Download citation
Download citation
link to html
The title structure, [Zn(SeO4)(CH4N2S)3], is isomorphous with sulfatotris(thio­urea)zinc(II). In both structures, the Zn2+ cation is coordinated in a tetra­hedral geometry. The corresponding intra­molecular distances are quite similar except for the Se—O and S—O distances. Although the hydrogen-bonding patterns are similar, there are some differences; in the title structure all the H atoms are involved in the hydrogen-bond pattern, in contrast to the situation in sulfatotris(thio­urea)zinc(II). No reproducible anomalies were detected by differential scanning calorimetry in the range 93–463 K until decomposition started at the higher temperature.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808000743/bq2062sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808000743/bq2062Isup2.hkl
Contains datablock I

CCDC reference: 677448

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](N-C) = 0.003 Å
  • R factor = 0.022
  • wR factor = 0.051
  • Data-to-parameter ratio = 19.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT163_ALERT_4_C Missing or Zero su (esd) on z-coordinate for ... SE1 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 12
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.49 From the CIF: _reflns_number_total 3150 Count of symmetry unique reflns 1658 Completeness (_total/calc) 189.99% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1492 Fraction of Friedel pairs measured 0.900 Are heavy atom types Z>Si present yes PLAT033_ALERT_2_G Flack Parameter Value Deviates from zero ....... -0.02
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Zinc [tris(thiourea)]sulfate, isomorphous to the title structure, is reported to be a perspective semiorganic non-linear optical material (Ushasree et al., 1998, 2000). It can substitute potassium dihydrogenphosphate in technical applications (Ramabadran et al., 1992; Alex & Phillip, 2001). It has also an exceptionally wide acceptance angle for second harmonic generation (Ramabadran et al., 1992). Its resistance against laser induced damage is good (Venkataramanan et al., 1995).

We have synthesized the title compound since it is expected that it might show similar interesting properties as its known isostructural counterpart (Krupková et al., 2007). As a part of our on-going study of the title compound we report here its structure determination. The investigation od dielectric and optical properties is in progress.

The common features and differences between the hydrogen-bond patterns in both isostructural compounds are shown in Tab. 1. This table shows that the stronger hydrogen bonds are common for both isostructural compounds.

Related literature top

For related literature, see: Krupková et al. (2007); Alex & Phillip (2001); Becker & Coppens (1974); PerkinElmer (2001); Ramabadran et al. (1992); Ushasree et al. (1998, 2000); Venkataramanan et al. (1995).

Experimental top

The title compound has been prepared in a similar way as zinc[tris(thiourea)] sulfate. The preparation was carried out in two steps according to following equations:

(1) [ZnCO3][Zn(OH)2] + 2H2SeO4 + 3H2O 2ZnSeO4.6H2O + CO2

(2) 4ZnSeO4.6H2O + 3 CS(NH2)2 Zn[CS(NH2)2]3}[SeO4]

5.0 g (0.222 M) of ZnCO3[Zn(OH)2] dissolved in 3.6 g (0.2 M) of distilled H2O reacted with 6.45 g (96%) H2SeO4 (0.0427 M) at room temperature. After the neutralization white suspension was obtained. The suspension into which had been poured 50 ml of distilled H2O was heated at 60°C for 30 minutes. The solution became clearer and its pH=4.

Then, at 50°C was added 10.14 g (0.1332 M) of thiourea. The solution became orange-coloured and under stirring it was kept at 50°C for another 10 minutes. An orange precipitate has developed to which another 100 ml of distilled water was added. The mixture was stirred for another 20 minutes and then cooled down to room temperature. After two days, transparent crystals of length of 0.5 mm appeared at the walls of the beaker while an orange precipitate covered its bottom. Next day the precipitate was filtered off, some orange-tinged crystals have been isolated as seeds that were introduced into the filtrate. After a week clear transparent crystals appeared of the size of 1 cm, of the similar HABITUS as zinc[tris(thiourea)] sulfate (Alex & Phillip, 2001).

Refinement top

All the H atoms were discernible in the difference Fourier map and even could be refined. Nevertheless, their coordinates were constrained in riding motion formalism: The pertinent distances equalled to 0.89Å and Uiso(H)=1.2Ueq(N).

The calorimetric experiments were performed on PerkinElmer DSC 7 and Pyris Diamond differential scanning calorimeters using PYRIS Software (PerkinElmer, 2001), with m = 30 mg, a temperature interval of 93–466 K and scanning rate of 10 K/min. No reproducible DSC anomalies were detected until the symptoms of decomposition at 463 K.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: (JANA2000; Petříček et al., 2000); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: (JANA2000; Petříček et al., 2000).

Figures top
[Figure 1] Fig. 1. View of the title molecule with anisotropic displacement parameters shown at the 30% probability level.
(Tetraoxidoselenato-κO)tris(thiourea-κS)zinc(II) top
Crystal data top
[Zn(SeO4)(CH4N2S)3]F(000) = 864
Mr = 436.7Dx = 2.079 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2c -2acCell parameters from 14388 reflections
a = 11.2045 (2) Åθ = 1.0–27.5°
b = 7.8824 (1) ŵ = 4.83 mm1
c = 15.7960 (2) ÅT = 292 K
V = 1395.08 (4) Å3Prism, colourless
Z = 40.35 × 0.25 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
3150 independent reflections
Radiation source: fine-focus sealed tube3004 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: gaussian
(Coppens & Hamilton, 1970)
h = 1414
Tmin = 0.223, Tmax = 0.602k = 1010
23449 measured reflectionsl = 1920
Refinement top
Refinement on F2Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0004I2]
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max = 0.005
wR(F2) = 0.050Δρmax = 0.36 e Å3
S = 1.52Δρmin = 0.25 e Å3
3150 reflectionsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
163 parametersExtinction coefficient: 1.65 (5)
0 restraintsAbsolute structure: Flack (1983), 1492 Friedel pairs
48 constraintsAbsolute structure parameter: 0.020 (6)
H-atom parameters constrained
Crystal data top
[Zn(SeO4)(CH4N2S)3]V = 1395.08 (4) Å3
Mr = 436.7Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 11.2045 (2) ŵ = 4.83 mm1
b = 7.8824 (1) ÅT = 292 K
c = 15.7960 (2) Å0.35 × 0.25 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
3150 independent reflections
Absorption correction: gaussian
(Coppens & Hamilton, 1970)
3004 reflections with I > 3σ(I)
Tmin = 0.223, Tmax = 0.602Rint = 0.039
23449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.050Δρmax = 0.36 e Å3
S = 1.52Δρmin = 0.25 e Å3
3150 reflectionsAbsolute structure: Flack (1983), 1492 Friedel pairs
163 parametersAbsolute structure parameter: 0.020 (6)
0 restraints
Special details top

Refinement. The Flack parameter converged to the value -0.020 (6), so it was excluded from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.43588 (3)0.34032 (3)0.42203 (2)0.02479 (9)
Se10.37373 (2)0.15124 (3)0.2477980.02293 (7)
O10.34191 (19)0.1846 (2)0.34926 (13)0.0363 (6)
O20.29853 (18)0.0173 (2)0.22066 (12)0.0317 (6)
O30.51627 (17)0.1169 (2)0.23987 (16)0.0372 (6)
O40.33169 (19)0.3147 (2)0.19315 (15)0.0392 (6)
S10.57849 (6)0.49589 (8)0.34906 (5)0.03060 (19)
C10.5054 (2)0.6544 (2)0.29483 (16)0.0290 (8)
N10.5667 (2)0.7339 (3)0.23498 (16)0.0401 (8)
N20.3957 (2)0.7021 (3)0.31154 (18)0.0447 (9)
S20.52313 (7)0.17226 (9)0.52667 (5)0.0327 (2)
C20.64030 (18)0.0636 (3)0.48127 (17)0.0314 (8)
N30.6501 (2)0.0405 (4)0.39895 (16)0.0468 (9)
N40.7222 (2)0.0025 (3)0.53155 (17)0.0460 (9)
S30.29592 (6)0.50137 (8)0.49583 (5)0.03039 (18)
C30.3845 (2)0.5992 (3)0.57094 (15)0.0295 (7)
N50.3360 (3)0.6436 (3)0.64329 (16)0.0453 (9)
N60.4979 (2)0.6351 (3)0.55684 (18)0.0455 (9)
H1n10.639540.6983110.221230.0482*
H2n10.5349560.8228060.2085460.0482*
H1n20.3594820.777570.2784280.0536*
H2n20.357420.6588740.3559730.0536*
H1n30.590990.0718090.3646890.0562*
H2n30.715760.0064240.3776120.0562*
H1n40.7187080.0229950.586910.0552*
H2n40.7815260.0595330.5104750.0552*
H1n50.3738390.7153110.6775030.0543*
H2n50.2651470.6018910.6581060.0543*
H1n60.5354570.5895010.5127180.0546*
H2n60.5367980.7050070.5914620.0546*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02747 (16)0.02426 (15)0.02265 (16)0.00004 (11)0.00160 (12)0.00106 (11)
Se10.02532 (13)0.02427 (12)0.01920 (13)0.00028 (8)0.00161 (10)0.00140 (11)
O10.0414 (12)0.0444 (10)0.0231 (9)0.0183 (9)0.0063 (9)0.0069 (8)
O20.0396 (10)0.0290 (9)0.0264 (10)0.0047 (7)0.0031 (8)0.0027 (6)
O30.0268 (9)0.0441 (10)0.0408 (12)0.0020 (8)0.0042 (10)0.0047 (10)
O40.0401 (11)0.0336 (9)0.0441 (12)0.0049 (8)0.0048 (10)0.0138 (9)
S10.0252 (3)0.0343 (3)0.0323 (3)0.0001 (2)0.0004 (3)0.0102 (3)
C10.0314 (15)0.0266 (12)0.0291 (14)0.0051 (10)0.0037 (11)0.0013 (10)
N10.0423 (14)0.0369 (12)0.0412 (15)0.0019 (10)0.0037 (11)0.0138 (11)
N20.0364 (14)0.0400 (13)0.0575 (18)0.0084 (12)0.0078 (13)0.0189 (12)
S20.0354 (4)0.0400 (4)0.0227 (3)0.0119 (3)0.0055 (3)0.0041 (2)
C20.0356 (14)0.0326 (13)0.0260 (14)0.0060 (11)0.0011 (11)0.0012 (10)
N30.0477 (16)0.0652 (17)0.0276 (13)0.0260 (14)0.0023 (11)0.0063 (12)
N40.0435 (15)0.0629 (17)0.0315 (13)0.0267 (12)0.0011 (11)0.0021 (12)
S30.0228 (3)0.0406 (3)0.0279 (3)0.0011 (2)0.0020 (3)0.0110 (3)
C30.0324 (13)0.0296 (12)0.0266 (14)0.0035 (10)0.0047 (11)0.0045 (11)
N50.0384 (15)0.0655 (17)0.0320 (14)0.0047 (12)0.0003 (12)0.0218 (12)
N60.0328 (14)0.0620 (17)0.0418 (16)0.0102 (11)0.0010 (12)0.0253 (12)
Geometric parameters (Å, º) top
Zn1—O11.984 (2)C3—N51.313 (4)
Zn1—S12.3207 (8)C3—N61.321 (3)
Zn1—S22.3330 (8)N1—H1n10.89
Zn1—S32.3302 (7)N1—H2n10.89
Se1—O11.663 (2)N2—H1n20.89
Se1—O21.6307 (18)N2—H2n20.89
Se1—O31.6246 (19)N3—H1n30.89
Se1—O41.621 (2)N3—H2n30.89
S1—C11.722 (2)N4—H1n40.89
C1—N11.326 (3)N4—H2n40.89
C1—N21.313 (4)N5—H1n50.89
S2—C21.724 (2)N5—H2n50.89
C2—N31.317 (4)N6—H1n60.89
C2—N41.306 (3)N6—H2n60.89
S3—C31.729 (2)
Se1—Zn1—S188.22 (2)H1n1—N1—H2n1120.0
Se1—Zn1—S2115.80 (2)C1—N2—H1n2120.0
Se1—Zn1—S3122.45 (2)C1—N2—H2n2120.0
S1—Zn1—S2111.31 (3)H1n2—N2—H2n2120.0
S1—Zn1—S3115.09 (3)C2—N3—H1n3120.0
S2—Zn1—S3103.70 (3)C2—N3—H2n3120.0
O1—Se1—O2105.75 (10)H1n3—N3—H2n3120.0
O1—Se1—O3108.14 (11)C2—N4—H1n4120.0
O1—Se1—O4108.98 (11)C2—N4—H2n4120.0
O2—Se1—O3110.62 (10)H1n4—N4—H2n4120.0
O2—Se1—O4110.95 (10)C3—N5—H1n5120.0
O3—Se1—O4112.15 (11)C3—N5—H2n5120.0
S1—C1—N1116.84 (19)H1n5—N5—H2n5120.0
S1—C1—N2123.6 (2)C3—N6—H1n6120.0
N1—C1—N2119.5 (2)C3—N6—H2n6120.0
S2—C2—N3122.86 (19)H1n6—N6—H2n6120.0
S2—C2—N4117.7 (2)H1n1—N1—H2n1120.0
N3—C2—N4119.4 (2)H1n2—N2—H2n2120.0
S3—C3—N5118.6 (2)H1n3—N3—H2n3120.0
S3—C3—N6122.2 (2)H1n4—N4—H2n4120.0
N5—C3—N6119.2 (2)H1n5—N5—H2n5120.0
C1—N1—H1n1120.0H1n6—N6—H2n6120.0
C1—N1—H2n1120.0

Experimental details

Crystal data
Chemical formula[Zn(SeO4)(CH4N2S)3]
Mr436.7
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)292
a, b, c (Å)11.2045 (2), 7.8824 (1), 15.7960 (2)
V3)1395.08 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.83
Crystal size (mm)0.35 × 0.25 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens & Hamilton, 1970)
Tmin, Tmax0.223, 0.602
No. of measured, independent and
observed [I > 3σ(I)] reflections
23449, 3150, 3004
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.050, 1.52
No. of reflections3150
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.25
Absolute structureFlack (1983), 1492 Friedel pairs
Absolute structure parameter0.020 (6)

Computer programs: COLLECT (Hooft, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1997), (JANA2000; Petříček et al., 2000), PLATON (Spek, 2003).

Tab. 1. Hydrogen-bond geometry (Å, °). */y indicates that the pertinent hydrogen bond is also present in Zn[(SC(NH2)2]3(SO4), Krupková et al. (2007). top
D-H···AD-HH···AD···AD-H···A*
N1-H1N1···O4i0.892.203.066 (3)164y
N1-H2N1···O3ii0.892.383.072 (3)135y
N2-H1N2···O2ii0.891.982.852 (3)167y
N2-H2N2···S30.892.633.497 (3)166
N3-H1N3···O30.892.172.988 (3)152y
N3-H2N3···O1iii0.892.042.895 (3)160y
N4-H1N4···O2iV0.892.122.999 (3)168y
N4-H2N4···S2iii0.892.863.643 (3)148
N5-H1N5···O3V0.892.062.938 (3)170y
N5-H2N5···O4Vi0.892.573.297 (3)139
N6-H1N6···S10.892.733.577 (3)159
N6-H2N6···O4v0.892.192.905 (3)137y
Symmetry codes:(i) 1/2+x,-y+1, z; (ii) x, y+1, z; (iii) 1/2+x, -y, z; (iv) 1-x, -y, 1/2+z; (v) 1-x, 1-y, 1/2+z; (vi) 1/2-x, y, 1/2+z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds