2viii58.84 (13)
S2ii—La—Ag1vi45.071 (16)S2xiv—Ag2—Ag2viii58.84 (13)
S2iii—La—Ag1vi45.044 (16)S2xii—Ag2—Ag2viii58.84 (13)
S2—La—Ag1vi78.53 (3)S2xvi—Ag2—Ag2viii121.35 (13)
S3iv—La—Ag1vi107.52 (2)S2xvii—Ag2—Ag2viii121.35 (13)
S3iii—La—Ag1vi110.62 (2)S2xviii—Ag2—Ag2viii121.35 (13)
S1v—La—Ag1vi152.74 (2)Ag1xv—Ag2—Ag2xi0.000 (1)
S2iv—La—Ag1vi67.81 (3)Ag1xi—Ag2—Ag2xi180.000 (3)
S3i—La—Ag2v157.44 (6)S2xiii—Ag2—Ag2xi121.16 (13)
S2ii—La—Ag2v50.08 (5)S2xiv—Ag2—Ag2xi121.16 (13)
S2iii—La—Ag2v50.05 (5)S2xii—Ag2—Ag2xi121.16 (13)
S2—La—Ag2v50.06 (11)S2xvi—Ag2—Ag2xi58.65 (13)
S3iv—La—Ag2v121.66 (5)S2xvii—Ag2—Ag2xi58.65 (13)
S3iii—La—Ag2v96.59 (6)S2xviii—Ag2—Ag2xi58.65 (13)
S1v—La—Ag2v129.39 (11)Ag2viii—Ag2—Ag2xi180.000 (3)
S2iv—La—Ag2v96.28 (12)Ag1xv—Ag2—Laxvii112.67 (11)
Ag1vi—La—Ag2v28.47 (11)Ag1xi—Ag2—Laxvii67.33 (11)
S3i—La—Ag2vii118.48 (10)S2xiii—Ag2—Laxvii53.60 (6)
S2ii—La—Ag2vii49.34 (4)S2xiv—Ag2—Laxvii53.49 (6)
S2iii—La—Ag2vii49.32 (4)S2xii—Ag2—Laxvii126.2 (2)
S2—La—Ag2vii97.92 (11)S2xvi—Ag2—Laxvii126.42 (3)
S3iv—La—Ag2vii95.89 (7)S2xvii—Ag2—Laxvii54.02 (3)
S3iii—La—Ag2vii117.90 (4)S2xviii—Ag2—Laxvii126.53 (3)
S1v—La—Ag2vii160.202 (7)Ag2viii—Ag2—Laxvii67.33 (11)
S2iv—La—Ag2vii48.42 (11)Ag2xi—Ag2—Laxvii112.67 (11)
Ag1vi—La—Ag2vii19.39 (10)Ag1xv—Ag2—Laxvi112.67 (11)
Ag2v—La—Ag2vii47.861 (12)Ag1xi—Ag2—Laxvi67.33 (11)
Ag2iv—Ag1—Ag2viii180.000 (1)S2xiii—Ag2—Laxvi126.2 (2)
Ag2iv—Ag1—S2ix95.99 (3)S2xiv—Ag2—Laxvi53.60 (6)
Ag2viii—Ag1—S2ix84.01 (3)S2xii—Ag2—Laxvi53.49 (6)
Ag2iv—Ag1—S2v95.99 (3)S2xvi—Ag2—Laxvi54.02 (3)
Ag2viii—Ag1—S2v84.01 (3)S2xvii—Ag2—Laxvi126.53 (3)
S2ix—Ag1—S2v118.924 (11)S2xviii—Ag2—Laxvi126.42 (3)
Ag2iv—Ag1—S2x95.99 (3)Ag2viii—Ag2—Laxvi67.33 (11)
Ag2viii—Ag1—S2x84.01 (3)Ag2xi—Ag2—Laxvi112.67 (11)
S2ix—Ag1—S2x118.924 (11)Laxvii—Ag2—Laxvi106.09 (13)
S2v—Ag1—S2x118.924 (11)S1iv—Ge1—S3ii113.10 (2)
Ag2iv—Ag1—Ag1viii0.0S1iv—Ge1—S3xix113.10 (2)
Ag2viii—Ag1—Ag1viii180.000 (1)S3ii—Ge1—S3xix105.61 (3)
S2ix—Ag1—Ag1viii95.99 (3)S1iv—Ge1—S3v113.10 (2)
S2v—Ag1—Ag1viii95.99 (3)S3ii—Ge1—S3v105.61 (3)
S2x—Ag1—Ag1viii95.99 (3)S3xix—Ge1—S3v105.61 (3)
Ag2iv—Ag1—Ag1xi180.0Ge1xv—S1—Laxx113.36 (2)
Ag2viii—Ag1—Ag1xi0.000 (1)Ge1xv—S1—Laxvi113.36 (2)
S2ix—Ag1—Ag1xi84.01 (3)Laxx—S1—Laxvi105.31 (3)
S2v—Ag1—Ag1xi84.01 (3)Ge1xv—S1—Laxxi113.36 (2)
S2x—Ag1—Ag1xi84.01 (3)Laxx—S1—Laxxi105.31 (3)
Ag1viii—Ag1—Ag1xi180.0Laxvi—S1—Laxxi105.31 (3)
Ag2iv—Ag1—Laxii95.80 (2)Ag2vi—S2—Ag2v62.51 (2)
Ag2viii—Ag1—Laxii84.20 (2)Ag1xvi—S2—Laxxii75.34 (2)
S2ix—Ag1—Laxii168.21 (5)Ag2vi—S2—Laxxii76.44 (3)
S2v—Ag1—Laxii59.715 (19)Ag2v—S2—Laxxii78.15 (3)
S2x—Ag1—Laxii59.586 (19)Ag1xvi—S2—Laxxi75.24 (2)
Ag1viii—Ag1—Laxii95.80 (2)Ag2vi—S2—Laxxi76.35 (3)
Ag1xi—Ag1—Laxii84.20 (2)Ag2v—S2—Laxxi78.06 (3)
Ag2iv—Ag1—Laxiii95.80 (2)Laxxii—S2—Laxxi149.90 (3)
Ag2viii—Ag1—Laxiii84.20 (2)Ag1xvi—S2—La101.28 (4)
S2ix—Ag1—Laxiii59.586 (19)Ag2vi—S2—La138.44 (13)
S2v—Ag1—Laxiii168.21 (5)Ag2v—S2—La75.92 (13)
S2x—Ag1—Laxiii59.715 (19)Laxxii—S2—La95.97 (3)
Ag1viii—Ag1—Laxiii95.80 (2)Laxxi—S2—La95.86 (3)
Ag1xi—Ag1—Laxiii84.20 (2)Ag1xvi—S2—Laxv112.38 (4)
Laxii—Ag1—Laxiii118.992 (7)Ag2vi—S2—Laxv75.22 (14)
Ag2iv—Ag1—Laxiv95.80 (2)Ag2v—S2—Laxv137.74 (14)
Ag2viii—Ag1—Laxiv84.20 (2)Laxxii—S2—Laxv92.71 (2)
S2ix—Ag1—Laxiv59.715 (19)Laxxi—S2—Laxv92.61 (2)
S2v—Ag1—Laxiv59.586 (19)La—S2—Laxv146.34 (3)
S2x—Ag1—Laxiv168.21 (5)Ge1xvi—S3—Laxxiii92.15 (3)
Ag1viii—Ag1—Laxiv95.80 (2)Ge1xvi—S3—Laxv89.10 (3)
Ag1xi—Ag1—Laxiv84.20 (2)Laxxiii—S3—Laxv111.30 (3)
Laxii—Ag1—Laxiv118.992 (7)Ge1xvi—S3—Laxxi122.50 (3)
Laxiii—Ag1—Laxiv118.992 (7)Laxxiii—S3—Laxxi139.09 (3)
Ag1xv—Ag2—Ag1xi180.000 (1)Laxv—S3—Laxxi91.91 (2)
Ag1xv—Ag2—S2xiii121.16 (13)
Symmetry codes: (i) x+y+1, x+1, z1; (ii) y, x+y+1, z1/2; (iii) xy+1, x, z1/2; (iv) x, y, z1; (v) x+1, y+1, z1/2; (vi) x+1, y+1, z; (vii) x+1, y+1, z1; (viii) x, y, z1/2; (ix) y1, x+y, z1/2; (x) xy, x1, z1/2; (xi) x, y, z+1/2; (xii) y+1, xy, z; (xiii) x1, y1, z; (xiv) x+y, x+1, z; (xv) x, y, z+1; (xvi) x+1, y+1, z+1/2; (xvii) y1, x+y, z+1/2; (xviii) xy, x1, z+1/2; (xix) xy, x, z1/2; (xx) xy, x, z+1/2; (xxi) y, x+y+1, z+1/2; (xxii) xy+1, x, z+1/2; (xxiii) y+1, xy, z+1.
(ce) top
Crystal data top
Ag0.88Ce3GeS7Dx = 4.939 Mg m3
Mr = 812.30Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 704 reflections
Hall symbol: P 6cθ = 4.2–26.4°
a = 10.3902 (15) ŵ = 17.79 mm1
c = 5.8425 (12) ÅT = 295 K
V = 546.23 (16) Å3Prism, dark red
Z = 20.09 × 0.08 × 0.06 mm
F(000) = 719
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
726 independent reflections
Radiation source: fine-focus sealed tube704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 26.4°, θmin = 4.2°
ω–scanh = 1212
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
k = 1212
Tmin = 0.097, Tmax = 0.599l = 76
6515 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0294P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max = 0.001
wR(F2) = 0.046Δρmax = 1.01 e Å3
S = 1.06Δρmin = 0.70 e Å3
726 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
43 parametersExtinction coefficient: 0.0122 (6)
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 319 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (2)
Crystal data top
Ag0.88Ce3GeS7Z = 2
Mr = 812.30Mo Kα radiation
Hexagonal, P63µ = 17.79 mm1
a = 10.3902 (15) ÅT = 295 K
c = 5.8425 (12) Å0.09 × 0.08 × 0.06 mm
V = 546.23 (16) Å3
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
726 independent reflections
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
704 reflections with I > 2σ(I)
Tmin = 0.097, Tmax = 0.599Rint = 0.043
6515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0211 restraint
wR(F2) = 0.046Δρmax = 1.01 e Å3
S = 1.06Δρmin = 0.70 e Å3
726 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 319 Friedel pairs
43 parametersAbsolute structure parameter: 0.04 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ce0.87483 (3)0.64142 (3)0.23920 (14)0.01007 (13)
Ag10.00000.00000.1694 (6)0.0391 (16)0.783 (9)
Ag20.00000.00000.965 (4)0.026 (7)0.098 (9)
Ge10.33330.66670.3228 (2)0.0100 (3)
S10.33330.66670.9480 (5)0.0116 (6)
S20.90743 (17)0.73512 (17)0.7237 (4)0.0135 (3)
S30.5867 (2)0.47870 (19)0.9745 (3)0.0108 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce0.00999 (19)0.00870 (19)0.0116 (2)0.00471 (14)0.0008 (2)0.0009 (2)
Ag10.0109 (6)0.0109 (6)0.096 (5)0.0054 (3)0.0000.000
Ag20.020 (4)0.020 (4)0.04 (2)0.010 (2)0.0000.000
Ge10.0102 (4)0.0102 (4)0.0096 (6)0.00509 (19)0.0000.000
S10.0127 (9)0.0127 (9)0.0094 (16)0.0063 (5)0.0000.000
S20.0112 (7)0.0171 (7)0.0126 (8)0.0074 (6)0.0003 (8)0.0016 (9)
S30.0113 (8)0.0099 (8)0.0115 (8)0.0055 (7)0.0014 (7)0.0004 (6)
Geometric parameters (Å, º) top
Ce—S3i2.9091 (18)Ag2—S2xvi2.854 (13)
Ce—S2ii2.9425 (16)Ag2—S2xvii2.854 (13)
Ce—S2iii2.9446 (16)Ag2—S2xviii2.854 (13)
Ce—S22.957 (2)Ag2—Ag2xi2.9212 (6)
Ce—S3iv3.0251 (18)Ag2—Ag2viii2.9212 (6)
Ce—S3ii3.0758 (18)Ag2—Cexviii3.530 (9)
Ce—S1v3.0805 (13)Ag2—Cexvi3.530 (9)
Ce—S2iv3.131 (2)Ge1—S1iv2.190 (3)
Ce—Ag1vi3.3005 (7)Ge1—S3iii2.2391 (19)
Ce—Ag2v3.530 (9)Ge1—S3xix2.2391 (19)
Ce—Ag2vii3.647 (11)Ge1—S3v2.2391 (19)
Ag1—Ag2iv1.20 (2)S1—Ge1xv2.190 (3)
Ag1—Ag2viii1.73 (2)S1—Cexx3.0805 (13)
Ag1—S2v2.4399 (16)S1—Cexvi3.0805 (13)
Ag1—S2ix2.4399 (16)S1—Cexxi3.0805 (13)
Ag1—S2x2.4399 (16)S2—Ag1xvi2.4399 (16)
Ag1—Ag1viii2.9212 (6)S2—Ag2vi2.799 (12)
Ag1—Ag1xi2.9213 (6)S2—Ag2v2.854 (13)
Ag1—Cexii3.3005 (7)S2—Cexxi2.9425 (16)
Ag1—Cexiii3.3005 (7)S2—Cexxii2.9446 (16)
Ag1—Cexiv3.3005 (7)S2—Cexv3.131 (2)
Ag2—Ag1xv1.20 (2)S3—Ge1xvi2.2391 (19)
Ag2—Ag1xi1.73 (2)S3—Cexxiii2.9091 (18)
Ag2—S2xiii2.799 (12)S3—Cexv3.0251 (18)
Ag2—S2xii2.799 (12)S3—Cexxi3.0758 (18)
Ag2—S2xiv2.799 (12)
S3i—Ce—S2ii106.58 (5)Ag1xi—Ag2—S2xiii59.8 (4)
S3i—Ce—S2iii140.39 (6)Ag1xv—Ag2—S2xii120.2 (4)
S2ii—Ce—S2iii90.76 (6)Ag1xi—Ag2—S2xii59.8 (4)
S3i—Ce—S2137.17 (5)S2xiii—Ag2—S2xii96.9 (6)
S2ii—Ce—S280.01 (5)Ag1xv—Ag2—S2xiv120.2 (4)
S2iii—Ce—S279.98 (5)Ag1xi—Ag2—S2xiv59.8 (4)
S3i—Ce—S3iv73.73 (7)S2xiii—Ag2—S2xiv96.9 (6)
S2ii—Ce—S3iv142.23 (6)S2xii—Ag2—S2xiv96.9 (6)
S2iii—Ce—S3iv71.11 (5)Ag1xv—Ag2—S2xvi58.0 (4)
S2—Ce—S3iv126.28 (5)Ag1xi—Ag2—S2xvi122.0 (4)
S3i—Ce—S3ii73.27 (3)S2xiii—Ag2—S2xvi178.2 (8)
S2ii—Ce—S3ii68.46 (5)S2xii—Ag2—S2xvi84.28 (3)
S2iii—Ce—S3ii145.89 (5)S2xiv—Ag2—S2xvi84.28 (3)
S2—Ce—S3ii70.23 (5)Ag1xv—Ag2—S2xvii58.0 (4)
S3iv—Ce—S3ii140.90 (5)Ag1xi—Ag2—S2xvii122.0 (4)
S3i—Ce—S1v70.19 (5)S2xiii—Ag2—S2xvii84.28 (3)
S2ii—Ce—S1v148.24 (5)S2xii—Ag2—S2xvii84.28 (3)
S2iii—Ce—S1v111.99 (4)S2xiv—Ag2—S2xvii178.2 (8)
S2—Ce—S1v82.44 (6)S2xvi—Ag2—S2xvii94.5 (6)
S3iv—Ce—S1v68.73 (5)Ag1xv—Ag2—S2xviii58.0 (4)
S3ii—Ce—S1v80.76 (4)Ag1xi—Ag2—S2xviii122.0 (4)
S3i—Ce—S2iv72.60 (5)S2xiii—Ag2—S2xviii84.28 (3)
S2ii—Ce—S2iv77.22 (5)S2xii—Ag2—S2xviii178.2 (8)
S2iii—Ce—S2iv77.19 (5)S2xiv—Ag2—S2xviii84.28 (3)
S2—Ce—S2iv147.31 (6)S2xvi—Ag2—S2xviii94.5 (6)
S3iv—Ce—S2iv66.74 (4)S2xvii—Ag2—S2xviii94.5 (6)
S3ii—Ce—S2iv120.98 (5)Ag1xv—Ag2—Ag2xi0.000 (4)
S1v—Ce—S2iv127.92 (6)Ag1xi—Ag2—Ag2xi180.000 (9)
S3i—Ce—Ag1vi134.75 (7)S2xiii—Ag2—Ag2xi120.2 (4)
S2ii—Ce—Ag1vi45.56 (3)S2xii—Ag2—Ag2xi120.2 (4)
S2iii—Ce—Ag1vi45.55 (3)S2xiv—Ag2—Ag2xi120.2 (4)
S2—Ce—Ag1vi80.27 (7)S2xvi—Ag2—Ag2xi58.0 (4)
S3iv—Ce—Ag1vi106.80 (5)S2xvii—Ag2—Ag2xi58.0 (4)
S3ii—Ce—Ag1vi111.20 (5)S2xviii—Ag2—Ag2xi58.0 (4)
S1v—Ce—Ag1vi153.84 (5)Ag1xv—Ag2—Ag2viii180.000 (12)
S2iv—Ce—Ag1vi67.04 (7)Ag1xi—Ag2—Ag2viii0.000 (2)
S3i—Ce—Ag2v156.6 (2)S2xiii—Ag2—Ag2viii59.8 (4)
S2ii—Ce—Ag2v50.24 (14)S2xii—Ag2—Ag2viii59.8 (4)
S2iii—Ce—Ag2v50.23 (14)S2xiv—Ag2—Ag2viii59.8 (4)
S2—Ce—Ag2v51.3 (4)S2xvi—Ag2—Ag2viii122.0 (4)
S3iv—Ce—Ag2v121.33 (15)S2xvii—Ag2—Ag2viii122.0 (4)
S3ii—Ce—Ag2v96.9 (2)S2xviii—Ag2—Ag2viii122.0 (4)
S1v—Ce—Ag2v130.2 (3)Ag2xi—Ag2—Ag2viii180.000 (11)
S2iv—Ce—Ag2v96.0 (4)Ag1xv—Ag2—Cexviii111.9 (4)
Ag1vi—Ce—Ag2v29.0 (3)Ag1xi—Ag2—Cexviii68.1 (4)
S3i—Ce—Ag2vii117.6 (3)S2xiii—Ag2—Cexviii53.92 (19)
S2ii—Ce—Ag2vii49.93 (13)S2xii—Ag2—Cexviii127.9 (8)
S2iii—Ce—Ag2vii49.92 (13)S2xiv—Ag2—Cexviii53.96 (19)
S2—Ce—Ag2vii99.3 (3)S2xvi—Ag2—Cexviii126.26 (12)
S3iv—Ce—Ag2vii95.4 (2)S2xvii—Ag2—Cexviii126.22 (12)
S3ii—Ce—Ag2vii118.29 (11)S2xviii—Ag2—Cexviii53.94 (6)
S1v—Ce—Ag2vii160.43 (3)Ag2xi—Ag2—Cexviii111.9 (4)
S2iv—Ce—Ag2vii48.0 (3)Ag2viii—Ag2—Cexviii68.1 (4)
Ag1vi—Ce—Ag2vii19.0 (3)Ag1xv—Ag2—Cexvi111.9 (4)
Ag2v—Ce—Ag2vii48.00 (3)Ag1xi—Ag2—Cexvi68.1 (4)
Ag2iv—Ag1—Ag2viii180.000 (3)S2xiii—Ag2—Cexvi127.9 (8)
Ag2iv—Ag1—S2v97.47 (9)S2xii—Ag2—Cexvi53.96 (19)
Ag2viii—Ag1—S2v82.53 (9)S2xiv—Ag2—Cexvi53.92 (19)
Ag2iv—Ag1—S2ix97.47 (9)S2xvi—Ag2—Cexvi53.94 (6)
Ag2viii—Ag1—S2ix82.53 (9)S2xvii—Ag2—Cexvi126.26 (12)
S2v—Ag1—S2ix118.34 (4)S2xviii—Ag2—Cexvi126.22 (12)
Ag2iv—Ag1—S2x97.47 (9)Ag2xi—Ag2—Cexvi111.9 (4)
Ag2viii—Ag1—S2x82.53 (9)Ag2viii—Ag2—Cexvi68.1 (4)
S2v—Ag1—S2x118.34 (4)Cexviii—Ag2—Cexvi106.9 (4)
S2ix—Ag1—S2x118.34 (4)S1iv—Ge1—S3iii113.33 (5)
Ag2iv—Ag1—Ag1viii0.0S1iv—Ge1—S3xix113.33 (5)
Ag2viii—Ag1—Ag1viii180.000 (3)S3iii—Ge1—S3xix105.35 (6)
S2v—Ag1—Ag1viii97.47 (9)S1iv—Ge1—S3v113.33 (5)
S2ix—Ag1—Ag1viii97.47 (9)S3iii—Ge1—S3v105.35 (6)
S2x—Ag1—Ag1viii97.47 (9)S3xix—Ge1—S3v105.35 (6)
Ag2iv—Ag1—Ag1xi180.0Ge1xv—S1—Cexx113.33 (5)
Ag2viii—Ag1—Ag1xi0.000 (3)Ge1xv—S1—Cexvi113.33 (5)
S2v—Ag1—Ag1xi82.53 (9)Cexx—S1—Cexvi105.35 (6)
S2ix—Ag1—Ag1xi82.53 (9)Ge1xv—S1—Cexxi113.33 (5)
S2x—Ag1—Ag1xi82.53 (9)Cexx—S1—Cexxi105.35 (6)
Ag1viii—Ag1—Ag1xi180.0Cexvi—S1—Cexxi105.35 (6)
Ag2iv—Ag1—Cexii97.09 (6)Ag2vi—S2—Ag2v62.23 (4)
Ag2viii—Ag1—Cexii82.91 (6)Ag1xvi—S2—Cexxi74.99 (4)
S2v—Ag1—Cexii59.44 (4)Ag2vi—S2—Cexxi75.84 (7)
S2ix—Ag1—Cexii165.44 (14)Ag2v—S2—Cexxi77.96 (9)
S2x—Ag1—Cexii59.49 (4)Ag1xvi—S2—Cexxii74.95 (4)
Ag1viii—Ag1—Cexii97.09 (6)Ag2vi—S2—Cexxii75.80 (7)
Ag1xi—Ag1—Cexii82.91 (6)Ag2v—S2—Cexxii77.93 (9)
Ag2iv—Ag1—Cexiii97.09 (6)Cexxi—S2—Cexxii148.99 (6)
Ag2viii—Ag1—Cexiii82.91 (6)Ag1xvi—S2—Ce99.36 (10)
S2v—Ag1—Cexiii165.44 (14)Ag2vi—S2—Ce137.0 (4)
S2ix—Ag1—Cexiii59.49 (4)Ag2v—S2—Ce74.8 (4)
S2x—Ag1—Cexiii59.44 (4)Cexxi—S2—Ce96.12 (6)
Ag1viii—Ag1—Cexiii97.09 (6)Cexxii—S2—Ce96.08 (5)
Ag1xi—Ag1—Cexiii82.91 (6)Ag1xvi—S2—Cexv113.33 (10)
Cexii—Ag1—Cexiii118.50 (3)Ag2vi—S2—Cexv75.7 (4)
Ag2iv—Ag1—Cexiv97.09 (6)Ag2v—S2—Cexv137.9 (4)
Ag2viii—Ag1—Cexiv82.91 (6)Cexxi—S2—Cexv92.49 (5)
S2v—Ag1—Cexiv59.49 (4)Cexxii—S2—Cexv92.45 (5)
S2ix—Ag1—Cexiv59.44 (4)Ce—S2—Cexv147.31 (6)
S2x—Ag1—Cexiv165.44 (14)Ge1xvi—S3—Cexxiii91.96 (6)
Ag1viii—Ag1—Cexiv97.09 (6)Ge1xvi—S3—Cexv88.97 (6)
Ag1xi—Ag1—Cexiv82.91 (6)Cexxiii—S3—Cexv111.29 (6)
Cexii—Ag1—Cexiv118.50 (3)Ge1xvi—S3—Cexxi121.90 (7)
Cexiii—Ag1—Cexiv118.50 (3)Cexxiii—S3—Cexxi139.74 (7)
Ag1xv—Ag2—Ag1xi180.000 (3)Cexv—S3—Cexxi92.00 (5)
Ag1xv—Ag2—S2xiii120.2 (4)
Symmetry codes: (i) x+y+1, x+1, z1; (ii) xy+1, x, z1/2; (iii) y, x+y+1, z1/2; (iv) x, y, z1; (v) x+1, y+1, z1/2; (vi) x+1, y+1, z; (vii) x+1, y+1, z1; (viii) x, y, z1/2; (ix) y1, x+y, z1/2; (x) xy, x1, z1/2; (xi) x, y, z+1/2; (xii) y+1, xy, z; (xiii) x1, y1, z; (xiv) x+y, x+1, z; (xv) x, y, z+1; (xvi) x+1, y+1, z+1/2; (xvii) xy, x1, z+1/2; (xviii) y1, x+y, z+1/2; (xix) xy, x, z1/2; (xx) xy, x, z+1/2; (xxi) y, x+y+1, z+1/2; (xxii) xy+1, x, z+1/2; (xxiii) y+1, xy, z+1.
(pr) top
Crystal data top
Ag0.89GePr3S7Dx = 5.176 Mg m3
Mr = 815.74Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 585 reflections
Hall symbol: P 6cθ = 4.0–25.0°
a = 10.2290 (14) ŵ = 19.50 mm1
c = 5.7760 (11) ÅT = 295 K
V = 523.39 (14) Å3Prism, dark red
Z = 20.10 × 0.09 × 0.07 mm
F(000) = 726
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
602 independent reflections
Radiation source: fine-focus sealed tube585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 25.0°, θmin = 4.0°
ω–scanh = 1212
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
k = 1211
Tmin = 0.163, Tmax = 0.272l = 66
5174 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0287P)2 + 1.032P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max < 0.001
wR(F2) = 0.051Δρmax = 1.22 e Å3
S = 1.09Δρmin = 0.73 e Å3
602 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
43 parametersExtinction coefficient: 0.0145 (7)
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 265 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Crystal data top
Ag0.89GePr3S7Z = 2
Mr = 815.74Mo Kα radiation
Hexagonal, P63µ = 19.50 mm1
a = 10.2290 (14) ÅT = 295 K
c = 5.7760 (11) Å0.10 × 0.09 × 0.07 mm
V = 523.39 (14) Å3
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
602 independent reflections
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
585 reflections with I > 2σ(I)
Tmin = 0.163, Tmax = 0.272Rint = 0.059
5174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0251 restraint
wR(F2) = 0.051Δρmax = 1.22 e Å3
S = 1.09Δρmin = 0.73 e Å3
602 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 265 Friedel pairs
43 parametersAbsolute structure parameter: 0.05 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pr0.87391 (5)0.64129 (5)0.23910 (18)0.01118 (19)
Ag10.00000.00000.1692 (9)0.027 (4)0.49 (5)
Ag20.00000.00001.094 (18)0.165 (10)0.41 (5)
Ge10.33330.66670.3227 (3)0.0104 (4)
S10.33330.66670.9467 (7)0.0131 (10)
S20.9060 (2)0.7345 (3)0.7230 (5)0.0152 (5)
S30.5856 (3)0.4788 (3)0.9755 (4)0.0123 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr0.0115 (3)0.0105 (3)0.0116 (3)0.0055 (2)0.0010 (3)0.0008 (3)
Ag10.011 (2)0.011 (2)0.059 (9)0.0054 (10)0.0000.000
Ag20.019 (3)0.019 (3)0.46 (3)0.0097 (16)0.0000.000
Ge10.0121 (6)0.0121 (6)0.0071 (9)0.0060 (3)0.0000.000
S10.0147 (14)0.0147 (14)0.010 (3)0.0073 (7)0.0000.000
S20.0112 (11)0.0187 (11)0.0149 (12)0.0068 (9)0.0001 (11)0.0018 (14)
S30.0137 (12)0.0113 (12)0.0122 (13)0.0063 (11)0.0006 (10)0.0001 (10)
Geometric parameters (Å, º) top
Pr—S3i2.863 (2)Ag2—Ag2xi2.8880 (6)
Pr—S2ii2.893 (2)Ag2—Ag2x2.8880 (6)
Pr—S2iii2.905 (2)Ag2—Ag1xix3.32 (11)
Pr—S22.918 (3)Ag2—Prxx3.33 (3)
Pr—S3iv2.980 (2)Ag2—Prxxi3.33 (3)
Pr—S1v3.0293 (18)Ag2—Prxxii3.33 (3)
Pr—S3ii3.037 (3)Ge1—S1iv2.172 (4)
Pr—S2iv3.097 (3)Ge1—S3xxiii2.217 (3)
Pr—Ag1vi3.2492 (9)Ge1—S3iii2.217 (3)
Pr—Ag2vii3.33 (3)Ge1—S3v2.217 (3)
Ag1—S2viii2.405 (2)S1—Ge1xxiv2.172 (4)
Ag1—S2v2.405 (2)S1—Prxxv3.0293 (18)
Ag1—S2ix2.405 (2)S1—Prxvi3.0293 (18)
Ag1—Ag2x2.45 (11)S1—Prxxvi3.0293 (18)
Ag1—Ag1xi2.8880 (5)S2—Ag1xvi2.405 (2)
Ag1—Ag1x2.8880 (5)S2—Ag2v2.50 (3)
Ag1—Prxii3.2492 (9)S2—Prxxvi2.893 (2)
Ag1—Prxiii3.2492 (9)S2—Prxxvii2.905 (2)
Ag1—Prxiv3.2492 (9)S2—Prxxiv3.097 (3)
Ag1—Ag2xv3.32 (11)S3—Ge1xvi2.217 (3)
Ag2—Ag1xi2.45 (11)S3—Prxx2.863 (2)
Ag2—S2xvi2.50 (3)S3—Prxxiv2.980 (2)
Ag2—S2xvii2.50 (3)S3—Prxxvi3.037 (3)
Ag2—S2xviii2.50 (3)
S3i—Pr—S2ii105.95 (7)Ag2x—Ag1—Ag2xv180.000 (15)
S3i—Pr—S2iii140.58 (8)Ag1xi—Ag1—Ag2xv180.000 (5)
S2ii—Pr—S2iii90.90 (9)Ag1x—Ag1—Ag2xv0.0
S3i—Pr—S2137.04 (7)Prxii—Ag1—Ag2xv97.13 (10)
S2ii—Pr—S280.27 (7)Prxiii—Ag1—Ag2xv97.13 (10)
S2iii—Pr—S280.07 (7)Prxiv—Ag1—Ag2xv97.13 (10)
S3i—Pr—S3iv74.12 (10)Ag1xi—Ag2—S2xvi107 (2)
S2ii—Pr—S3iv142.26 (8)Ag1xi—Ag2—S2xvii107 (2)
S2iii—Pr—S3iv71.10 (7)S2xvi—Ag2—S2xvii112 (2)
S2—Pr—S3iv126.16 (7)Ag1xi—Ag2—S2xviii107 (2)
S3i—Pr—S1v70.35 (7)S2xvi—Ag2—S2xviii112 (2)
S2ii—Pr—S1v148.00 (7)S2xvii—Ag2—S2xviii112 (2)
S2iii—Pr—S1v112.28 (5)Ag1xi—Ag2—Ag2xi180.00 (3)
S2—Pr—S1v82.33 (9)S2xvi—Ag2—Ag2xi73 (2)
S3iv—Pr—S1v68.85 (7)S2xvii—Ag2—Ag2xi73 (2)
S3i—Pr—S3ii73.06 (5)S2xviii—Ag2—Ag2xi73 (2)
S2ii—Pr—S3ii68.47 (7)Ag1xi—Ag2—Ag2x0.000 (3)
S2iii—Pr—S3ii145.87 (8)S2xvi—Ag2—Ag2x107 (2)
S2—Pr—S3ii70.11 (7)S2xvii—Ag2—Ag2x107 (2)
S3iv—Pr—S3ii140.86 (7)S2xviii—Ag2—Ag2x107 (2)
S1v—Pr—S3ii80.42 (6)Ag2xi—Ag2—Ag2x180.00 (5)
S3i—Pr—S2iv72.42 (7)Ag1xi—Ag2—Ag1xix180.000 (2)
S2ii—Pr—S2iv77.34 (7)S2xvi—Ag2—Ag1xix73 (2)
S2iii—Pr—S2iv77.16 (7)S2xvii—Ag2—Ag1xix73 (2)
S2—Pr—S2iv147.58 (9)S2xviii—Ag2—Ag1xix73 (2)
S3iv—Pr—S2iv66.61 (6)Ag2xi—Ag2—Ag1xix0.00 (2)
S1v—Pr—S2iv127.77 (9)Ag2x—Ag2—Ag1xix180.000 (8)
S3ii—Pr—S2iv121.21 (7)Ag1xi—Ag2—Prxx104.6 (18)
S3i—Pr—Ag1vi134.41 (10)S2xvi—Ag2—Prxx57.4 (6)
S2ii—Pr—Ag1vi45.65 (5)S2xvii—Ag2—Prxx148 (4)
S2iii—Pr—Ag1vi45.59 (5)S2xviii—Ag2—Prxx57.7 (6)
S2—Pr—Ag1vi80.43 (10)Ag2xi—Ag2—Prxx75.4 (17)
S3iv—Pr—Ag1vi106.85 (8)Ag2x—Ag2—Prxx104.6 (18)
S1v—Pr—Ag1vi154.12 (8)Ag1xix—Ag2—Prxx75.4 (18)
S3ii—Pr—Ag1vi111.23 (6)Ag1xi—Ag2—Prxxi104.6 (18)
S2iv—Pr—Ag1vi67.15 (10)S2xvi—Ag2—Prxxi57.7 (6)
S3i—Pr—Ag2vii127.8 (16)S2xvii—Ag2—Prxxi57.4 (6)
S2ii—Pr—Ag2vii46.7 (4)S2xviii—Ag2—Prxxi148 (4)
S2iii—Pr—Ag2vii46.6 (4)Ag2xi—Ag2—Prxxi75.4 (18)
S2—Pr—Ag2vii87.9 (18)Ag2x—Ag2—Prxxi104.6 (18)
S3iv—Pr—Ag2vii102.5 (11)Ag1xix—Ag2—Prxxi75.4 (18)
S1v—Pr—Ag2vii158.3 (8)Prxx—Ag2—Prxxi113.9 (14)
S3ii—Pr—Ag2vii114.3 (7)Ag1xi—Ag2—Prxxii104.6 (18)
S2iv—Pr—Ag2vii59.7 (18)S2xvi—Ag2—Prxxii148 (4)
Ag1vi—Pr—Ag2vii7.4 (18)S2xvii—Ag2—Prxxii57.7 (6)
S2viii—Ag1—S2v118.36 (6)S2xviii—Ag2—Prxxii57.4 (6)
S2viii—Ag1—S2ix118.36 (6)Ag2xi—Ag2—Prxxii75.4 (18)
S2v—Ag1—S2ix118.36 (6)Ag2x—Ag2—Prxxii104.6 (18)
S2viii—Ag1—Ag2x82.58 (14)Ag1xix—Ag2—Prxxii75.4 (18)
S2v—Ag1—Ag2x82.58 (13)Prxx—Ag2—Prxxii113.9 (14)
S2ix—Ag1—Ag2x82.58 (13)Prxxi—Ag2—Prxxii113.9 (14)
S2viii—Ag1—Ag1xi82.58 (13)S1iv—Ge1—S3xxiii113.47 (7)
S2v—Ag1—Ag1xi82.58 (13)S1iv—Ge1—S3iii113.47 (7)
S2ix—Ag1—Ag1xi82.58 (13)S3xxiii—Ge1—S3iii105.19 (8)
Ag2x—Ag1—Ag1xi0.000 (10)S1iv—Ge1—S3v113.47 (7)
S2viii—Ag1—Ag1x97.42 (13)S3xxiii—Ge1—S3v105.19 (8)
S2v—Ag1—Ag1x97.42 (13)S3iii—Ge1—S3v105.19 (8)
S2ix—Ag1—Ag1x97.42 (13)Ge1xxiv—S1—Prxxv113.32 (8)
Ag2x—Ag1—Ag1x180.000 (10)Ge1xxiv—S1—Prxvi113.32 (8)
Ag1xi—Ag1—Ag1x180.000 (1)Prxxv—S1—Prxvi105.37 (9)
S2viii—Ag1—Prxii165.4 (2)Ge1xxiv—S1—Prxxvi113.32 (8)
S2v—Ag1—Prxii59.32 (5)Prxxv—S1—Prxxvi105.37 (9)
S2ix—Ag1—Prxii59.62 (5)Prxvi—S1—Prxxvi105.37 (9)
Ag2x—Ag1—Prxii82.87 (10)Ag1xvi—S2—Prxxvi75.03 (6)
Ag1xi—Ag1—Prxii82.87 (10)Ag2v—S2—Prxxvi75.9 (3)
Ag1x—Ag1—Prxii97.13 (10)Ag1xvi—S2—Prxxvii74.79 (6)
S2viii—Ag1—Prxiii59.62 (5)Ag2v—S2—Prxxvii75.7 (3)
S2v—Ag1—Prxiii165.4 (2)Prxxvi—S2—Prxxvii148.83 (9)
S2ix—Ag1—Prxiii59.32 (5)Ag1xvi—S2—Pr99.29 (15)
Ag2x—Ag1—Prxiii82.87 (10)Ag2v—S2—Pr89 (2)
Ag1xi—Ag1—Prxiii82.87 (10)Prxxvi—S2—Pr96.30 (8)
Ag1x—Ag1—Prxiii97.13 (10)Prxxvii—S2—Pr96.03 (8)
Prxii—Ag1—Prxiii118.48 (4)Ag1xvi—S2—Prxxiv113.13 (15)
S2viii—Ag1—Prxiv59.32 (5)Ag2v—S2—Prxxiv123 (2)
S2v—Ag1—Prxiv59.62 (5)Prxxvi—S2—Prxxiv92.49 (8)
S2ix—Ag1—Prxiv165.4 (2)Prxxvii—S2—Prxxiv92.25 (8)
Ag2x—Ag1—Prxiv82.87 (10)Pr—S2—Prxxiv147.58 (9)
Ag1xi—Ag1—Prxiv82.87 (10)Ge1xvi—S3—Prxx91.85 (9)
Ag1x—Ag1—Prxiv97.13 (10)Ge1xvi—S3—Prxxiv88.84 (8)
Prxii—Ag1—Prxiv118.48 (4)Prxx—S3—Prxxiv111.09 (8)
Prxiii—Ag1—Prxiv118.48 (4)Ge1xvi—S3—Prxxvi121.46 (10)
S2viii—Ag1—Ag2xv97.42 (13)Prxx—S3—Prxxvi140.32 (9)
S2v—Ag1—Ag2xv97.42 (14)Prxxiv—S3—Prxxvi92.01 (7)
S2ix—Ag1—Ag2xv97.42 (13)
Symmetry codes: (i) x+y+1, x+1, z1; (ii) xy+1, x, z1/2; (iii) y, x+y+1, z1/2; (iv) x, y, z1; (v) x+1, y+1, z1/2; (vi) x+1, y+1, z; (vii) x+1, y+1, z1; (viii) y1, x+y, z1/2; (ix) xy, x1, z1/2; (x) x, y, z1/2; (xi) x, y, z+1/2; (xii) y+1, xy, z; (xiii) x1, y1, z; (xiv) x+y, x+1, z; (xv) x, y, z3/2; (xvi) x+1, y+1, z+1/2; (xvii) y1, x+y, z+1/2; (xviii) xy, x1, z+1/2; (xix) x, y, z+3/2; (xx) y+1, xy, z+1; (xxi) x+y, x+1, z+1; (xxii) x1, y1, z+1; (xxiii) xy, x, z1/2; (xxiv) x, y, z+1; (xxv) xy, x, z+1/2; (xxvi) y, x+y+1, z+1/2; (xxvii) xy+1, x, z+1/2.
(nd) top
Crystal data top
Ag0.84GeNd3S7Dx = 5.245 Mg m3
Mr = 819.80Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 700 reflections
Hall symbol: P 6cθ = 4.2–26.4°
a = 10.1930 (14) ŵ = 20.49 mm1
c = 5.7693 (12) ÅT = 295 K
V = 519.11 (15) Å3Prism, dark red
Z = 20.11 × 0.09 × 0.08 mm
F(000) = 726
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
713 independent reflections
Radiation source: fine-focus sealed tube700 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 26.4°, θmin = 4.2°
ω–scanh = 1212
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
k = 1212
Tmin = 0.093, Tmax = 0.261l = 77
5463 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0193P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.016(Δ/σ)max = 0.001
wR(F2) = 0.035Δρmax = 0.72 e Å3
S = 1.08Δρmin = 0.75 e Å3
713 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
43 parametersExtinction coefficient: 0.0335 (7)
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 320 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.027 (19)
Crystal data top
Ag0.84GeNd3S7Z = 2
Mr = 819.80Mo Kα radiation
Hexagonal, P63µ = 20.49 mm1
a = 10.1930 (14) ÅT = 295 K
c = 5.7693 (12) Å0.11 × 0.09 × 0.08 mm
V = 519.11 (15) Å3
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
713 independent reflections
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
700 reflections with I > 2σ(I)
Tmin = 0.093, Tmax = 0.261Rint = 0.038
5463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0161 restraint
wR(F2) = 0.035Δρmax = 0.72 e Å3
S = 1.08Δρmin = 0.75 e Å3
713 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 320 Friedel pairs
43 parametersAbsolute structure parameter: 0.027 (19)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd0.87317 (3)0.64140 (3)0.24353 (16)0.01001 (11)
Ag10.00000.00000.159 (2)0.053 (4)0.69 (2)
Ag20.00000.00000.971 (7)0.029 (9)0.15 (2)
Ge10.33330.66670.3272 (2)0.0087 (2)
S10.33330.66670.9504 (4)0.0110 (5)
S20.90545 (14)0.73476 (15)0.7252 (3)0.0140 (3)
S30.58466 (16)0.47936 (16)0.9818 (3)0.0103 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd0.00997 (15)0.00902 (15)0.01111 (16)0.00481 (11)0.00099 (18)0.00074 (16)
Ag10.0114 (6)0.0114 (6)0.136 (11)0.0057 (3)0.0000.000
Ag20.013 (2)0.013 (2)0.06 (3)0.0063 (12)0.0000.000
Ge10.0094 (3)0.0094 (3)0.0072 (5)0.00472 (16)0.0000.000
S10.0135 (8)0.0135 (8)0.0061 (13)0.0067 (4)0.0000.000
S20.0111 (6)0.0188 (6)0.0125 (7)0.0078 (5)0.0005 (7)0.0023 (8)
S30.0119 (7)0.0094 (6)0.0102 (7)0.0058 (6)0.0010 (6)0.0006 (6)
Geometric parameters (Å, º) top
Nd—S3i2.8538 (14)Ag2—S2xvi2.79 (2)
Nd—S2ii2.8792 (13)Ag2—S2xvii2.79 (2)
Nd—S2iii2.8935 (13)Ag2—S2xviii2.79 (2)
Nd—S22.9025 (19)Ag2—Ag2viii2.8846 (6)
Nd—S3iv2.9664 (15)Ag2—Ag2xi2.8846 (6)
Nd—S1v3.0174 (11)Ag2—Ndxviii3.467 (15)
Nd—S3ii3.0316 (15)Ag2—Ndxvi3.467 (15)
Nd—S2iv3.1051 (19)Ge1—S1iv2.174 (3)
Nd—Ag1vi3.247 (2)Ge1—S3iii2.2256 (16)
Nd—Ag2v3.467 (15)Ge1—S3xix2.2256 (16)
Nd—Ag2vii3.576 (17)Ge1—S3v2.2256 (16)
Ag1—Ag2iv1.09 (3)S1—Ge1xv2.174 (3)
Ag1—Ag2viii1.80 (3)S1—Ndxx3.0174 (11)
Ag1—S2v2.404 (2)S1—Ndxvi3.0174 (11)
Ag1—S2ix2.404 (2)S1—Ndxxi3.0174 (11)
Ag1—S2x2.404 (2)S2—Ag1xvi2.404 (2)
Ag1—Ag1viii2.8846 (6)S2—Ag2vi2.76 (2)
Ag1—Ag1xi2.8846 (6)S2—Ag2v2.79 (2)
Ag1—Ndxii3.247 (2)S2—Ndxxi2.8792 (13)
Ag1—Ndxiii3.247 (2)S2—Ndxxii2.8935 (13)
Ag1—Ndxiv3.247 (2)S2—Ndxv3.1051 (19)
Ag2—Ag1xv1.09 (3)S3—Ge1xvi2.2256 (16)
Ag2—Ag1xi1.80 (3)S3—Ndxxiii2.8538 (14)
Ag2—S2xiii2.76 (2)S3—Ndxv2.9664 (15)
Ag2—S2xiv2.76 (2)S3—Ndxxi3.0316 (15)
Ag2—S2xii2.76 (2)
S3i—Nd—S2ii105.37 (4)Ag1xi—Ag2—S2xiii59.2 (7)
S3i—Nd—S2iii140.80 (5)Ag1xv—Ag2—S2xiv120.8 (7)
S2ii—Nd—S2iii90.81 (5)Ag1xi—Ag2—S2xiv59.2 (7)
S3i—Nd—S2136.85 (4)S2xiii—Ag2—S2xiv96.1 (9)
S2ii—Nd—S280.49 (4)Ag1xv—Ag2—S2xii120.8 (7)
S2iii—Nd—S280.26 (4)Ag1xi—Ag2—S2xii59.2 (7)
S3i—Nd—S3iv74.70 (6)S2xiii—Ag2—S2xii96.1 (9)
S2ii—Nd—S3iv142.13 (5)S2xiv—Ag2—S2xii96.1 (9)
S2iii—Nd—S3iv70.99 (4)Ag1xv—Ag2—S2xvi58.2 (7)
S2—Nd—S3iv126.04 (4)Ag1xi—Ag2—S2xvi121.8 (7)
S3i—Nd—S1v70.38 (4)S2xiii—Ag2—S2xvi179.0 (14)
S2ii—Nd—S1v147.99 (4)S2xiv—Ag2—S2xvi84.52 (3)
S2iii—Nd—S1v112.70 (3)S2xii—Ag2—S2xvi84.52 (3)
S2—Nd—S1v82.43 (5)Ag1xv—Ag2—S2xvii58.2 (7)
S3iv—Nd—S1v68.92 (4)Ag1xi—Ag2—S2xvii121.8 (7)
S3i—Nd—S3ii72.75 (3)S2xiii—Ag2—S2xvii84.52 (3)
S2ii—Nd—S3ii68.73 (4)S2xiv—Ag2—S2xvii179.0 (14)
S2iii—Nd—S3ii145.91 (5)S2xii—Ag2—S2xvii84.52 (3)
S2—Nd—S3ii69.95 (4)S2xvi—Ag2—S2xvii94.8 (9)
S3iv—Nd—S3ii140.86 (4)Ag1xv—Ag2—S2xviii58.2 (7)
S1v—Nd—S3ii80.04 (3)Ag1xi—Ag2—S2xviii121.8 (7)
S3i—Nd—S2iv72.46 (4)S2xiii—Ag2—S2xviii84.52 (3)
S2ii—Nd—S2iv77.15 (4)S2xiv—Ag2—S2xviii84.52 (3)
S2iii—Nd—S2iv76.94 (4)S2xii—Ag2—S2xviii179.0 (14)
S2—Nd—S2iv147.60 (5)S2xvi—Ag2—S2xviii94.8 (9)
S3iv—Nd—S2iv66.67 (4)S2xvii—Ag2—S2xviii94.8 (9)
S1v—Nd—S2iv127.71 (5)Ag1xv—Ag2—Ag2viii180.00 (2)
S3ii—Nd—S2iv121.46 (4)Ag1xi—Ag2—Ag2viii0.000 (1)
S3i—Nd—Ag1vi132.9 (2)S2xiii—Ag2—Ag2viii59.2 (7)
S2ii—Nd—Ag1vi45.72 (3)S2xiv—Ag2—Ag2viii59.2 (7)
S2iii—Nd—Ag1vi45.64 (3)S2xii—Ag2—Ag2viii59.2 (7)
S2—Nd—Ag1vi81.9 (2)S2xvi—Ag2—Ag2viii121.8 (7)
S3iv—Nd—Ag1vi106.03 (13)S2xvii—Ag2—Ag2viii121.8 (7)
S1v—Nd—Ag1vi155.33 (14)S2xviii—Ag2—Ag2viii121.8 (7)
S3ii—Nd—Ag1vi111.93 (10)Ag1xv—Ag2—Ag2xi0.000 (4)
S2iv—Nd—Ag1vi65.7 (2)Ag1xi—Ag2—Ag2xi180.000 (15)
S3i—Nd—Ag2v155.8 (3)S2xiii—Ag2—Ag2xi120.8 (7)
S2ii—Nd—Ag2v50.6 (2)S2xiv—Ag2—Ag2xi120.8 (7)
S2iii—Nd—Ag2v50.5 (2)S2xii—Ag2—Ag2xi120.8 (7)
S2—Nd—Ag2v51.0 (6)S2xvi—Ag2—Ag2xi58.2 (7)
S3iv—Nd—Ag2v121.5 (2)S2xvii—Ag2—Ag2xi58.2 (7)
S1v—Nd—Ag2v130.2 (5)S2xviii—Ag2—Ag2xi58.2 (7)
S3ii—Nd—Ag2v96.6 (3)Ag2viii—Ag2—Ag2xi180.000 (13)
S2iv—Nd—Ag2v96.6 (6)Ag1xv—Ag2—Ndxviii112.2 (6)
Ag1vi—Nd—Ag2v30.8 (4)Ag1xi—Ag2—Ndxviii67.8 (6)
S3i—Nd—Ag2vii117.2 (5)S2xiii—Ag2—Ndxviii53.6 (3)
S2ii—Nd—Ag2vii49.8 (2)S2xiv—Ag2—Ndxviii53.9 (3)
S2iii—Nd—Ag2vii49.8 (2)S2xii—Ag2—Ndxviii127.0 (13)
S2—Nd—Ag2vii99.4 (6)S2xvi—Ag2—Ndxviii126.48 (18)
S3iv—Nd—Ag2vii95.5 (3)S2xvii—Ag2—Ndxviii126.18 (18)
S1v—Nd—Ag2vii160.99 (5)S2xviii—Ag2—Ndxviii53.96 (9)
S3ii—Nd—Ag2vii118.49 (18)Ag2viii—Ag2—Ndxviii67.8 (6)
S2iv—Nd—Ag2vii48.2 (6)Ag2xi—Ag2—Ndxviii112.2 (6)
Ag1vi—Nd—Ag2vii17.5 (3)Ag1xv—Ag2—Ndxvi112.2 (6)
Ag2v—Nd—Ag2vii48.32 (4)Ag1xi—Ag2—Ndxvi67.8 (6)
Ag2iv—Ag1—Ag2viii180.000 (4)S2xiii—Ag2—Ndxvi127.0 (13)
Ag2iv—Ag1—S2v99.1 (3)S2xiv—Ag2—Ndxvi53.6 (3)
Ag2viii—Ag1—S2v80.9 (3)S2xii—Ag2—Ndxvi53.9 (3)
Ag2iv—Ag1—S2ix99.1 (3)S2xvi—Ag2—Ndxvi53.96 (9)
Ag2viii—Ag1—S2ix80.9 (3)S2xvii—Ag2—Ndxvi126.48 (18)
S2v—Ag1—S2ix117.52 (16)S2xviii—Ag2—Ndxvi126.18 (18)
Ag2iv—Ag1—S2x99.1 (3)Ag2viii—Ag2—Ndxvi67.8 (6)
Ag2viii—Ag1—S2x80.9 (3)Ag2xi—Ag2—Ndxvi112.2 (6)
S2v—Ag1—S2x117.52 (16)Ndxviii—Ag2—Ndxvi106.6 (6)
S2ix—Ag1—S2x117.52 (16)S1iv—Ge1—S3iii113.61 (4)
Ag2iv—Ag1—Ag1viii0.000 (1)S1iv—Ge1—S3xix113.61 (4)
Ag2viii—Ag1—Ag1viii180.000 (5)S3iii—Ge1—S3xix105.03 (5)
S2v—Ag1—Ag1viii99.1 (3)S1iv—Ge1—S3v113.61 (4)
S2ix—Ag1—Ag1viii99.1 (3)S3iii—Ge1—S3v105.03 (5)
S2x—Ag1—Ag1viii99.1 (3)S3xix—Ge1—S3v105.03 (5)
Ag2iv—Ag1—Ag1xi180.000 (1)Ge1xv—S1—Ndxx113.29 (4)
Ag2viii—Ag1—Ag1xi0.000 (4)Ge1xv—S1—Ndxvi113.29 (4)
S2v—Ag1—Ag1xi80.9 (3)Ndxx—S1—Ndxvi105.39 (5)
S2ix—Ag1—Ag1xi80.9 (3)Ge1xv—S1—Ndxxi113.29 (4)
S2x—Ag1—Ag1xi80.9 (3)Ndxx—S1—Ndxxi105.39 (5)
Ag1viii—Ag1—Ag1xi180.000 (1)Ndxvi—S1—Ndxxi105.39 (5)
Ag2iv—Ag1—Ndxii98.6 (2)Ag2vi—S2—Ag2v62.57 (3)
Ag2viii—Ag1—Ndxii81.4 (2)Ag1xvi—S2—Ndxxi75.25 (5)
S2v—Ag1—Ndxii59.03 (5)Ag2vi—S2—Ndxxi75.80 (9)
S2ix—Ag1—Ndxii162.2 (5)Ag2v—S2—Ndxxi78.17 (13)
S2x—Ag1—Ndxii59.39 (5)Ag1xvi—S2—Ndxxii74.97 (4)
Ag1viii—Ag1—Ndxii98.6 (2)Ag2vi—S2—Ndxxii75.57 (9)
Ag1xi—Ag1—Ndxii81.4 (2)Ag2v—S2—Ndxxii77.93 (13)
Ag2iv—Ag1—Ndxiii98.6 (2)Ndxxi—S2—Ndxxii148.84 (5)
Ag2viii—Ag1—Ndxiii81.4 (2)Ag1xvi—S2—Nd97.6 (3)
S2v—Ag1—Ndxiii162.2 (5)Ag2vi—S2—Nd137.6 (7)
S2ix—Ag1—Ndxiii59.39 (5)Ag2v—S2—Nd75.0 (7)
S2x—Ag1—Ndxiii59.03 (5)Ndxxi—S2—Nd96.58 (5)
Ag1viii—Ag1—Ndxiii98.6 (2)Ndxxii—S2—Nd96.26 (5)
Ag1xi—Ag1—Ndxiii81.4 (2)Ag1xvi—S2—Ndxv114.8 (3)
Ndxii—Ag1—Ndxiii117.79 (11)Ag2vi—S2—Ndxv74.8 (7)
Ag2iv—Ag1—Ndxiv98.6 (2)Ag2v—S2—Ndxv137.4 (7)
Ag2viii—Ag1—Ndxiv81.4 (2)Ndxxi—S2—Ndxv92.23 (4)
S2v—Ag1—Ndxiv59.39 (5)Ndxxii—S2—Ndxv91.96 (4)
S2ix—Ag1—Ndxiv59.03 (5)Nd—S2—Ndxv147.60 (5)
S2x—Ag1—Ndxiv162.2 (5)Ge1xvi—S3—Ndxxiii91.59 (5)
Ag1viii—Ag1—Ndxiv98.6 (2)Ge1xvi—S3—Ndxv88.68 (5)
Ag1xi—Ag1—Ndxiv81.4 (2)Ndxxiii—S3—Ndxv111.12 (5)
Ndxii—Ag1—Ndxiv117.79 (11)Ge1xvi—S3—Ndxxi120.99 (6)
Ndxiii—Ag1—Ndxiv117.79 (11)Ndxxiii—S3—Ndxxi140.93 (6)
Ag1xv—Ag2—Ag1xi180.000 (12)Ndxv—S3—Ndxxi92.03 (4)
Ag1xv—Ag2—S2xiii120.8 (7)
Symmetry codes: (i) x+y+1, x+1, z1; (ii) xy+1, x, z1/2; (iii) y, x+y+1, z1/2; (iv) x, y, z1; (v) x+1, y+1, z1/2; (vi) x+1, y+1, z; (vii) x+1, y+1, z1; (viii) x, y, z1/2; (ix) y1, x+y, z1/2; (x) xy, x1, z1/2; (xi) x, y, z+1/2; (xii) y+1, xy, z; (xiii) x1, y1, z; (xiv) x+y, x+1, z; (xv) x, y, z+1; (xvi) x+1, y+1, z+1/2; (xvii) xy, x1, z+1/2; (xviii) y1, x+y, z+1/2; (xix) xy, x, z1/2; (xx) xy, x, z+1/2; (xxi) y, x+y+1, z+1/2; (xxii) xy+1, x, z+1/2; (xxiii) y+1, xy, z+1.
(sm) top
Crystal data top
Ag0.74GeS7Sm3Dx = 5.420 Mg m3
Mr = 827.34Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 601 reflections
Hall symbol: P 6cθ = 4.2–25.3°
a = 10.0809 (14) ŵ = 22.80 mm1
c = 5.7604 (12) ÅT = 295 K
V = 506.97 (15) Å3Prism, dark red
Z = 20.13 × 0.11 × 0.09 mm
F(000) = 729
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
604 independent reflections
Radiation source: fine-focus sealed tube601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 25.3°, θmin = 4.2°
ω–scanh = 1212
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
k = 1112
Tmin = 0.029, Tmax = 0.242l = 66
4935 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0181P)2 + 0.5015P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.014(Δ/σ)max = 0.001
wR(F2) = 0.034Δρmax = 0.70 e Å3
S = 1.17Δρmin = 0.51 e Å3
604 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
43 parametersExtinction coefficient: 0.0097 (4)
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 270 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.029 (18)
Crystal data top
Ag0.74GeS7Sm3Z = 2
Mr = 827.34Mo Kα radiation
Hexagonal, P63µ = 22.80 mm1
a = 10.0809 (14) ÅT = 295 K
c = 5.7604 (12) Å0.13 × 0.11 × 0.09 mm
V = 506.97 (15) Å3
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
604 independent reflections
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
601 reflections with I > 2σ(I)
Tmin = 0.029, Tmax = 0.242Rint = 0.046
4935 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0141 restraint
wR(F2) = 0.034Δρmax = 0.70 e Å3
S = 1.17Δρmin = 0.51 e Å3
604 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 270 Friedel pairs
43 parametersAbsolute structure parameter: 0.029 (18)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sm0.87145 (3)0.64163 (2)0.24346 (12)0.00914 (12)
Ag10.00000.00000.137 (3)0.075 (5)0.548 (18)
Ag20.00000.00000.967 (3)0.020 (4)0.187 (18)
Ge10.33330.66670.32606 (16)0.0069 (2)
S10.33330.66670.9482 (4)0.0092 (5)
S20.90414 (13)0.73662 (14)0.7212 (2)0.0140 (3)
S30.58278 (15)0.47996 (14)0.9828 (2)0.0091 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm0.00824 (15)0.00721 (14)0.01210 (17)0.00397 (10)0.00139 (13)0.00070 (13)
Ag10.0095 (7)0.0095 (7)0.205 (15)0.0048 (4)0.0000.000
Ag20.0091 (17)0.0091 (17)0.043 (11)0.0046 (9)0.0000.000
Ge10.0076 (3)0.0076 (3)0.0055 (5)0.00380 (14)0.0000.000
S10.0105 (7)0.0105 (7)0.0066 (12)0.0053 (3)0.0000.000
S20.0098 (5)0.0202 (6)0.0129 (6)0.0082 (5)0.0005 (5)0.0028 (6)
S30.0113 (6)0.0083 (6)0.0093 (6)0.0062 (5)0.0012 (5)0.0006 (5)
Geometric parameters (Å, º) top
Sm—S3i2.8332 (13)Ag2—S2xvi2.751 (9)
Sm—S2ii2.8336 (12)Ag2—S2xvii2.751 (9)
Sm—S2iii2.8602 (12)Ag2—S2xviii2.751 (9)
Sm—S22.8780 (17)Ag2—Ag2viii2.8802 (6)
Sm—S3iv2.9389 (14)Ag2—Ag2xi2.8802 (6)
Sm—S1v2.9825 (10)Ag2—Smxviii3.421 (6)
Sm—S3ii3.0127 (13)Ag2—Smxvi3.421 (6)
Sm—S2iv3.1243 (17)Ge1—S1iv2.177 (2)
Sm—Ag1vi3.229 (3)Ge1—S3iii2.2281 (14)
Sm—Ag2v3.421 (6)Ge1—S3xix2.2281 (14)
Sm—Ag2vii3.548 (8)Ge1—S3v2.2281 (14)
Ag1—Ag2iv0.981 (7)S1—Ge1xv2.177 (2)
Ag1—Ag2viii1.899 (7)S1—Smxx2.9825 (10)
Ag1—S2v2.378 (4)S1—Smxvi2.9825 (10)
Ag1—S2ix2.378 (4)S1—Smxxi2.9825 (10)
Ag1—S2x2.378 (4)S2—Ag1xvi2.378 (4)
Ag1—Ag1viii2.8802 (6)S2—Ag2vi2.724 (9)
Ag1—Ag1xi2.8802 (6)S2—Ag2v2.751 (9)
Ag1—Smxii3.229 (3)S2—Smxxi2.8336 (12)
Ag1—Smxiii3.229 (3)S2—Smxxii2.8602 (12)
Ag1—Smxiv3.229 (3)S2—Smxv3.1243 (17)
Ag2—Ag1xv0.981 (7)S3—Ge1xvi2.2281 (14)
Ag2—Ag1xi1.899 (7)S3—Smxxiii2.8332 (13)
Ag2—S2xiii2.724 (9)S3—Smxv2.9389 (14)
Ag2—S2xiv2.724 (9)S3—Smxxi3.0127 (13)
Ag2—S2xii2.724 (9)
S3i—Sm—S2ii104.33 (4)Ag1xi—Ag2—S2xiii58.7 (3)
S3i—Sm—S2iii141.02 (5)Ag1xv—Ag2—S2xiv121.3 (3)
S2ii—Sm—S2iii90.15 (5)Ag1xi—Ag2—S2xiv58.7 (3)
S3i—Sm—S2137.02 (4)S2xiii—Ag2—S2xiv95.5 (4)
S2ii—Sm—S280.83 (4)Ag1xv—Ag2—S2xii121.3 (3)
S2iii—Sm—S280.38 (4)Ag1xi—Ag2—S2xii58.7 (3)
S3i—Sm—S3iv75.34 (5)S2xiii—Ag2—S2xii95.5 (4)
S2ii—Sm—S3iv141.56 (4)S2xiv—Ag2—S2xii95.5 (4)
S2iii—Sm—S3iv71.24 (4)Ag1xv—Ag2—S2xvi57.8 (3)
S2—Sm—S3iv126.16 (4)Ag1xi—Ag2—S2xvi122.2 (3)
S3i—Sm—S1v70.70 (4)S2xiii—Ag2—S2xvi179.1 (6)
S2ii—Sm—S1v148.01 (4)S2xiv—Ag2—S2xvi85.13 (2)
S2iii—Sm—S1v113.86 (3)S2xii—Ag2—S2xvi85.13 (2)
S2—Sm—S1v82.71 (5)Ag1xv—Ag2—S2xvii57.8 (3)
S3iv—Sm—S1v69.31 (4)Ag1xi—Ag2—S2xvii122.2 (3)
S3i—Sm—S3ii72.32 (3)S2xiii—Ag2—S2xvii85.13 (2)
S2ii—Sm—S3ii69.33 (3)S2xiv—Ag2—S2xvii179.1 (6)
S2iii—Sm—S3ii145.90 (4)S2xii—Ag2—S2xvii85.13 (2)
S2—Sm—S3ii69.94 (4)S2xvi—Ag2—S2xvii94.2 (4)
S3iv—Sm—S3ii140.72 (3)Ag1xv—Ag2—S2xviii57.8 (3)
S1v—Sm—S3ii79.31 (3)Ag1xi—Ag2—S2xviii122.2 (3)
S3i—Sm—S2iv72.34 (4)S2xiii—Ag2—S2xviii85.13 (2)
S2ii—Sm—S2iv76.69 (4)S2xiv—Ag2—S2xviii85.13 (2)
S2iii—Sm—S2iv76.31 (4)S2xii—Ag2—S2xviii179.1 (6)
S2—Sm—S2iv147.33 (5)S2xvi—Ag2—S2xviii94.2 (4)
S3iv—Sm—S2iv66.51 (4)S2xvii—Ag2—S2xviii94.2 (4)
S1v—Sm—S2iv127.74 (5)Ag1xv—Ag2—Ag2viii180.000 (16)
S3ii—Sm—S2iv121.84 (3)Ag1xi—Ag2—Ag2viii0.000 (1)
S3i—Sm—Ag1vi130.3 (3)S2xiii—Ag2—Ag2viii58.7 (3)
S2ii—Sm—Ag1vi45.60 (4)S2xiv—Ag2—Ag2viii58.7 (3)
S2iii—Sm—Ag1vi45.47 (4)S2xii—Ag2—Ag2viii58.7 (3)
S2—Sm—Ag1vi83.9 (3)S2xvi—Ag2—Ag2viii122.2 (3)
S3iv—Sm—Ag1vi104.81 (18)S2xvii—Ag2—Ag2viii122.2 (3)
S1v—Sm—Ag1vi157.29 (18)S2xviii—Ag2—Ag2viii122.2 (3)
S3ii—Sm—Ag1vi112.96 (14)Ag1xv—Ag2—Ag2xi0.000 (4)
S2iv—Sm—Ag1vi63.4 (3)Ag1xi—Ag2—Ag2xi180.000 (8)
S3i—Sm—Ag2v154.81 (13)S2xiii—Ag2—Ag2xi121.3 (3)
S2ii—Sm—Ag2v50.57 (10)S2xiv—Ag2—Ag2xi121.3 (3)
S2iii—Sm—Ag2v50.43 (10)S2xii—Ag2—Ag2xi121.3 (3)
S2—Sm—Ag2v50.9 (3)S2xvi—Ag2—Ag2xi57.8 (3)
S3iv—Sm—Ag2v121.66 (11)S2xvii—Ag2—Ag2xi57.8 (3)
S1v—Sm—Ag2v130.6 (2)S2xviii—Ag2—Ag2xi57.8 (3)
S3ii—Sm—Ag2v96.56 (15)Ag2viii—Ag2—Ag2xi180.000 (5)
S2iv—Sm—Ag2v96.4 (3)Ag1xv—Ag2—Smxviii112.1 (3)
Ag1vi—Sm—Ag2v33.03 (12)Ag1xi—Ag2—Smxviii67.9 (3)
S3i—Sm—Ag2vii116.2 (2)S2xiii—Ag2—Smxviii53.47 (13)
S2ii—Sm—Ag2vii49.52 (9)S2xiv—Ag2—Smxviii54.05 (14)
S2iii—Sm—Ag2vii49.42 (9)S2xii—Ag2—Smxviii126.6 (6)
S2—Sm—Ag2vii99.7 (2)S2xvi—Ag2—Smxviii126.61 (9)
S3iv—Sm—Ag2vii95.24 (15)S2xvii—Ag2—Smxviii126.04 (9)
S1v—Sm—Ag2vii161.57 (3)S2xviii—Ag2—Smxviii54.29 (4)
S3ii—Sm—Ag2vii118.78 (8)Ag2viii—Ag2—Smxviii67.9 (3)
S2iv—Sm—Ag2vii47.7 (2)Ag2xi—Ag2—Smxviii112.1 (3)
Ag1vi—Sm—Ag2vii15.75 (13)Ag1xv—Ag2—Smxvi112.1 (3)
Ag2v—Sm—Ag2vii48.78 (2)Ag1xi—Ag2—Smxvi67.9 (3)
Ag2iv—Ag1—Ag2viii180.000 (2)S2xiii—Ag2—Smxvi126.6 (6)
Ag2iv—Ag1—S2v101.8 (4)S2xiv—Ag2—Smxvi53.47 (13)
Ag2viii—Ag1—S2v78.2 (4)S2xii—Ag2—Smxvi54.05 (14)
Ag2iv—Ag1—S2ix101.8 (4)S2xvi—Ag2—Smxvi54.29 (4)
Ag2viii—Ag1—S2ix78.2 (4)S2xvii—Ag2—Smxvi126.61 (9)
S2v—Ag1—S2ix116.0 (3)S2xviii—Ag2—Smxvi126.04 (9)
Ag2iv—Ag1—S2x101.8 (4)Ag2viii—Ag2—Smxvi67.9 (3)
Ag2viii—Ag1—S2x78.2 (4)Ag2xi—Ag2—Smxvi112.1 (3)
S2v—Ag1—S2x116.0 (3)Smxviii—Ag2—Smxvi106.7 (3)
S2ix—Ag1—S2x116.0 (3)S1iv—Ge1—S3iii113.90 (4)
Ag2iv—Ag1—Ag1viii0.000 (1)S1iv—Ge1—S3xix113.90 (4)
Ag2viii—Ag1—Ag1viii180.000 (2)S3iii—Ge1—S3xix104.71 (5)
S2v—Ag1—Ag1viii101.8 (4)S1iv—Ge1—S3v113.90 (4)
S2ix—Ag1—Ag1viii101.8 (4)S3iii—Ge1—S3v104.71 (5)
S2x—Ag1—Ag1viii101.8 (4)S3xix—Ge1—S3v104.71 (5)
Ag2iv—Ag1—Ag1xi180.000 (1)Ge1xv—S1—Smxx113.29 (4)
Ag2viii—Ag1—Ag1xi0.000 (1)Ge1xv—S1—Smxvi113.29 (4)
S2v—Ag1—Ag1xi78.2 (4)Smxx—S1—Smxvi105.40 (5)
S2ix—Ag1—Ag1xi78.2 (4)Ge1xv—S1—Smxxi113.29 (4)
S2x—Ag1—Ag1xi78.2 (4)Smxx—S1—Smxxi105.40 (5)
Ag1viii—Ag1—Ag1xi180.000 (2)Smxvi—S1—Smxxi105.40 (5)
Ag2iv—Ag1—Smxii100.9 (3)Ag2vi—S2—Ag2v63.49 (3)
Ag2viii—Ag1—Smxii79.1 (3)Ag1xvi—S2—Smxxi76.01 (6)
S2v—Ag1—Smxii58.38 (8)Ag2vi—S2—Smxxi75.96 (5)
S2ix—Ag1—Smxii59.04 (8)Ag2v—S2—Smxxi78.89 (7)
S2x—Ag1—Smxii157.3 (7)Ag1xvi—S2—Smxxii75.49 (6)
Ag1viii—Ag1—Smxii100.9 (3)Ag2vi—S2—Smxxii75.52 (5)
Ag1xi—Ag1—Smxii79.1 (3)Ag2v—S2—Smxxii78.43 (7)
Ag2iv—Ag1—Smxiii100.9 (3)Smxxi—S2—Smxxii149.30 (5)
Ag2viii—Ag1—Smxiii79.1 (3)Ag1xvi—S2—Sm95.3 (4)
S2v—Ag1—Smxiii157.3 (7)Ag2vi—S2—Sm138.3 (3)
S2ix—Ag1—Smxiii58.38 (8)Ag2v—S2—Sm74.8 (3)
S2x—Ag1—Smxiii59.04 (8)Smxxi—S2—Sm97.16 (4)
Ag1viii—Ag1—Smxiii100.9 (3)Smxxii—S2—Sm96.56 (4)
Ag1xi—Ag1—Smxiii79.1 (3)Ag1xvi—S2—Smxv117.4 (4)
Smxii—Ag1—Smxiii116.48 (19)Ag2vi—S2—Smxv74.4 (3)
Ag2iv—Ag1—Smxiv100.9 (3)Ag2v—S2—Smxv137.8 (3)
Ag2viii—Ag1—Smxiv79.1 (3)Smxxi—S2—Smxv91.80 (4)
S2v—Ag1—Smxiv59.04 (8)Smxxii—S2—Smxv91.29 (4)
S2ix—Ag1—Smxiv157.3 (7)Sm—S2—Smxv147.33 (5)
S2x—Ag1—Smxiv58.38 (8)Ge1xvi—S3—Smxxiii91.34 (4)
Ag1viii—Ag1—Smxiv100.9 (3)Ge1xvi—S3—Smxv88.62 (4)
Ag1xi—Ag1—Smxiv79.1 (3)Smxxiii—S3—Smxv110.57 (5)
Smxii—Ag1—Smxiv116.48 (19)Ge1xvi—S3—Smxxi120.21 (6)
Smxiii—Ag1—Smxiv116.48 (19)Smxxiii—S3—Smxxi142.07 (5)
Ag1xv—Ag2—Ag1xi180.000 (18)Smxv—S3—Smxxi92.04 (4)
Ag1xv—Ag2—S2xiii121.3 (3)
Symmetry codes: (i) x+y+1, x+1, z1; (ii) xy+1, x, z1/2; (iii) y, x+y+1, z1/2; (iv) x, y, z1; (v) x+1, y+1, z1/2; (vi) x+1, y+1, z; (vii) x+1, y+1, z1; (viii) x, y, z1/2; (ix) xy, x1, z1/2; (x) y1, x+y, z1/2; (xi) x, y, z+1/2; (xii) y+1, xy, z; (xiii) x1, y1, z; (xiv) x+y, x+1, z; (xv) x, y, z+1; (xvi) x+1, y+1, z+1/2; (xvii) xy, x1, z+1/2; (xviii) y1, x+y, z+1/2; (xix) xy, x, z1/2; (xx) xy, x, z+1/2; (xxi) y, x+y+1, z+1/2; (xxii) xy+1, x, z+1/2; (xxiii) y+1, xy, z+1.
(gd) top
Crystal data top
Ag0.63Gd3GeS7Dx = 5.602 Mg m3
Mr = 836.18Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 657 reflections
Hall symbol: P 6cθ = 4.3–26.2°
a = 9.9637 (14) ŵ = 25.41 mm1
c = 5.7660 (12) ÅT = 295 K
V = 495.73 (14) Å3Prism, dark red
Z = 20.13 × 0.12 × 0.10 mm
F(000) = 731
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
658 independent reflections
Radiation source: fine-focus sealed tube657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 26.2°, θmin = 4.3°
ω–scanh = 1212
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
k = 129
Tmin = 0.024, Tmax = 0.192l = 77
5095 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0143P)2 + 0.2664P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.013(Δ/σ)max = 0.001
wR(F2) = 0.029Δρmax = 0.58 e Å3
S = 1.12Δρmin = 0.81 e Å3
658 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
43 parametersExtinction coefficient: 0.0047 (3)
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 296 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (15)
Crystal data top
Ag0.63Gd3GeS7Z = 2
Mr = 836.18Mo Kα radiation
Hexagonal, P63µ = 25.41 mm1
a = 9.9637 (14) ÅT = 295 K
c = 5.7660 (12) Å0.13 × 0.12 × 0.10 mm
V = 495.73 (14) Å3
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
658 independent reflections
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
657 reflections with I > 2σ(I)
Tmin = 0.024, Tmax = 0.192Rint = 0.044
5095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0131 restraint
wR(F2) = 0.029Δρmax = 0.58 e Å3
S = 1.12Δρmin = 0.81 e Å3
658 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 296 Friedel pairs
43 parametersAbsolute structure parameter: 0.006 (15)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Gd0.86849 (2)0.64152 (2)0.24476 (11)0.01184 (9)
Ag10.00000.00000.085 (4)0.093 (5)0.50 (2)
Ag20.00000.00000.9545 (16)0.014 (4)0.12 (2)
Ge10.33330.66670.32630 (13)0.00836 (18)
S10.33330.66670.9488 (3)0.0104 (4)
S20.90148 (13)0.73723 (14)0.7161 (2)0.0172 (3)
S30.58053 (14)0.47996 (13)0.9842 (2)0.0106 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd0.00971 (12)0.00902 (11)0.01695 (12)0.00480 (8)0.00176 (12)0.00048 (12)
Ag10.0102 (9)0.0102 (9)0.258 (16)0.0051 (4)0.0000.000
Ag20.011 (3)0.011 (3)0.020 (12)0.0055 (13)0.0000.000
Ge10.0092 (2)0.0092 (2)0.0068 (3)0.00458 (12)0.0000.000
S10.0117 (6)0.0117 (6)0.0077 (9)0.0058 (3)0.0000.000
S20.0114 (5)0.0237 (6)0.0182 (7)0.0100 (5)0.0006 (5)0.0076 (6)
S30.0135 (6)0.0104 (5)0.0099 (4)0.0073 (5)0.0003 (5)0.0003 (5)
Geometric parameters (Å, º) top
Gd—S2i2.7906 (12)Ag2—S2xiii2.672 (5)
Gd—S3ii2.8160 (12)Ag2—S2xiv2.672 (5)
Gd—S2iii2.8309 (12)Ag2—S2viii2.743 (5)
Gd—S22.8443 (14)Ag2—S2xvii2.743 (5)
Gd—S3iv2.9090 (13)Ag2—S2xviii2.743 (5)
Gd—S1v2.9466 (9)Ag2—Ag2ix2.8830 (6)
Gd—S3i3.0045 (12)Ag2—Ag2xii2.8830 (6)
Gd—S2iv3.1616 (15)Ag2—Gdxviii3.355 (3)
Gd—Ag1vi3.263 (7)Ag2—Gdxvii3.355 (3)
Gd—Ag2v3.355 (4)Ge1—S1iv2.1765 (19)
Gd—Ag2vii3.549 (5)Ge1—S3iii2.2256 (13)
Gd—Ag1viii3.693 (14)Ge1—S3xix2.2256 (13)
Ag1—Ag2iv0.75 (2)Ge1—S3v2.2256 (12)
Ag1—Ag2ix2.13 (2)S1—Ge1xvi2.1765 (19)
Ag1—S2v2.413 (8)S1—Gdxx2.9466 (9)
Ag1—S2x2.413 (8)S1—Gdviii2.9466 (9)
Ag1—S2xi2.413 (8)S1—Gdxxi2.9466 (9)
Ag1—Ag1ix2.8830 (6)S2—Ag1viii2.413 (8)
Ag1—Ag1xii2.8830 (6)S2—Ag2vi2.672 (5)
Ag1—Gdxiii3.263 (7)S2—Ag2v2.743 (5)
Ag1—Gdxiv3.263 (7)S2—Gdxxi2.7906 (11)
Ag1—Gdxv3.263 (7)S2—Gdxxii2.8309 (12)
Ag1—Gdx3.693 (14)S2—Gdxvi3.1616 (15)
Ag1—Gdxi3.693 (14)S3—Ge1viii2.2256 (12)
Ag2—Ag1xvi0.75 (2)S3—Gdxxiii2.8160 (12)
Ag2—Ag1xii2.13 (2)S3—Gdxvi2.9090 (13)
Ag2—S2xv2.672 (5)S3—Gdxxi3.0045 (12)
S2i—Gd—S3ii102.59 (4)Gdxiii—Ag1—Gdx164.3 (8)
S2i—Gd—S2iii89.80 (5)Gdxiv—Ag1—Gdx75.14 (11)
S3ii—Gd—S2iii140.84 (4)Gdxv—Ag1—Gdx75.14 (11)
S2i—Gd—S281.61 (4)Ag2iv—Ag1—Gdxi57.9 (3)
S3ii—Gd—S2137.18 (4)Ag2ix—Ag1—Gdxi122.1 (3)
S2iii—Gd—S280.91 (3)S2v—Ag1—Gdxi124.2 (3)
S2i—Gd—S3iv140.77 (4)S2x—Ag1—Gdxi125.1 (3)
S3ii—Gd—S3iv75.80 (5)S2xi—Ag1—Gdxi50.4 (2)
S2iii—Gd—S3iv71.53 (3)Ag1ix—Ag1—Gdxi57.9 (3)
S2—Gd—S3iv126.56 (3)Ag1xii—Ag1—Gdxi122.1 (3)
S2i—Gd—S1v147.63 (3)Gdxiii—Ag1—Gdxi75.14 (11)
S3ii—Gd—S1v71.34 (4)Gdxiv—Ag1—Gdxi164.3 (8)
S2iii—Gd—S1v115.33 (3)Gdxv—Ag1—Gdxi75.14 (11)
S2—Gd—S1v82.65 (4)Gdx—Ag1—Gdxi94.4 (5)
S3iv—Gd—S1v70.08 (4)Ag1xvi—Ag2—Ag1xii180.00 (3)
S2i—Gd—S3i69.67 (3)Ag1xvi—Ag2—S2xv120.96 (18)
S3ii—Gd—S3i71.86 (2)Ag1xii—Ag2—S2xv59.04 (17)
S2iii—Gd—S3i146.14 (4)Ag1xvi—Ag2—S2xiii120.96 (17)
S2—Gd—S3i69.95 (3)Ag1xii—Ag2—S2xiii59.04 (17)
S3iv—Gd—S3i140.47 (3)S2xv—Ag2—S2xiii95.9 (2)
S1v—Gd—S3i78.40 (3)Ag1xvi—Ag2—S2xiv120.96 (18)
S2i—Gd—S2iv76.15 (3)Ag1xii—Ag2—S2xiv59.04 (17)
S3ii—Gd—S2iv71.75 (3)S2xv—Ag2—S2xiv95.9 (2)
S2iii—Gd—S2iv75.61 (3)S2xiii—Ag2—S2xiv95.9 (2)
S2—Gd—S2iv147.45 (5)Ag1xvi—Ag2—S2viii56.64 (17)
S3iv—Gd—S2iv66.04 (3)Ag1xii—Ag2—S2viii123.36 (17)
S1v—Gd—S2iv127.82 (4)S2xv—Ag2—S2viii177.6 (3)
S3i—Gd—S2iv121.97 (3)S2xiii—Ag2—S2viii85.69 (2)
S2i—Gd—Ag1vi46.17 (9)S2xiv—Ag2—S2viii85.69 (2)
S3ii—Gd—Ag1vi124.6 (4)Ag1xvi—Ag2—S2xvii56.64 (16)
S2iii—Gd—Ag1vi45.98 (9)Ag1xii—Ag2—S2xvii123.36 (17)
S2—Gd—Ag1vi89.3 (4)S2xv—Ag2—S2xvii85.69 (2)
S3iv—Gd—Ag1vi101.8 (3)S2xiii—Ag2—S2xvii85.69 (2)
S1v—Gd—Ag1vi160.90 (19)S2xiv—Ag2—S2xvii177.6 (3)
S3i—Gd—Ag1vi115.01 (18)S2viii—Ag2—S2xvii92.7 (2)
S2iv—Gd—Ag1vi58.2 (4)Ag1xvi—Ag2—S2xviii56.64 (16)
S2i—Gd—Ag2v50.52 (6)Ag1xii—Ag2—S2xviii123.36 (16)
S3ii—Gd—Ag2v152.98 (8)S2xv—Ag2—S2xviii85.69 (2)
S2iii—Gd—Ag2v50.30 (6)S2xiii—Ag2—S2xviii177.6 (3)
S2—Gd—Ag2v51.72 (15)S2xiv—Ag2—S2xviii85.69 (2)
S3iv—Gd—Ag2v121.83 (7)S2viii—Ag2—S2xviii92.7 (2)
S1v—Gd—Ag2v131.70 (15)S2xvii—Ag2—S2xviii92.7 (2)
S3i—Gd—Ag2v96.85 (9)Ag1xvi—Ag2—Ag2ix180.00 (2)
S2iv—Gd—Ag2v95.74 (15)Ag1xii—Ag2—Ag2ix0.000 (3)
Ag1vi—Gd—Ag2v37.5 (3)S2xv—Ag2—Ag2ix59.04 (17)
S2i—Gd—Ag2vii49.52 (5)S2xiii—Ag2—Ag2ix59.04 (17)
S3ii—Gd—Ag2vii114.12 (13)S2xiv—Ag2—Ag2ix59.04 (17)
S2iii—Gd—Ag2vii49.37 (5)S2viii—Ag2—Ag2ix123.36 (17)
S2—Gd—Ag2vii100.99 (14)S2xvii—Ag2—Ag2ix123.36 (17)
S3iv—Gd—Ag2vii94.53 (9)S2xviii—Ag2—Ag2ix123.36 (16)
S1v—Gd—Ag2vii162.42 (3)Ag1xvi—Ag2—Ag2xii0.000 (12)
S3i—Gd—Ag2vii119.08 (5)Ag1xii—Ag2—Ag2xii180.000 (5)
S2iv—Gd—Ag2vii46.48 (14)S2xv—Ag2—Ag2xii120.96 (18)
Ag1vi—Gd—Ag2vii11.7 (3)S2xiii—Ag2—Ag2xii120.96 (17)
Ag2v—Gd—Ag2vii49.26 (2)S2xiv—Ag2—Ag2xii120.96 (17)
S2i—Gd—Ag1viii55.56 (18)S2viii—Ag2—Ag2xii56.64 (17)
S3ii—Gd—Ag1viii156.62 (6)S2xvii—Ag2—Ag2xii56.64 (17)
S2iii—Gd—Ag1viii55.37 (18)S2xviii—Ag2—Ag2xii56.64 (17)
S2—Gd—Ag1viii40.8 (3)Ag2ix—Ag2—Ag2xii180.000 (3)
S3iv—Gd—Ag1viii125.75 (11)Ag1xvi—Ag2—Gdxviii111.13 (16)
S1v—Gd—Ag1viii121.5 (3)Ag1xii—Ag2—Gdxviii68.87 (15)
S3i—Gd—Ag1viii90.9 (2)S2xv—Ag2—Gdxviii53.72 (8)
S2iv—Gd—Ag1viii106.7 (3)S2xiii—Ag2—Gdxviii127.9 (3)
Ag1vi—Gd—Ag1viii48.49 (10)S2xiv—Ag2—Gdxviii54.62 (8)
Ag2v—Gd—Ag1viii10.9 (2)S2viii—Ag2—Gdxviii126.43 (6)
Ag2vii—Gd—Ag1viii60.2 (3)S2xvii—Ag2—Gdxviii125.56 (6)
Ag2iv—Ag1—Ag2ix180.000 (1)S2xviii—Ag2—Gdxviii54.49 (3)
Ag2iv—Ag1—S2v108.3 (6)Ag2ix—Ag2—Gdxviii68.87 (15)
Ag2ix—Ag1—S2v71.7 (6)Ag2xii—Ag2—Gdxviii111.13 (15)
Ag2iv—Ag1—S2x108.3 (6)Ag1xvi—Ag2—Gdxvii111.13 (15)
Ag2ix—Ag1—S2x71.7 (6)Ag1xii—Ag2—Gdxvii68.87 (15)
S2v—Ag1—S2x110.6 (6)S2xv—Ag2—Gdxvii54.62 (8)
Ag2iv—Ag1—S2xi108.3 (6)S2xiii—Ag2—Gdxvii53.72 (8)
Ag2ix—Ag1—S2xi71.7 (6)S2xiv—Ag2—Gdxvii127.9 (3)
S2v—Ag1—S2xi110.6 (6)S2viii—Ag2—Gdxvii125.56 (6)
S2x—Ag1—S2xi110.6 (6)S2xvii—Ag2—Gdxvii54.49 (3)
Ag2iv—Ag1—Ag1ix0.000 (1)S2xviii—Ag2—Gdxvii126.43 (6)
Ag2ix—Ag1—Ag1ix180.000 (1)Ag2ix—Ag2—Gdxvii68.87 (15)
S2v—Ag1—Ag1ix108.3 (6)Ag2xii—Ag2—Gdxvii111.13 (15)
S2x—Ag1—Ag1ix108.3 (6)Gdxviii—Ag2—Gdxvii107.77 (16)
S2xi—Ag1—Ag1ix108.3 (6)S1iv—Ge1—S3iii114.14 (3)
Ag2iv—Ag1—Ag1xii180.000 (2)S1iv—Ge1—S3xix114.14 (3)
Ag2ix—Ag1—Ag1xii0.000 (1)S3iii—Ge1—S3xix104.42 (4)
S2v—Ag1—Ag1xii71.7 (6)S1iv—Ge1—S3v114.14 (3)
S2x—Ag1—Ag1xii71.7 (6)S3iii—Ge1—S3v104.42 (4)
S2xi—Ag1—Ag1xii71.7 (6)S3xix—Ge1—S3v104.42 (4)
Ag1ix—Ag1—Ag1xii180.000 (2)Ge1xvi—S1—Gdxx113.54 (3)
Ag2iv—Ag1—Gdxiii106.4 (4)Ge1xvi—S1—Gdviii113.54 (3)
Ag2ix—Ag1—Gdxiii73.6 (4)Gdxx—S1—Gdviii105.12 (4)
S2v—Ag1—Gdxiii56.55 (17)Ge1xvi—S1—Gdxxi113.54 (3)
S2x—Ag1—Gdxiii145.3 (10)Gdxx—S1—Gdxxi105.12 (4)
S2xi—Ag1—Gdxiii57.53 (17)Gdviii—S1—Gdxxi105.12 (4)
Ag1ix—Ag1—Gdxiii106.4 (4)Ag1viii—S2—Ag2vi49.2 (5)
Ag1xii—Ag1—Gdxiii73.6 (4)Ag2vi—S2—Ag2v64.33 (3)
Ag2iv—Ag1—Gdxiv106.4 (4)Ag1viii—S2—Gdxxi77.28 (9)
Ag2ix—Ag1—Gdxiv73.6 (4)Ag2vi—S2—Gdxxi75.76 (3)
S2v—Ag1—Gdxiv57.53 (17)Ag2v—S2—Gdxxi79.78 (5)
S2x—Ag1—Gdxiv56.55 (17)Ag1viii—S2—Gdxxii76.49 (10)
S2xi—Ag1—Gdxiv145.3 (10)Ag2vi—S2—Gdxxii75.08 (4)
Ag1ix—Ag1—Gdxiv106.4 (4)Ag2v—S2—Gdxxii79.08 (5)
Ag1xii—Ag1—Gdxiv73.6 (4)Gdxxi—S2—Gdxxii149.27 (5)
Gdxiii—Ag1—Gdxiv112.3 (4)Ag1viii—S2—Gd88.9 (6)
Ag2iv—Ag1—Gdxv106.4 (4)Ag2vi—S2—Gd138.11 (18)
Ag2ix—Ag1—Gdxv73.6 (4)Ag2v—S2—Gd73.78 (17)
S2v—Ag1—Gdxv145.3 (10)Gdxxi—S2—Gd98.07 (4)
S2x—Ag1—Gdxv57.53 (17)Gdxxii—S2—Gd97.14 (4)
S2xi—Ag1—Gdxv56.55 (17)Ag1viii—S2—Gdxvi123.7 (6)
Ag1ix—Ag1—Gdxv106.4 (4)Ag2vi—S2—Gdxvi74.42 (18)
Ag1xii—Ag1—Gdxv73.6 (4)Ag2v—S2—Gdxvi138.74 (17)
Gdxiii—Ag1—Gdxv112.3 (4)Gdxxi—S2—Gdxvi91.05 (3)
Gdxiv—Ag1—Gdxv112.3 (4)Gdxxii—S2—Gdxvi90.31 (3)
Ag2iv—Ag1—Gdx57.9 (3)Gd—S2—Gdxvi147.45 (5)
Ag2ix—Ag1—Gdx122.1 (3)Ge1viii—S3—Gdxxiii91.08 (4)
S2v—Ag1—Gdx125.1 (3)Ge1viii—S3—Gdxvi88.69 (4)
S2x—Ag1—Gdx50.4 (2)Gdxxiii—S3—Gdxvi109.62 (4)
S2xi—Ag1—Gdx124.2 (3)Ge1viii—S3—Gdxxi119.54 (5)
Ag1ix—Ag1—Gdx57.9 (3)Gdxxiii—S3—Gdxxi143.30 (4)
Ag1xii—Ag1—Gdx122.1 (3)Gdxvi—S3—Gdxxi92.02 (3)
Symmetry codes: (i) xy+1, x, z1/2; (ii) x+y+1, x+1, z1; (iii) y, x+y+1, z1/2; (iv) x, y, z1; (v) x+1, y+1, z1/2; (vi) x+1, y+1, z; (vii) x+1, y+1, z1; (viii) x+1, y+1, z+1/2; (ix) x, y, z1/2; (x) y1, x+y, z1/2; (xi) xy, x1, z1/2; (xii) x, y, z+1/2; (xiii) y+1, xy, z; (xiv) x+y, x+1, z; (xv) x1, y1, z; (xvi) x, y, z+1; (xvii) xy, x1, z+1/2; (xviii) y1, x+y, z+1/2; (xix) xy, x, z1/2; (xx) xy, x, z+1/2; (xxi) y, x+y+1, z+1/2; (xxii) xy+1, x, z+1/2; (xxiii) y+1, xy, z+1.
(tb) top
Crystal data top
Ag0.59GeS7Tb3Dx = 5.679 Mg m3
Mr = 836.87Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 597 reflections
Hall symbol: P 6cθ = 4.1–25.6°
a = 9.9003 (14) ŵ = 27.01 mm1
c = 5.7654 (12) ÅT = 295 K
V = 489.39 (14) Å3Prism, dark red
Z = 20.12 × 0.11 × 0.08 mm
F(000) = 733
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
602 independent reflections
Radiation source: fine-focus sealed tube597 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 25.6°, θmin = 4.1°
ω–scanh = 1012
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
k = 1212
Tmin = 0.044, Tmax = 0.187l = 76
4229 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0175P)2 + 1.1981P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.017(Δ/σ)max = 0.001
wR(F2) = 0.038Δρmax = 0.84 e Å3
S = 1.17Δρmin = 1.39 e Å3
602 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
39 parametersExtinction coefficient: 0.0055 (3)
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 265 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Crystal data top
Ag0.59GeS7Tb3Z = 2
Mr = 836.87Mo Kα radiation
Hexagonal, P63µ = 27.01 mm1
a = 9.9003 (14) ÅT = 295 K
c = 5.7654 (12) Å0.12 × 0.11 × 0.08 mm
V = 489.39 (14) Å3
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
602 independent reflections
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
597 reflections with I > 2σ(I)
Tmin = 0.044, Tmax = 0.187Rint = 0.039
4229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0171 restraint
wR(F2) = 0.038Δρmax = 0.84 e Å3
S = 1.17Δρmin = 1.39 e Å3
602 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 265 Friedel pairs
39 parametersAbsolute structure parameter: 0.00 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tb0.86677 (3)0.64133 (3)0.25005 (13)0.01415 (13)
Ag20.00000.00000.0324 (9)0.0939 (17)0.586 (6)
Ge10.33330.66670.33058 (18)0.0103 (3)
S10.33330.66670.9534 (5)0.0108 (6)
S20.90025 (18)0.7379 (2)0.7165 (3)0.0192 (4)
S30.57908 (19)0.47987 (18)0.9894 (3)0.0120 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb0.01170 (17)0.01089 (16)0.0201 (2)0.00580 (11)0.00178 (17)0.00055 (17)
Ag20.0111 (8)0.0111 (8)0.260 (5)0.0055 (4)0.0000.000
Ge10.0112 (4)0.0112 (4)0.0084 (6)0.00560 (18)0.0000.000
S10.0140 (9)0.0140 (9)0.0045 (15)0.0070 (4)0.0000.000
S20.0128 (7)0.0251 (8)0.0216 (10)0.0109 (6)0.0018 (7)0.0106 (8)
S30.0154 (8)0.0123 (8)0.0113 (7)0.0091 (7)0.0004 (7)0.0013 (6)
Geometric parameters (Å, º) top
Tb—S2i2.7693 (15)Ag2—Tbxvii3.353 (2)
Tb—S3ii2.8051 (17)Ag2—Tbviii3.509 (3)
Tb—S2iii2.8147 (16)Ge1—S1iv2.175 (3)
Tb—S22.818 (2)Ge1—S3iii2.2256 (17)
Tb—S3iv2.8937 (17)Ge1—S3xviii2.2256 (17)
Tb—S1v2.9251 (12)Ge1—S3v2.2256 (17)
Tb—S3i2.9996 (17)S1—Ge1xix2.175 (3)
Tb—S2iv3.189 (2)S1—Tbxx2.9251 (12)
Tb—Ag2vi3.353 (2)S1—Tbvii2.9251 (12)
Tb—Ag2vii3.509 (3)S1—Tbxxi2.9251 (12)
Ag2—S2v2.504 (3)S2—Ag2vii2.504 (3)
Ag2—S2viii2.504 (3)S2—Tbxxi2.7693 (15)
Ag2—S2ix2.504 (3)S2—Tbxxii2.8147 (16)
Ag2—Ag2x2.8827 (6)S2—Ag2xxiii2.909 (4)
Ag2—Ag2xi2.8827 (6)S2—Tbxix3.189 (2)
Ag2—S2xii2.909 (4)S3—Ge1vii2.2256 (17)
Ag2—S2xiii2.909 (4)S3—Tbxxiv2.8051 (17)
Ag2—S2xiv2.909 (4)S3—Tbxix2.8937 (17)
Ag2—Tbxv3.353 (2)S3—Tbxxi2.9996 (17)
Ag2—Tbxvi3.353 (2)
S2i—Tb—S3ii101.56 (5)S2xiii—Ag2—S2xiv84.96 (13)
S2i—Tb—S2iii89.41 (7)S2v—Ag2—Tbxv54.11 (5)
S3ii—Tb—S2iii140.59 (6)S2viii—Ag2—Tbxv132.9 (2)
S2i—Tb—S282.06 (5)S2ix—Ag2—Tbxv55.18 (6)
S3ii—Tb—S2137.38 (5)Ag2x—Ag2—Tbxv68.02 (8)
S2iii—Tb—S281.26 (5)Ag2xi—Ag2—Tbxv111.98 (8)
S2i—Tb—S3iv140.15 (6)S2xii—Ag2—Tbxv127.04 (5)
S3ii—Tb—S3iv76.11 (7)S2xiii—Ag2—Tbxv126.11 (5)
S2iii—Tb—S3iv71.65 (4)S2xiv—Ag2—Tbxv60.74 (4)
S2—Tb—S3iv126.83 (5)S2v—Ag2—Tbxvi132.9 (2)
S2i—Tb—S1v147.60 (5)S2viii—Ag2—Tbxvi55.18 (6)
S3ii—Tb—S1v71.70 (5)S2ix—Ag2—Tbxvi54.11 (5)
S2iii—Tb—S1v116.29 (4)Ag2x—Ag2—Tbxvi68.02 (8)
S2—Tb—S1v82.81 (6)Ag2xi—Ag2—Tbxvi111.98 (8)
S3iv—Tb—S1v70.47 (5)S2xii—Ag2—Tbxvi60.74 (4)
S2i—Tb—S3i70.02 (5)S2xiii—Ag2—Tbxvi127.04 (5)
S3ii—Tb—S3i71.56 (3)S2xiv—Ag2—Tbxvi126.11 (5)
S2iii—Tb—S3i146.36 (5)Tbxv—Ag2—Tbxvi106.85 (9)
S2—Tb—S3i70.04 (5)S2v—Ag2—Tbxvii55.18 (6)
S3iv—Tb—S3i140.33 (4)S2viii—Ag2—Tbxvii54.11 (5)
S1v—Tb—S3i77.92 (4)S2ix—Ag2—Tbxvii132.9 (2)
S2i—Tb—S2iv75.63 (5)Ag2x—Ag2—Tbxvii68.02 (8)
S3ii—Tb—S2iv71.44 (5)Ag2xi—Ag2—Tbxvii111.98 (8)
S2iii—Tb—S2iv75.03 (5)S2xii—Ag2—Tbxvii126.11 (5)
S2—Tb—S2iv147.33 (6)S2xiii—Ag2—Tbxvii60.74 (4)
S3iv—Tb—S2iv65.84 (5)S2xiv—Ag2—Tbxvii127.04 (5)
S1v—Tb—S2iv127.87 (6)Tbxv—Ag2—Tbxvii106.85 (9)
S3i—Tb—S2iv122.00 (4)Tbxvi—Ag2—Tbxvii106.85 (9)
S2i—Tb—Ag2vi47.11 (4)S2v—Ag2—Tbviii127.23 (4)
S3ii—Tb—Ag2vi119.12 (9)S2viii—Ag2—Tbviii52.73 (6)
S2iii—Tb—Ag2vi46.92 (4)S2ix—Ag2—Tbviii126.20 (4)
S2—Tb—Ag2vi94.62 (9)Ag2x—Ag2—Tbviii117.63 (8)
S3iv—Tb—Ag2vi98.51 (7)Ag2xi—Ag2—Tbviii62.37 (8)
S1v—Tb—Ag2vi163.109 (17)S2xii—Ag2—Tbviii50.06 (5)
S3i—Tb—Ag2vi116.99 (4)S2xiii—Ag2—Tbviii50.98 (5)
S2iv—Tb—Ag2vi52.73 (9)S2xiv—Ag2—Tbviii113.61 (16)
S2i—Tb—Ag2vii53.64 (5)Tbxv—Ag2—Tbviii174.35 (16)
S3ii—Tb—Ag2vii154.83 (4)Tbxvi—Ag2—Tbviii76.283 (11)
S2iii—Tb—Ag2vii53.40 (5)Tbxvii—Ag2—Tbviii76.283 (11)
S2—Tb—Ag2vii45.01 (8)S1iv—Ge1—S3iii114.29 (5)
S3iv—Tb—Ag2vii124.61 (4)S1iv—Ge1—S3xviii114.29 (5)
S1v—Tb—Ag2vii125.80 (9)S3iii—Ge1—S3xviii104.25 (6)
S3i—Tb—Ag2vii93.19 (6)S1iv—Ge1—S3v114.29 (5)
S2iv—Tb—Ag2vii102.34 (9)S3iii—Ge1—S3v104.25 (6)
Ag2vi—Tb—Ag2vii49.618 (13)S3xviii—Ge1—S3v104.25 (6)
S2v—Ag2—S2viii103.32 (14)Ge1xix—S1—Tbxx113.62 (5)
S2v—Ag2—S2ix103.32 (14)Ge1xix—S1—Tbvii113.62 (5)
S2viii—Ag2—S2ix103.32 (14)Tbxx—S1—Tbvii105.02 (6)
S2v—Ag2—Ag2x64.91 (12)Ge1xix—S1—Tbxxi113.62 (5)
S2viii—Ag2—Ag2x64.91 (12)Tbxx—S1—Tbxxi105.02 (6)
S2ix—Ag2—Ag2x64.91 (12)Tbvii—S1—Tbxxi105.02 (6)
S2v—Ag2—Ag2xi115.09 (12)Ag2vii—S2—Tbxxi78.77 (5)
S2viii—Ag2—Ag2xi115.09 (12)Ag2vii—S2—Tbxxii77.91 (5)
S2ix—Ag2—Ag2xi115.09 (12)Tbxxi—S2—Tbxxii149.29 (7)
Ag2x—Ag2—Ag2xi180.0Ag2vii—S2—Tb82.27 (12)
S2v—Ag2—S2xii166.3 (2)Tbxxi—S2—Tb98.72 (6)
S2viii—Ag2—S2xii84.97 (4)Tbxxii—S2—Tb97.65 (5)
S2ix—Ag2—S2xii84.97 (4)Ag2vii—S2—Ag2xxiii63.85 (5)
Ag2x—Ag2—S2xii128.76 (9)Tbxxi—S2—Ag2xxiii76.30 (4)
Ag2xi—Ag2—S2xii51.24 (9)Tbxxii—S2—Ag2xxiii75.61 (4)
S2v—Ag2—S2xiii84.97 (4)Tb—S2—Ag2xxiii146.11 (10)
S2viii—Ag2—S2xiii84.97 (4)Ag2vii—S2—Tbxix130.37 (13)
S2ix—Ag2—S2xiii166.3 (2)Tbxxi—S2—Tbxix90.44 (5)
Ag2x—Ag2—S2xiii128.76 (9)Tbxxii—S2—Tbxix89.63 (5)
Ag2xi—Ag2—S2xiii51.24 (9)Tb—S2—Tbxix147.33 (6)
S2xii—Ag2—S2xiii84.96 (13)Ag2xxiii—S2—Tbxix66.53 (9)
S2v—Ag2—S2xiv84.97 (4)Ge1vii—S3—Tbxxiv90.96 (5)
S2viii—Ag2—S2xiv166.3 (2)Ge1vii—S3—Tbxix88.68 (5)
S2ix—Ag2—S2xiv84.97 (4)Tbxxiv—S3—Tbxix109.07 (6)
Ag2x—Ag2—S2xiv128.76 (9)Ge1vii—S3—Tbxxi119.16 (7)
Ag2xi—Ag2—S2xiv51.24 (9)Tbxxiv—S3—Tbxxi144.01 (6)
S2xii—Ag2—S2xiv84.96 (13)Tbxix—S3—Tbxxi91.99 (5)
Symmetry codes: (i) xy+1, x, z1/2; (ii) x+y+1, x+1, z1; (iii) y, x+y+1, z1/2; (iv) x, y, z1; (v) x+1, y+1, z1/2; (vi) x+1, y+1, z; (vii) x+1, y+1, z+1/2; (viii) y1, x+y, z1/2; (ix) xy, x1, z1/2; (x) x, y, z+1/2; (xi) x, y, z1/2; (xii) x1, y1, z1; (xiii) x+y, x+1, z1; (xiv) y+1, xy, z1; (xv) y+1, xy, z; (xvi) x1, y1, z; (xvii) x+y, x+1, z; (xviii) xy, x, z1/2; (xix) x, y, z+1; (xx) xy, x, z+1/2; (xxi) y, x+y+1, z+1/2; (xxii) xy+1, x, z+1/2; (xxiii) x+1, y+1, z+1; (xxiv) y+1, xy, z+1.
(dy) top
Crystal data top
Ag0.51Dy3GeS7Dx = 5.795 Mg m3
Mr = 840.06Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 644 reflections
Hall symbol: P 6cθ = 4.3–26.4°
a = 9.8003 (14) ŵ = 28.56 mm1
c = 5.7879 (12) ÅT = 295 K
V = 481.43 (14) Å3Prism, dark red
Z = 20.12 × 0.10 × 0.09 mm
F(000) = 732
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
655 independent reflections
Radiation source: fine-focus sealed tube644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 26.4°, θmin = 4.3°
ω–scanh = 1212
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
k = 1210
Tmin = 0.035, Tmax = 0.244l = 77
5667 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0114P)2 + 0.9002P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max = 0.001
wR(F2) = 0.032Δρmax = 0.99 e Å3
S = 1.12Δρmin = 1.03 e Å3
655 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
39 parametersExtinction coefficient: 0.0034 (2)
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 293 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (19)
Crystal data top
Ag0.51Dy3GeS7Z = 2
Mr = 840.06Mo Kα radiation
Hexagonal, P63µ = 28.56 mm1
a = 9.8003 (14) ÅT = 295 K
c = 5.7879 (12) Å0.12 × 0.10 × 0.09 mm
V = 481.43 (14) Å3
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
655 independent reflections
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
644 reflections with I > 2σ(I)
Tmin = 0.035, Tmax = 0.244Rint = 0.046
5667 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0151 restraint
wR(F2) = 0.032Δρmax = 0.99 e Å3
S = 1.12Δρmin = 1.03 e Å3
655 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 293 Friedel pairs
39 parametersAbsolute structure parameter: 0.005 (19)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Dy0.86393 (3)0.64111 (3)0.24397 (11)0.01554 (10)
Ag20.00000.00000.0017 (9)0.0735 (13)0.517 (5)
Ge10.33330.66670.32315 (16)0.0100 (2)
S10.33330.66670.9457 (4)0.0110 (5)
S20.89852 (18)0.7401 (2)0.7034 (2)0.0197 (4)
S30.57703 (18)0.47943 (18)0.9824 (2)0.0123 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy0.01188 (14)0.01160 (14)0.02330 (15)0.00598 (10)0.00218 (19)0.00039 (17)
Ag20.0108 (7)0.0108 (7)0.199 (3)0.0054 (4)0.0000.000
Ge10.0113 (3)0.0113 (3)0.0076 (4)0.00564 (17)0.0000.000
S10.0137 (8)0.0137 (8)0.0057 (11)0.0069 (4)0.0000.000
S20.0119 (7)0.0251 (8)0.0232 (10)0.0100 (6)0.0014 (6)0.0127 (7)
S30.0165 (8)0.0122 (7)0.0114 (6)0.0096 (7)0.0002 (7)0.0008 (6)
Geometric parameters (Å, º) top
Dy—S2i2.7330 (15)Ag2—Dyxvii3.380 (2)
Dy—S2ii2.7879 (15)Ag2—Dyviii3.418 (2)
Dy—S22.7922 (16)Ge1—S1iv2.185 (2)
Dy—S3iii2.7946 (16)Ge1—S3ii2.2202 (16)
Dy—S3iv2.8727 (16)Ge1—S3xviii2.2202 (16)
Dy—S1v2.8926 (11)Ge1—S3v2.2202 (16)
Dy—S3i2.9970 (16)S1—Ge1xix2.185 (2)
Dy—S2iv3.2430 (17)S1—Dyxx2.8926 (11)
Dy—Ag2vi3.380 (2)S1—Dyvii2.8926 (11)
Dy—Ag2vii3.418 (2)S1—Dyxxi2.8926 (11)
Ag2—S2v2.511 (3)S2—Ag2vii2.511 (3)
Ag2—S2viii2.511 (3)S2—Dyxxi2.7330 (15)
Ag2—S2ix2.511 (3)S2—Dyxxii2.7879 (15)
Ag2—S2x2.816 (4)S2—Ag2xxiii2.816 (4)
Ag2—S2xi2.816 (4)S2—Dyxix3.2430 (17)
Ag2—S2xii2.816 (4)S3—Ge1vii2.2202 (16)
Ag2—Ag2xiii2.8939 (6)S3—Dyxxiv2.7946 (16)
Ag2—Ag2xiv2.8939 (6)S3—Dyxix2.8727 (16)
Ag2—Dyxv3.380 (2)S3—Dyxxi2.9970 (16)
Ag2—Dyxvi3.380 (2)
S2i—Dy—S2ii88.48 (7)Ag2xiii—Ag2—Ag2xiv180.0
S2i—Dy—S282.68 (5)S2v—Ag2—Dyxv52.81 (6)
S2ii—Dy—S281.70 (4)S2viii—Ag2—Dyxv127.80 (19)
S2i—Dy—S3iii100.10 (5)S2ix—Ag2—Dyxv54.08 (6)
S2ii—Dy—S3iii140.01 (5)S2x—Ag2—Dyxv128.44 (5)
S2—Dy—S3iii137.91 (5)S2xi—Ag2—Dyxv127.28 (5)
S2i—Dy—S3iv138.99 (5)S2xii—Ag2—Dyxv62.34 (4)
S2ii—Dy—S3iv72.14 (4)Ag2xiii—Ag2—Dyxv114.51 (8)
S2—Dy—S3iv127.50 (4)Ag2xiv—Ag2—Dyxv65.49 (8)
S3iii—Dy—S3iv76.22 (6)S2v—Ag2—Dyxvi127.80 (19)
S2i—Dy—S1v147.56 (4)S2viii—Ag2—Dyxvi54.08 (6)
S2ii—Dy—S1v117.99 (4)S2ix—Ag2—Dyxvi52.81 (6)
S2—Dy—S1v83.09 (6)S2x—Ag2—Dyxvi62.34 (4)
S3iii—Dy—S1v72.32 (4)S2xi—Ag2—Dyxvi128.44 (5)
S3iv—Dy—S1v71.21 (4)S2xii—Ag2—Dyxvi127.28 (5)
S2i—Dy—S3i70.61 (5)Ag2xiii—Ag2—Dyxvi114.51 (8)
S2ii—Dy—S3i146.52 (5)Ag2xiv—Ag2—Dyxvi65.49 (8)
S2—Dy—S3i70.21 (4)Dyxv—Ag2—Dyxvi104.00 (10)
S3iii—Dy—S3i71.32 (3)S2v—Ag2—Dyxvii54.08 (6)
S3iv—Dy—S3i140.07 (4)S2viii—Ag2—Dyxvii52.81 (6)
S1v—Dy—S3i77.17 (3)S2ix—Ag2—Dyxvii127.80 (19)
S2i—Dy—S2iv74.74 (4)S2x—Ag2—Dyxvii127.28 (5)
S2ii—Dy—S2iv74.05 (4)S2xi—Ag2—Dyxvii62.34 (4)
S2—Dy—S2iv146.99 (6)S2xii—Ag2—Dyxvii128.44 (5)
S3iii—Dy—S2iv70.87 (4)Ag2xiii—Ag2—Dyxvii114.51 (8)
S3iv—Dy—S2iv65.40 (4)Ag2xiv—Ag2—Dyxvii65.49 (8)
S1v—Dy—S2iv128.07 (5)Dyxv—Ag2—Dyxvii104.00 (10)
S3i—Dy—S2iv122.04 (4)Dyxvi—Ag2—Dyxvii104.00 (10)
S2i—Dy—Ag2vi47.06 (4)S2v—Ag2—Dyviii127.59 (3)
S2ii—Dy—Ag2vi46.85 (4)S2viii—Ag2—Dyviii53.57 (4)
S2—Dy—Ag2vi96.74 (9)S2ix—Ag2—Dyviii126.32 (3)
S3iii—Dy—Ag2vi115.94 (9)S2x—Ag2—Dyviii50.89 (6)
S3iv—Dy—Ag2vi97.09 (6)S2xi—Ag2—Dyviii52.04 (6)
S1v—Dy—Ag2vi164.310 (10)S2xii—Ag2—Dyviii116.29 (17)
S3i—Dy—Ag2vi117.64 (4)Ag2xiii—Ag2—Dyviii64.12 (8)
S2iv—Dy—Ag2vi50.26 (9)Ag2xiv—Ag2—Dyviii115.88 (8)
S2i—Dy—Ag2vii53.07 (5)Dyxv—Ag2—Dyviii178.63 (17)
S2ii—Dy—Ag2vii52.78 (5)Dyxvi—Ag2—Dyviii76.803 (7)
S2—Dy—Ag2vii46.36 (9)Dyxvii—Ag2—Dyviii76.803 (7)
S3iii—Dy—Ag2vii153.01 (5)S1iv—Ge1—S3ii114.54 (4)
S3iv—Dy—Ag2vii124.63 (4)S1iv—Ge1—S3xviii114.54 (4)
S1v—Dy—Ag2vii127.61 (9)S3ii—Ge1—S3xviii103.96 (5)
S3i—Dy—Ag2vii93.94 (6)S1iv—Ge1—S3v114.54 (4)
S2iv—Dy—Ag2vii100.65 (9)S3ii—Ge1—S3v103.96 (5)
Ag2vi—Dy—Ag2vii50.384 (12)S3xviii—Ge1—S3v103.96 (5)
S2v—Ag2—S2viii100.14 (14)Ge1xix—S1—Dyxx113.80 (4)
S2v—Ag2—S2ix100.14 (14)Ge1xix—S1—Dyvii113.80 (4)
S2viii—Ag2—S2ix100.14 (14)Dyxx—S1—Dyvii104.82 (5)
S2v—Ag2—S2x169.9 (2)Ge1xix—S1—Dyxxi113.80 (4)
S2viii—Ag2—S2x86.29 (4)Dyxx—S1—Dyxxi104.82 (5)
S2ix—Ag2—S2x86.29 (4)Dyvii—S1—Dyxxi104.82 (5)
S2v—Ag2—S2xi86.29 (4)Ag2vii—S2—Dyxxi80.13 (5)
S2viii—Ag2—S2xi86.29 (4)Ag2vii—S2—Dyxxii79.07 (5)
S2ix—Ag2—S2xi169.9 (2)Dyxxi—S2—Dyxxii149.54 (7)
S2x—Ag2—S2xi86.32 (13)Ag2vii—S2—Dy80.07 (11)
S2v—Ag2—S2xii86.29 (4)Dyxxi—S2—Dy99.69 (5)
S2viii—Ag2—S2xii169.9 (2)Dyxxii—S2—Dy98.37 (5)
S2ix—Ag2—S2xii86.29 (4)Ag2vii—S2—Ag2xxiii65.52 (5)
S2x—Ag2—S2xii86.32 (13)Dyxxi—S2—Ag2xxiii76.04 (4)
S2xi—Ag2—S2xii86.32 (13)Dyxxii—S2—Ag2xxiii75.18 (4)
S2v—Ag2—Ag2xiii117.69 (11)Dy—S2—Ag2xxiii145.58 (10)
S2viii—Ag2—Ag2xiii117.69 (11)Ag2vii—S2—Dyxix132.91 (12)
S2ix—Ag2—Ag2xiii117.69 (11)Dyxxi—S2—Dyxix89.51 (4)
S2x—Ag2—Ag2xiii52.17 (9)Dyxxii—S2—Dyxix88.56 (4)
S2xi—Ag2—Ag2xiii52.17 (9)Dy—S2—Dyxix146.99 (6)
S2xii—Ag2—Ag2xiii52.17 (9)Ag2xxiii—S2—Dyxix67.39 (9)
S2v—Ag2—Ag2xiv62.31 (11)Ge1vii—S3—Dyxxiv90.91 (5)
S2viii—Ag2—Ag2xiv62.31 (11)Ge1vii—S3—Dyxix88.90 (5)
S2ix—Ag2—Ag2xiv62.31 (11)Dyxxiv—S3—Dyxix107.96 (5)
S2x—Ag2—Ag2xiv127.83 (9)Ge1vii—S3—Dyxxi118.61 (6)
S2xi—Ag2—Ag2xiv127.83 (9)Dyxxiv—S3—Dyxxi145.01 (6)
S2xii—Ag2—Ag2xiv127.83 (9)Dyxix—S3—Dyxxi91.99 (4)
Symmetry codes: (i) xy+1, x, z1/2; (ii) y, x+y+1, z1/2; (iii) x+y+1, x+1, z1; (iv) x, y, z1; (v) x+1, y+1, z1/2; (vi) x+1, y+1, z; (vii) x+1, y+1, z+1/2; (viii) y1, x+y, z1/2; (ix) xy, x1, z1/2; (x) x1, y1, z1; (xi) x+y, x+1, z1; (xii) y+1, xy, z1; (xiii) x, y, z1/2; (xiv) x, y, z+1/2; (xv) y+1, xy, z; (xvi) x1, y1, z; (xvii) x+y, x+1, z; (xviii) xy, x, z1/2; (xix) x, y, z+1; (xx) xy, x, z+1/2; (xxi) y, x+y+1, z+1/2; (xxii) xy+1, x, z+1/2; (xxiii) x+1, y+1, z+1; (xxiv) y+1, xy, z+1.
(ho) top
Crystal data top
Ag0.50GeHo3S7Dx = 5.895 Mg m3
Mr = 845.73Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 630 reflections
Hall symbol: P 6cθ = 4.3–26.7°
a = 9.7401 (14) ŵ = 30.22 mm1
c = 5.7994 (12) ÅT = 295 K
V = 476.48 (14) Å3Prism, dark red
Z = 20.09 × 0.07 × 0.03 mm
F(000) = 737
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
649 independent reflections
Radiation source: fine-focus sealed tube630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 26.7°, θmin = 4.3°
ω–scanh = 1212
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
k = 1212
Tmin = 0.061, Tmax = 0.304l = 76
5792 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.004P)2 + 2.2568P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.017(Δ/σ)max = 0.001
wR(F2) = 0.033Δρmax = 0.79 e Å3
S = 1.19Δρmin = 2.26 e Å3
649 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
38 parametersExtinction coefficient: 0.0054 (2)
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 275 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (2)
Crystal data top
Ag0.50GeHo3S7Z = 2
Mr = 845.73Mo Kα radiation
Hexagonal, P63µ = 30.22 mm1
a = 9.7401 (14) ÅT = 295 K
c = 5.7994 (12) Å0.09 × 0.07 × 0.03 mm
V = 476.48 (14) Å3
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
649 independent reflections
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
630 reflections with I > 2σ(I)
Tmin = 0.061, Tmax = 0.304Rint = 0.045
5792 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0171 restraint
wR(F2) = 0.033Δρmax = 0.79 e Å3
S = 1.19Δρmin = 2.26 e Å3
649 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 275 Friedel pairs
38 parametersAbsolute structure parameter: 0.04 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ho0.86127 (3)0.64077 (3)0.24376 (13)0.01686 (11)
Ag20.00000.00000.9801 (12)0.0699 (11)0.50
Ge10.33330.66670.32172 (19)0.0101 (3)
S10.33330.66670.9456 (5)0.0104 (6)
S20.8968 (2)0.7410 (2)0.6976 (3)0.0204 (5)
S30.5748 (2)0.4782 (2)0.9815 (3)0.0130 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ho0.01145 (15)0.01179 (15)0.02747 (19)0.00591 (12)0.0023 (2)0.0000 (2)
Ag20.0155 (6)0.0155 (6)0.179 (3)0.0078 (3)0.0000.000
Ge10.0112 (4)0.0112 (4)0.0079 (6)0.00562 (19)0.0000.000
S10.0127 (9)0.0127 (9)0.0058 (15)0.0064 (5)0.0000.000
S20.0112 (8)0.0234 (9)0.0278 (15)0.0095 (7)0.0009 (7)0.0124 (8)
S30.0169 (9)0.0133 (8)0.0126 (8)0.0104 (7)0.0006 (8)0.0005 (8)
Geometric parameters (Å, º) top
Ho—S2i2.7141 (17)Ag2—Hoviii3.349 (3)
Ho—S22.768 (2)Ag2—Hoxv3.417 (3)
Ho—S2ii2.7731 (17)Ge1—S1iv2.181 (3)
Ho—S3iii2.7845 (19)Ge1—S3ii2.2169 (18)
Ho—S3iv2.8617 (19)Ge1—S3xvi2.2169 (18)
Ho—S1v2.8730 (14)Ge1—S3v2.2169 (18)
Ho—S3i3.0063 (18)S1—Ge1xvii2.181 (3)
Ho—Ag2v3.349 (3)S1—Hoxviii2.8730 (13)
Ho—Ag2vi3.417 (3)S1—Hovii2.8730 (13)
Ag2—S2vii2.535 (4)S1—Hoxix2.8730 (13)
Ag2—S2viii2.535 (4)S2—Ag2v2.535 (4)
Ag2—S2ix2.535 (4)S2—Hoxix2.7141 (17)
Ag2—S2x2.743 (5)S2—Ag2xx2.743 (5)
Ag2—S2xi2.743 (5)S2—Hoxxi2.7731 (17)
Ag2—S2xii2.743 (5)S3—Ge1vii2.2169 (18)
Ag2—Ag2xiii2.8997 (6)S3—Hoxv2.7845 (19)
Ag2—Ag2xiv2.8997 (6)S3—Hoxvii2.8617 (19)
Ag2—Hoix3.349 (3)S3—Hoxix3.0063 (18)
Ag2—Hovii3.349 (3)
S2i—Ho—S283.19 (6)S2viii—Ag2—Hoix126.14 (4)
S2i—Ho—S2ii87.93 (8)S2ix—Ag2—Hoix53.99 (5)
S2—Ho—S2ii82.11 (5)S2x—Ag2—Hoix51.75 (7)
S2i—Ho—S3iii98.76 (6)S2xi—Ag2—Hoix53.03 (7)
S2—Ho—S3iii138.23 (6)S2xii—Ag2—Hoix119.2 (2)
S2ii—Ho—S3iii139.49 (6)Ag2xiii—Ag2—Hoix114.15 (12)
S2i—Ho—S3iv138.26 (6)Ag2xiv—Ag2—Hoix65.85 (11)
S2—Ho—S3iv128.02 (5)S2vii—Ag2—Hovii53.99 (5)
S2ii—Ho—S3iv72.58 (5)S2viii—Ag2—Hovii127.50 (4)
S3iii—Ho—S3iv76.30 (7)S2ix—Ag2—Hovii126.14 (4)
S2i—Ho—S1v147.28 (5)S2x—Ag2—Hovii119.2 (2)
S2—Ho—S1v83.18 (7)S2xi—Ag2—Hovii51.75 (7)
S2ii—Ho—S1v119.33 (4)S2xii—Ag2—Hovii53.03 (7)
S3iii—Ho—S1v72.90 (5)Ag2xiii—Ag2—Hovii114.15 (11)
S3iv—Ho—S1v71.78 (6)Ag2xiv—Ag2—Hovii65.85 (12)
S2i—Ho—S3i70.93 (5)Hoix—Ag2—Hovii104.41 (13)
S2—Ho—S3i70.44 (5)S2vii—Ag2—Hoviii126.14 (4)
S2ii—Ho—S3i146.77 (5)S2viii—Ag2—Hoviii53.99 (5)
S3iii—Ho—S3i70.95 (3)S2ix—Ag2—Hoviii127.50 (4)
S3iv—Ho—S3i139.65 (5)S2x—Ag2—Hoviii53.03 (7)
S1v—Ho—S3i76.49 (4)S2xi—Ag2—Hoviii119.2 (2)
S2i—Ho—Ag2v52.52 (7)S2xii—Ag2—Hoviii51.75 (7)
S2—Ho—Ag2v47.81 (12)Ag2xiii—Ag2—Hoviii114.15 (11)
S2ii—Ho—Ag2v52.20 (7)Ag2xiv—Ag2—Hoviii65.85 (12)
S3iii—Ho—Ag2v151.24 (7)Hoix—Ag2—Hoviii104.41 (13)
S3iv—Ho—Ag2v124.60 (6)Hovii—Ag2—Hoviii104.41 (13)
S1v—Ho—Ag2v129.30 (13)S2vii—Ag2—Hoxv51.70 (7)
S3i—Ho—Ag2v94.77 (8)S2viii—Ag2—Hoxv53.05 (8)
S2i—Ho—Ag2vi47.15 (5)S2ix—Ag2—Hoxv123.6 (3)
S2—Ho—Ag2vi98.54 (12)S2x—Ag2—Hoxv129.38 (5)
S2ii—Ho—Ag2vi46.94 (5)S2xi—Ag2—Hoxv128.11 (5)
S3iii—Ho—Ag2vi113.31 (11)S2xii—Ag2—Hoxv63.27 (5)
S3iv—Ho—Ag2vi96.06 (8)Ag2xiii—Ag2—Hoxv63.42 (11)
S1v—Ho—Ag2vi165.13 (2)Ag2xiv—Ag2—Hoxv116.58 (11)
S3i—Ho—Ag2vi118.08 (5)Hoix—Ag2—Hoxv177.6 (2)
Ag2v—Ho—Ag2vi50.735 (13)Hovii—Ag2—Hoxv77.003 (9)
S2vii—Ag2—S2viii97.40 (19)Hoviii—Ag2—Hoxv77.003 (9)
S2vii—Ag2—S2ix97.40 (19)S1iv—Ge1—S3ii114.70 (6)
S2viii—Ag2—S2ix97.40 (19)S1iv—Ge1—S3xvi114.70 (6)
S2vii—Ag2—S2x173.1 (3)S3ii—Ge1—S3xvi103.77 (6)
S2viii—Ag2—S2x87.10 (4)S1iv—Ge1—S3v114.70 (6)
S2ix—Ag2—S2x87.10 (4)S3ii—Ge1—S3v103.77 (6)
S2vii—Ag2—S2xi87.10 (4)S3xvi—Ge1—S3v103.77 (6)
S2viii—Ag2—S2xi173.1 (3)Ge1xvii—S1—Hoxviii114.05 (6)
S2ix—Ag2—S2xi87.10 (4)Ge1xvii—S1—Hovii114.05 (6)
S2x—Ag2—S2xi87.98 (18)Hoxviii—S1—Hovii104.53 (7)
S2vii—Ag2—S2xii87.10 (4)Ge1xvii—S1—Hoxix114.05 (6)
S2viii—Ag2—S2xii87.10 (4)Hoxviii—S1—Hoxix104.53 (7)
S2ix—Ag2—S2xii173.1 (3)Hovii—S1—Hoxix104.53 (7)
S2x—Ag2—S2xii87.98 (18)Ag2v—S2—Hoxix81.16 (6)
S2xi—Ag2—S2xii87.98 (18)Ag2v—S2—Ag2xx66.52 (5)
S2vii—Ag2—Ag2xiii60.17 (15)Hoxix—S2—Ag2xx75.73 (5)
S2viii—Ag2—Ag2xiii60.17 (15)Ag2v—S2—Ho78.20 (15)
S2ix—Ag2—Ag2xiii60.17 (15)Hoxix—S2—Ho100.43 (6)
S2x—Ag2—Ag2xiii126.68 (13)Ag2xx—S2—Ho144.70 (14)
S2xi—Ag2—Ag2xiii126.68 (13)Ag2v—S2—Hoxxi80.01 (6)
S2xii—Ag2—Ag2xiii126.68 (13)Hoxix—S2—Hoxxi149.46 (8)
S2vii—Ag2—Ag2xiv119.83 (15)Ag2xx—S2—Hoxxi74.78 (5)
S2viii—Ag2—Ag2xiv119.83 (15)Ho—S2—Hoxxi98.98 (6)
S2ix—Ag2—Ag2xiv119.83 (15)Ge1vii—S3—Hoxv90.96 (6)
S2x—Ag2—Ag2xiv53.32 (13)Ge1vii—S3—Hoxvii88.96 (6)
S2xi—Ag2—Ag2xiv53.32 (13)Hoxv—S3—Hoxvii107.19 (7)
S2xii—Ag2—Ag2xiv53.32 (13)Ge1vii—S3—Hoxix118.19 (8)
Ag2xiii—Ag2—Ag2xiv180.000 (3)Hoxv—S3—Hoxix145.83 (7)
S2vii—Ag2—Hoix127.50 (4)Hoxvii—S3—Hoxix91.74 (5)
Symmetry codes: (i) xy+1, x, z1/2; (ii) y, x+y+1, z1/2; (iii) x+y+1, x+1, z1; (iv) x, y, z1; (v) x+1, y+1, z1/2; (vi) x+1, y+1, z1; (vii) x+1, y+1, z+1/2; (viii) xy, x1, z+1/2; (ix) y1, x+y, z+1/2; (x) x1, y1, z; (xi) x+y, x+1, z; (xii) y+1, xy, z; (xiii) x, y, z+1/2; (xiv) x, y, z1/2; (xv) y+1, xy, z+1; (xvi) xy, x, z1/2; (xvii) x, y, z+1; (xviii) xy, x, z+1/2; (xix) y, x+y+1, z+1/2; (xx) x+1, y+1, z; (xxi) xy+1, x, z+1/2.
(er) top
Crystal data top
Ag0.50Er3GeS7Dx = 5.970 Mg m3
Mr = 852.72Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 628 reflections
Hall symbol: P 6cθ = 4.2–26.4°
a = 9.6921 (14) ŵ = 31.87 mm1
c = 5.8308 (12) ÅT = 295 K
V = 474.35 (14) Å3Prism, dark red
Z = 20.13 × 0.10 × 0.08 mm
F(000) = 743
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
633 independent reflections
Radiation source: fine-focus sealed tube628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 26.4°, θmin = 4.2°
ω–scanh = 1212
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
k = 1211
Tmin = 0.038, Tmax = 0.131l = 77
4994 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0131P)2 + 7.731P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max = 0.001
wR(F2) = 0.053Δρmax = 0.86 e Å3
S = 1.15Δρmin = 2.84 e Å3
633 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
38 parametersExtinction coefficient: 0.0081 (5)
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 280 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Crystal data top
Ag0.50Er3GeS7Z = 2
Mr = 852.72Mo Kα radiation
Hexagonal, P63µ = 31.87 mm1
a = 9.6921 (14) ÅT = 295 K
c = 5.8308 (12) Å0.13 × 0.10 × 0.08 mm
V = 474.35 (14) Å3
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
633 independent reflections
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
628 reflections with I > 2σ(I)
Tmin = 0.038, Tmax = 0.131Rint = 0.049
4994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0221 restraint
wR(F2) = 0.053Δρmax = 0.86 e Å3
S = 1.15Δρmin = 2.84 e Å3
633 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 280 Friedel pairs
38 parametersAbsolute structure parameter: 0.03 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Er0.85842 (5)0.64061 (5)0.24518 (19)0.02066 (18)
Ag20.00000.00000.9635 (19)0.076 (2)0.50
Ge10.33330.66670.3216 (3)0.0119 (4)
S10.33330.66670.9460 (7)0.0134 (9)
S20.8949 (3)0.7418 (3)0.6936 (5)0.0238 (7)
S30.5725 (3)0.4776 (3)0.9825 (4)0.0154 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er0.0144 (2)0.0150 (2)0.0327 (3)0.00742 (17)0.0022 (3)0.0004 (3)
Ag20.0231 (9)0.0231 (9)0.181 (7)0.0115 (5)0.0000.000
Ge10.0140 (6)0.0140 (6)0.0077 (8)0.0070 (3)0.0000.000
S10.0159 (13)0.0159 (13)0.008 (2)0.0079 (6)0.0000.000
S20.0136 (11)0.0252 (13)0.0340 (19)0.0107 (10)0.0022 (10)0.0143 (11)
S30.0202 (12)0.0155 (12)0.0148 (12)0.0122 (10)0.0006 (11)0.0001 (10)
Geometric parameters (Å, º) top
Er—S2i2.699 (3)Ag2—Erviii3.295 (4)
Er—S22.753 (3)Ag2—Erxv3.454 (5)
Er—S2ii2.761 (3)Ge1—S1iv2.190 (4)
Er—S3iii2.784 (3)Ge1—S3ii2.223 (3)
Er—S3iv2.853 (3)Ge1—S3xvi2.223 (3)
Er—S1v2.8566 (19)Ge1—S3v2.223 (3)
Er—S3i3.020 (3)S1—Ge1xvii2.190 (4)
Er—Ag2v3.295 (4)S1—Erxviii2.8566 (19)
Er—Ag2vi3.454 (6)S1—Ervii2.8566 (19)
Ag2—S2vii2.560 (7)S1—Erxix2.8566 (19)
Ag2—S2viii2.560 (7)S2—Ag2v2.560 (7)
Ag2—S2ix2.560 (7)S2—Ag2xx2.688 (7)
Ag2—S2x2.688 (7)S2—Erxix2.699 (2)
Ag2—S2xi2.688 (7)S2—Erxxi2.761 (3)
Ag2—S2xii2.688 (7)S3—Ge1vii2.223 (3)
Ag2—Ag2xiii2.9154 (6)S3—Erxv2.784 (3)
Ag2—Ag2xiv2.9154 (6)S3—Erxvii2.853 (3)
Ag2—Erix3.295 (4)S3—Erxix3.020 (3)
Ag2—Ervii3.295 (4)
S2i—Er—S283.78 (8)S2viii—Ag2—Erix125.81 (7)
S2i—Er—S2ii87.49 (12)S2ix—Ag2—Erix54.35 (7)
S2—Er—S2ii82.62 (8)S2x—Ag2—Erix52.43 (11)
S2i—Er—S3iii97.24 (8)S2xi—Ag2—Erix53.82 (11)
S2—Er—S3iii138.35 (8)S2xii—Ag2—Erix121.4 (4)
S2ii—Er—S3iii138.98 (9)Ag2xiii—Ag2—Erix67.27 (18)
S2i—Er—S3iv137.50 (9)Ag2xiv—Ag2—Erix112.73 (18)
S2—Er—S3iv128.56 (8)S2vii—Ag2—Ervii54.35 (7)
S2ii—Er—S3iv72.95 (7)S2viii—Ag2—Ervii127.26 (8)
S3iii—Er—S3iv76.52 (10)S2ix—Ag2—Ervii125.81 (7)
S2i—Er—S1v146.88 (8)S2x—Ag2—Ervii121.4 (4)
S2—Er—S1v83.26 (10)S2xi—Ag2—Ervii52.43 (11)
S2ii—Er—S1v120.73 (7)S2xii—Ag2—Ervii53.82 (11)
S3iii—Er—S1v73.40 (8)Ag2xiii—Ag2—Ervii67.27 (18)
S3iv—Er—S1v72.38 (8)Ag2xiv—Ag2—Ervii112.73 (18)
S2i—Er—S3i71.23 (8)Erix—Ag2—Ervii106.0 (2)
S2—Er—S3i70.50 (7)S2vii—Ag2—Erviii125.81 (7)
S2ii—Er—S3i146.97 (8)S2viii—Ag2—Erviii54.35 (7)
S3iii—Er—S3i70.57 (4)S2ix—Ag2—Erviii127.26 (7)
S3iv—Er—S3i139.30 (7)S2x—Ag2—Erviii53.82 (11)
S1v—Er—S3i75.73 (6)S2xi—Ag2—Erviii121.4 (4)
S2i—Er—Ag2v52.15 (11)S2xii—Ag2—Erviii52.43 (11)
S2—Er—Ag2v49.08 (19)Ag2xiii—Ag2—Erviii67.27 (18)
S2ii—Er—Ag2v51.80 (10)Ag2xiv—Ag2—Erviii112.73 (18)
S3iii—Er—Ag2v149.39 (11)Erix—Ag2—Erviii106.0 (2)
S3iv—Er—Ag2v124.65 (10)Ervii—Ag2—Erviii106.0 (2)
S1v—Er—Ag2v130.8 (2)S2vii—Ag2—Erxv50.69 (11)
S3i—Er—Ag2v95.37 (12)S2viii—Ag2—Erxv52.12 (12)
S2i—Er—Ag2vi47.22 (8)S2ix—Ag2—Erxv120.0 (4)
S2—Er—Ag2vi100.19 (17)S2x—Ag2—Erxv130.10 (7)
S2ii—Er—Ag2vi47.02 (8)S2xi—Ag2—Erxv128.73 (6)
S3iii—Er—Ag2vi110.90 (16)S2xii—Ag2—Erxv64.22 (7)
S3iv—Er—Ag2vi95.13 (13)Ag2xiii—Ag2—Erxv118.39 (17)
S1v—Er—Ag2vi165.81 (5)Ag2xiv—Ag2—Erxv61.61 (17)
S3i—Er—Ag2vi118.43 (7)Erix—Ag2—Erxv174.3 (3)
Ag2v—Er—Ag2vi51.12 (2)Ervii—Ag2—Erxv77.17 (2)
S2vii—Ag2—S2viii95.0 (3)Erviii—Ag2—Erxv77.17 (2)
S2vii—Ag2—S2ix95.0 (3)S1iv—Ge1—S3ii114.96 (8)
S2viii—Ag2—S2ix95.0 (3)S1iv—Ge1—S3xvi114.96 (8)
S2vii—Ag2—S2x175.8 (4)S3ii—Ge1—S3xvi103.46 (9)
S2viii—Ag2—S2x87.80 (5)S1iv—Ge1—S3v114.96 (8)
S2ix—Ag2—S2x87.80 (5)S3ii—Ge1—S3v103.46 (9)
S2vii—Ag2—S2xi87.80 (5)S3xvi—Ge1—S3v103.46 (9)
S2viii—Ag2—S2xi175.8 (4)Ge1xvii—S1—Erxviii114.20 (8)
S2ix—Ag2—S2xi87.80 (5)Ge1xvii—S1—Ervii114.20 (8)
S2x—Ag2—S2xi89.2 (3)Erxviii—S1—Ervii104.35 (9)
S2vii—Ag2—S2xii87.80 (5)Ge1xvii—S1—Erxix114.20 (8)
S2viii—Ag2—S2xii87.80 (5)Erxviii—S1—Erxix104.35 (9)
S2ix—Ag2—S2xii175.8 (4)Ervii—S1—Erxix104.35 (9)
S2x—Ag2—S2xii89.2 (3)Ag2v—S2—Ag2xx67.44 (7)
S2xi—Ag2—S2xii89.2 (3)Ag2v—S2—Erxix82.09 (10)
S2vii—Ag2—Ag2xiii121.6 (2)Ag2xx—S2—Erxix75.42 (7)
S2viii—Ag2—Ag2xiii121.6 (2)Ag2v—S2—Er76.6 (2)
S2ix—Ag2—Ag2xiii121.6 (2)Ag2xx—S2—Er144.0 (2)
S2x—Ag2—Ag2xiii54.2 (2)Erxix—S2—Er101.16 (9)
S2xi—Ag2—Ag2xiii54.2 (2)Ag2v—S2—Erxxi80.87 (10)
S2xii—Ag2—Ag2xiii54.2 (2)Ag2xx—S2—Erxxi74.39 (7)
S2vii—Ag2—Ag2xiv58.4 (2)Erxix—S2—Erxxi149.19 (11)
S2viii—Ag2—Ag2xiv58.4 (2)Er—S2—Erxxi99.59 (8)
S2ix—Ag2—Ag2xiv58.4 (2)Ge1vii—S3—Erxv90.90 (8)
S2x—Ag2—Ag2xiv125.8 (2)Ge1vii—S3—Erxvii89.11 (8)
S2xi—Ag2—Ag2xiv125.8 (2)Erxv—S3—Erxvii106.35 (9)
S2xii—Ag2—Ag2xiv125.8 (2)Ge1vii—S3—Erxix117.62 (11)
Ag2xiii—Ag2—Ag2xiv180.000 (4)Erxv—S3—Erxix146.82 (9)
S2vii—Ag2—Erix127.26 (7)Erxvii—S3—Erxix91.58 (7)
Symmetry codes: (i) xy+1, x, z1/2; (ii) y, x+y+1, z1/2; (iii) x+y+1, x+1, z1; (iv) x, y, z1; (v) x+1, y+1, z1/2; (vi) x+1, y+1, z1; (vii) x+1, y+1, z+1/2; (viii) xy, x1, z+1/2; (ix) y1, x+y, z+1/2; (x) x1, y1, z; (xi) x+y, x+1, z; (xii) y+1, xy, z; (xiii) x, y, z1/2; (xiv) x, y, z+1/2; (xv) y+1, xy, z+1; (xvi) xy, x, z1/2; (xvii) x, y, z+1; (xviii) xy, x, z+1/2; (xix) y, x+y+1, z+1/2; (xx) x+1, y+1, z; (xxi) xy+1, x, z+1/2.
(y) top
Crystal data top
Ag0.50GeS7Y3Dx = 4.240 Mg m3
Mr = 617.67Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 641 reflections
Hall symbol: P 6cθ = 4.2–26.3°
a = 9.8090 (14) ŵ = 23.31 mm1
c = 5.8059 (12) ÅT = 295 K
V = 483.78 (14) Å3Prism, dark red
Z = 20.09 × 0.06 × 0.05 mm
F(000) = 569
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
657 independent reflections
Radiation source: fine-focus sealed tube641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 26.3°, θmin = 4.2°
ω–scanh = 1211
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
k = 1212
Tmin = 0.107, Tmax = 0.210l = 77
5168 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0228P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max < 0.001
wR(F2) = 0.044Δρmax = 0.60 e Å3
S = 1.12Δρmin = 1.38 e Å3
657 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
38 parametersExtinction coefficient: 0.0058 (9)
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 294 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.036 (11)
Crystal data top
Ag0.50GeS7Y3Z = 2
Mr = 617.67Mo Kα radiation
Hexagonal, P63µ = 23.31 mm1
a = 9.8090 (14) ÅT = 295 K
c = 5.8059 (12) Å0.09 × 0.06 × 0.05 mm
V = 483.78 (14) Å3
Data collection top
KUMA KM-4 with area CCD detector
diffractometer
657 independent reflections
Absorption correction: numerical
CrysAlis (Oxford Diffraction, 2007)
641 reflections with I > 2σ(I)
Tmin = 0.107, Tmax = 0.210Rint = 0.050
5168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0211 restraint
wR(F2) = 0.044Δρmax = 0.60 e Å3
S = 1.12Δρmin = 1.38 e Å3
657 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881, 294 Friedel pairs
38 parametersAbsolute structure parameter: 0.036 (11)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Y0.86329 (5)0.64088 (5)0.24445 (13)0.01737 (15)
Ag20.00000.00000.0009 (7)0.0814 (10)0.50
Ge10.33330.66670.32329 (13)0.0112 (2)
S10.33330.66670.9465 (4)0.0115 (5)
S20.89780 (14)0.73969 (16)0.7021 (2)0.0207 (3)
S30.57643 (15)0.47892 (15)0.9833 (2)0.0136 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y0.0132 (2)0.0128 (2)0.0263 (3)0.00662 (18)0.0023 (2)0.0006 (2)
Ag20.0172 (5)0.0172 (5)0.210 (3)0.0086 (2)0.0000.000
Ge10.0124 (3)0.0124 (3)0.0088 (4)0.00618 (15)0.0000.000
S10.0139 (7)0.0139 (7)0.0065 (11)0.0070 (3)0.0000.000
S20.0126 (6)0.0267 (7)0.0243 (8)0.0108 (5)0.0017 (5)0.0117 (6)
S30.0174 (6)0.0137 (6)0.0123 (6)0.0097 (5)0.0010 (6)0.0003 (5)
Geometric parameters (Å, º) top
Y—S2i2.7361 (14)Ag2—Yxvii3.3885 (19)
Y—S22.7906 (16)Ag2—Yix3.4207 (19)
Y—S2ii2.7944 (13)Ge1—S1iv2.188 (2)
Y—S3iii2.7946 (14)Ge1—S3ii2.2249 (14)
Y—S3iv2.8758 (14)Ge1—S3xviii2.2249 (14)
Y—S1v2.8944 (11)Ge1—S3v2.2249 (13)
Y—S3i3.0089 (14)S1—Ge1xix2.188 (2)
Y—S2iv3.2618 (17)S1—Yxx2.8944 (11)
Y—Ag2vi3.3885 (19)S1—Yvii2.8944 (11)
Y—Ag2vii3.421 (2)S1—Yxxi2.8944 (11)
Ag2—S2v2.516 (2)S2—Ag2vii2.516 (2)
Ag2—S2viii2.516 (2)S2—Yxxi2.7361 (13)
Ag2—S2ix2.516 (2)S2—Yxxii2.7944 (13)
Ag2—S2x2.824 (3)S2—Ag2xxiii2.824 (3)
Ag2—S2xi2.824 (3)S2—Yxix3.2618 (17)
Ag2—S2xii2.824 (3)S3—Ge1vii2.2249 (13)
Ag2—Ag2xiii2.9029 (6)S3—Yxxiv2.7946 (14)
Ag2—Ag2xiv2.9029 (6)S3—Yxix2.8758 (14)
Ag2—Yxv3.3885 (19)S3—Yxxi3.0089 (14)
Ag2—Yxvi3.3885 (19)
S2i—Y—S282.92 (4)Ag2xiii—Ag2—Ag2xiv180.0
S2i—Y—S2ii88.50 (6)S2v—Ag2—Yxv52.73 (4)
S2—Y—S2ii81.88 (4)S2viii—Ag2—Yxv54.08 (5)
S2i—Y—S3iii99.71 (4)S2ix—Ag2—Yxv127.67 (15)
S2—Y—S3iii137.94 (4)S2x—Ag2—Yxv128.55 (4)
S2ii—Y—S3iii139.84 (5)S2xi—Ag2—Yxv127.33 (4)
S2i—Y—S3iv138.86 (5)S2xii—Ag2—Yxv62.57 (3)
S2—Y—S3iv127.53 (4)Ag2xiii—Ag2—Yxv65.34 (7)
S2ii—Y—S3iv72.15 (4)Ag2xiv—Ag2—Yxv114.66 (7)
S3iii—Y—S3iv76.26 (5)S2v—Ag2—Yxvi127.67 (15)
S2i—Y—S1v147.46 (4)S2viii—Ag2—Yxvi52.73 (4)
S2—Y—S1v83.00 (5)S2ix—Ag2—Yxvi54.08 (5)
S2ii—Y—S1v118.23 (3)S2x—Ag2—Yxvi62.57 (3)
S3iii—Y—S1v72.48 (4)S2xi—Ag2—Yxvi128.55 (4)
S3iv—Y—S1v71.33 (4)S2xii—Ag2—Yxvi127.33 (4)
S2i—Y—S3i70.64 (4)Ag2xiii—Ag2—Yxvi65.34 (7)
S2—Y—S3i70.20 (4)Ag2xiv—Ag2—Yxvi114.66 (7)
S2ii—Y—S3i146.62 (4)Yxv—Ag2—Yxvi103.82 (8)
S3iii—Y—S3i71.28 (3)S2v—Ag2—Yxvii54.08 (5)
S3iv—Y—S3i139.99 (4)S2viii—Ag2—Yxvii127.67 (15)
S1v—Y—S3i77.00 (3)S2ix—Ag2—Yxvii52.73 (4)
S2i—Y—S2iv74.62 (4)S2x—Ag2—Yxvii127.33 (4)
S2—Y—S2iv147.08 (5)S2xi—Ag2—Yxvii62.57 (3)
S2ii—Y—S2iv73.90 (4)S2xii—Ag2—Yxvii128.55 (4)
S3iii—Y—S2iv70.70 (4)Ag2xiii—Ag2—Yxvii65.34 (7)
S3iv—Y—S2iv65.34 (4)Ag2xiv—Ag2—Yxvii114.66 (7)
S1v—Y—S2iv128.09 (5)Yxv—Ag2—Yxvii103.82 (8)
S3i—Y—S2iv122.05 (4)Yxvi—Ag2—Yxvii103.82 (8)
S2i—Y—Ag2vi47.03 (4)S2v—Ag2—Yix127.60 (3)
S2—Y—Ag2vi96.89 (7)S2viii—Ag2—Yix126.26 (3)
S2ii—Y—Ag2vi46.81 (4)S2ix—Ag2—Yix53.48 (4)
S3iii—Y—Ag2vi115.64 (7)S2x—Ag2—Yix50.88 (5)
S3iv—Y—Ag2vi97.10 (6)S2xi—Ag2—Yix52.10 (4)
S1v—Y—Ag2vi164.509 (17)S2xii—Ag2—Yix116.28 (13)
S3i—Y—Ag2vi117.64 (4)Ag2xiii—Ag2—Yix115.81 (7)
S2iv—Y—Ag2vi50.21 (7)Ag2xiv—Ag2—Yix64.19 (7)
S2i—Y—Ag2vii53.20 (4)Yxv—Ag2—Yix178.85 (13)
S2—Y—Ag2vii46.43 (7)Yxvi—Ag2—Yix76.853 (8)
S2ii—Y—Ag2vii52.89 (4)Yxvii—Ag2—Yix76.853 (8)
S3iii—Y—Ag2vii152.76 (4)S1iv—Ge1—S3ii114.68 (4)
S3iv—Y—Ag2vii124.74 (4)S1iv—Ge1—S3xviii114.68 (4)
S1v—Y—Ag2vii127.64 (8)S3ii—Ge1—S3xviii103.79 (4)
S3i—Y—Ag2vii93.92 (5)S1iv—Ge1—S3v114.68 (4)
S2iv—Y—Ag2vii100.67 (7)S3ii—Ge1—S3v103.79 (4)
Ag2vi—Y—Ag2vii50.467 (13)S3xviii—Ge1—S3v103.79 (4)
S2v—Ag2—S2viii100.17 (11)Ge1xix—S1—Yxx113.90 (4)
S2v—Ag2—S2ix100.17 (11)Ge1xix—S1—Yvii113.90 (4)
S2viii—Ag2—S2ix100.17 (11)Yxx—S1—Yvii104.70 (5)
S2v—Ag2—S2x169.76 (16)Ge1xix—S1—Yxxi113.90 (4)
S2viii—Ag2—S2x86.32 (3)Yxx—S1—Yxxi104.70 (5)
S2ix—Ag2—S2x86.32 (3)Yvii—S1—Yxxi104.70 (5)
S2v—Ag2—S2xi86.32 (3)Ag2vii—S2—Yxxi80.24 (4)
S2viii—Ag2—S2xi169.76 (16)Ag2vii—S2—Y80.09 (9)
S2ix—Ag2—S2xi86.32 (3)Yxxi—S2—Y99.94 (4)
S2x—Ag2—S2xi86.21 (11)Ag2vii—S2—Yxxii79.11 (4)
S2v—Ag2—S2xii86.32 (3)Yxxi—S2—Yxxii149.35 (6)
S2viii—Ag2—S2xii86.32 (3)Y—S2—Yxxii98.53 (4)
S2ix—Ag2—S2xii169.76 (16)Ag2vii—S2—Ag2xxiii65.57 (4)
S2x—Ag2—S2xii86.21 (11)Yxxi—S2—Ag2xxiii75.92 (3)
S2xi—Ag2—S2xii86.21 (11)Y—S2—Ag2xxiii145.65 (9)
S2v—Ag2—Ag2xiii62.33 (9)Yxxii—S2—Ag2xxiii75.01 (3)
S2viii—Ag2—Ag2xiii62.33 (9)Ag2vii—S2—Yxix132.79 (10)
S2ix—Ag2—Ag2xiii62.33 (9)Yxxi—S2—Yxix89.31 (4)
S2x—Ag2—Ag2xiii127.90 (7)Y—S2—Yxix147.08 (5)
S2xi—Ag2—Ag2xiii127.90 (7)Yxxii—S2—Yxix88.31 (4)
S2xii—Ag2—Ag2xiii127.90 (7)Ag2xxiii—S2—Yxix67.22 (7)
S2v—Ag2—Ag2xiv117.67 (9)Ge1vii—S3—Yxxiv91.02 (5)
S2viii—Ag2—Ag2xiv117.67 (9)Ge1vii—S3—Yxix88.93 (4)
S2ix—Ag2—Ag2xiv117.67 (9)Yxxiv—S3—Yxix107.85 (5)
S2x—Ag2—Ag2xiv52.10 (7)Ge1vii—S3—Yxxi118.37 (5)
S2xi—Ag2—Ag2xiv52.10 (7)Yxxiv—S3—Yxxi145.19 (5)
S2xii—Ag2—Ag2xiv52.10 (7)Yxix—S3—Yxxi91.94 (4)
Symmetry codes: (i) xy+1, x, z1/2; (ii) y, x+y+1, z1/2; (iii) x+y+1, x+1, z1; (iv) x, y, z1; (v) x+1, y+1, z1/2; (vi) x+1, y+1, z; (vii) x+1, y+1, z+1/2; (viii) xy, x1, z1/2; (ix) y1, x+y, z1/2; (x) x1, y1, z1; (xi) x+y, x+1, z1; (xii) y+1, xy, z1; (xiii) x, y, z+1/2; (xiv) x, y, z1/2; (xv) y+1, xy, z; (xvi) x1, y1, z; (xvii) x+y, x+1, z; (xviii) xy, x, z1/2; (xix) x, y, z+1; (xx) xy, x, z+1/2; (xxi) y, x+y+1, z+1/2; (xxii) xy+1, x, z+1/2; (xxiii) x+1, y+1, z+1; (xxiv) y+1, xy, z+1.

Experimental details

(la)(ce)(pr)(nd)
Crystal data
Chemical formulaAg0.82GeLa3S7Ag0.88Ce3GeS7Ag0.89GePr3S7Ag0.84GeNd3S7
Mr802.19812.30815.74819.80
Crystal system, space groupHexagonal, P63Hexagonal, P63Hexagonal, P63Hexagonal, P63
Temperature (K)295295295295
a, c (Å)10.4056 (15), 5.8280 (12)10.3902 (15), 5.8425 (12)10.2290 (14), 5.7760 (11)10.1930 (14), 5.7693 (12)
V3)546.49 (16)546.23 (16)523.39 (14)519.11 (15)
Z2222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)16.9117.7919.5020.49
Crystal size (mm)0.09 × 0.04 × 0.030.09 × 0.08 × 0.060.10 × 0.09 × 0.070.11 × 0.09 × 0.08
Data collection
DiffractometerKUMA KM-4 with area CCD detector
diffractometer
KUMA KM-4 with area CCD detector
diffractometer
KUMA KM-4 with area CCD detector
diffractometer
KUMA KM-4 with area CCD detector
diffractometer
Absorption correctionNumerical
CrysAlis (Oxford Diffraction, 2007)
Numerical
CrysAlis (Oxford Diffraction, 2007)
Numerical
CrysAlis (Oxford Diffraction, 2007)
Numerical
CrysAlis (Oxford Diffraction, 2007)
Tmin, Tmax0.097, 0.5990.097, 0.5990.163, 0.2720.093, 0.261
No. of measured, independent and
observed [I > 2σ(I)] reflections
5858, 743, 729 6515, 726, 704 5174, 602, 585 5463, 713, 700
Rint0.0390.0430.0590.038
(sin θ/λ)max1)0.6250.6250.5950.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.011, 0.022, 1.04 0.021, 0.046, 1.06 0.025, 0.051, 1.09 0.016, 0.035, 1.08
No. of reflections743726602713
No. of parameters43434343
No. of restraints1111
Δρmax, Δρmin (e Å3)0.37, 0.441.01, 0.701.22, 0.730.72, 0.75
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881, 334 Friedel pairsFlack H D (1983), Acta Cryst. A39, 876-881, 319 Friedel pairsFlack H D (1983), Acta Cryst. A39, 876-881, 265 Friedel pairsFlack H D (1983), Acta Cryst. A39, 876-881, 320 Friedel pairs
Absolute structure parameter0.014 (12)0.04 (2)0.05 (3)0.027 (19)


(sm)(gd)(tb)(dy)
Crystal data
Chemical formulaAg0.74GeS7Sm3Ag0.63Gd3GeS7Ag0.59GeS7Tb3Ag0.51Dy3GeS7
Mr827.34836.18836.87840.06
Crystal system, space groupHexagonal, P63Hexagonal, P63Hexagonal, P63Hexagonal, P63
Temperature (K)295295295295
a, c (Å)10.0809 (14), 5.7604 (12)9.9637 (14), 5.7660 (12)9.9003 (14), 5.7654 (12)9.8003 (14), 5.7879 (12)
V3)506.97 (15)495.73 (14)489.39 (14)481.43 (14)
Z2222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)22.8025.4127.0128.56
Crystal size (mm)0.13 × 0.11 × 0.090.13 × 0.12 × 0.100.12 × 0.11 × 0.080.12 × 0.10 × 0.09
Data collection
DiffractometerKUMA KM-4 with area CCD detector
diffractometer
KUMA KM-4 with area CCD detector
diffractometer
KUMA KM-4 with area CCD detector
diffractometer
KUMA KM-4 with area CCD detector
diffractometer
Absorption correctionNumerical
CrysAlis (Oxford Diffraction, 2007)
Numerical
CrysAlis (Oxford Diffraction, 2007)
Numerical
CrysAlis (Oxford Diffraction, 2007)
Numerical
CrysAlis (Oxford Diffraction, 2007)
Tmin, Tmax0.029, 0.2420.024, 0.1920.044, 0.1870.035, 0.244
No. of measured, independent and
observed [I > 2σ(I)] reflections
4935, 604, 601 5095, 658, 657 4229, 602, 597 5667, 655, 644
Rint0.0460.0440.0390.046
(sin θ/λ)max1)0.6020.6210.6090.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.034, 1.17 0.013, 0.029, 1.12 0.017, 0.038, 1.17 0.015, 0.032, 1.12
No. of reflections604658602655
No. of parameters43433939
No. of restraints1111
Δρmax, Δρmin (e Å3)0.70, 0.510.58, 0.810.84, 1.390.99, 1.03
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881, 270 Friedel pairsFlack H D (1983), Acta Cryst. A39, 876-881, 296 Friedel pairsFlack H D (1983), Acta Cryst. A39, 876-881, 265 Friedel pairsFlack H D (1983), Acta Cryst. A39, 876-881, 293 Friedel pairs
Absolute structure parameter0.029 (18)0.006 (15)0.00 (2)0.005 (19)


(ho)(er)(y)
Crystal data
Chemical formulaAg0.50GeHo3S7Ag0.50Er3GeS7Ag0.50GeS7Y3
Mr845.73852.72617.67
Crystal system, space groupHexagonal, P63Hexagonal, P63Hexagonal, P63
Temperature (K)295295295
a, c (Å)9.7401 (14), 5.7994 (12)9.6921 (14), 5.8308 (12)9.8090 (14), 5.8059 (12)
V3)476.48 (14)474.35 (14)483.78 (14)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)30.2231.8723.31
Crystal size (mm)0.09 × 0.07 × 0.030.13 × 0.10 × 0.080.09 × 0.06 × 0.05
Data collection
DiffractometerKUMA KM-4 with area CCD detector
diffractometer
KUMA KM-4 with area CCD detector
diffractometer
KUMA KM-4 with area CCD detector
diffractometer
Absorption correctionNumerical
CrysAlis (Oxford Diffraction, 2007)
Numerical
CrysAlis (Oxford Diffraction, 2007)
Numerical
CrysAlis (Oxford Diffraction, 2007)
Tmin, Tmax0.061, 0.3040.038, 0.1310.107, 0.210
No. of measured, independent and
observed [I > 2σ(I)] reflections
5792, 649, 630 4994, 633, 628 5168, 657, 641
Rint0.0450.0490.050
(sin θ/λ)max1)0.6330.6250.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.033, 1.19 0.022, 0.053, 1.15 0.021, 0.044, 1.12
No. of reflections649633657
No. of parameters383838
No. of restraints111
Δρmax, Δρmin (e Å3)0.79, 2.260.86, 2.840.60, 1.38
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881, 275 Friedel pairsFlack H D (1983), Acta Cryst. A39, 876-881, 280 Friedel pairsFlack H D (1983), Acta Cryst. A39, 876-881, 294 Friedel pairs
Absolute structure parameter0.04 (2)0.03 (3)0.036 (11)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds