Download citation
Download citation
link to html
In the title compound, [Al(C29H41N2)(C2H2N2P)2], the AlIII atom is coordinated by four N atoms from β-diketiminate and 1,2,4-diaza­phospho­lide ligands in a slightly distorted tetra­hedral fashion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810049007/bq2246sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810049007/bq2246Isup2.hkl
Contains datablock I

CCDC reference: 803054

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.075
  • wR factor = 0.224
  • Data-to-parameter ratio = 15.6

checkCIF/PLATON results

No syntax errors found




Alert level A PLAT900_ALERT_1_A No Matching Reflection File Found .............. ! PLAT900_ALERT_1_A No Matching Reflection File Found .............. ! PLAT902_ALERT_1_A No (Interpretable) Reflections found in FCF .... !
Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for N2 -- C1 .. 11.15 su PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C19 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C31
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.42 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for P1 -- C1 .. 5.52 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for P2 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C16 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang .. 6
Alert level G PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large. 0.15 PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 500 Deg. PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT380_ALERT_4_G Check Incorrectly? Oriented X(sp2)-Methyl Moiety C5 PLAT794_ALERT_5_G Note: Tentative Bond Valency for Al1 ....... 3.34
3 ALERT level A = In general: serious problem 3 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 10 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Recently, the investigation of 1,2,4-diazaphospholide complexes has attracted considerable interest (Zheng et al., 2006-2009). On the other hand, aluminum hydride complexes with bulky beta-diketiminato ligand [HC(CMeNAr)2] AlH2 have been evidenced to be a reactive species (Roesky et al., 2000-2005). Herein, we report a centrosymmetric complex which was synthesized by the reaction of [HC(CMeNAr)2] AlH2 with 1H-1,2,4-diazaphosphole in hexane at room temperature. As illustrated in Fig. 1, the AlIII ion was coordinated by four nitrogen atoms of 2,6-iPr2C6H3NC(Me)C(H)C(Me)N and 1,2,4-diazaphospholide ligands. The two nitrogen atoms from the 2,6-iPr2C6H3NC(Me)C(H)C(Me)NH ligand form a six-member ring with the aluminum center, and the other two nitrogen atoms from the 1,2,4-diazaphospholide ligands coordinate to aluminum atom in a eta(1) mode. The four nitrogen atoms are arranged in a slightly distorted tetrahedral fashion. The plane of the six-membered ring C3—N2—Al is nearly perpendicular to the 1,2,4-diazaphospholide heterocycle rings.

Related literature top

For the similar related 1,2,4-diazaphospholide complexes, see: Schmidpeter & Willhalm (1984); Cui et al. (2000); Ding et al. (2001); Kumar et al. (2004, 2005); Zheng et al. (2006); Wan et al. (2008); Pi et al. (2008, 2009).

Experimental top

All manipulations were carried out under an argon atmosphere using standard Schlenk techniques. Hexane was dried over sodium and freshly distilled prior to use. 0.481 g [2,6-iPr2C6H3NC(Me)C(H)C(Me)N]AlH2 (1 eq.) and 0.172 g (2 eq.) 1,2,4-Dia-zaphosphole were dissolved in 20 ml toulent. The mixture was stirred for 24 h at room temperature and the solvent was then removed and dried in vacuo. The residua was extracted with 15 ml hexane and the solution was concentrated to about 5 ml to afford colorless crystals at -30°C for several days (yield: 0.32 g. 50%).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93–0.96 Å, and Uiso(H) = 1.2–1.5 times of those of their parent atoms.

Structure description top

Recently, the investigation of 1,2,4-diazaphospholide complexes has attracted considerable interest (Zheng et al., 2006-2009). On the other hand, aluminum hydride complexes with bulky beta-diketiminato ligand [HC(CMeNAr)2] AlH2 have been evidenced to be a reactive species (Roesky et al., 2000-2005). Herein, we report a centrosymmetric complex which was synthesized by the reaction of [HC(CMeNAr)2] AlH2 with 1H-1,2,4-diazaphosphole in hexane at room temperature. As illustrated in Fig. 1, the AlIII ion was coordinated by four nitrogen atoms of 2,6-iPr2C6H3NC(Me)C(H)C(Me)N and 1,2,4-diazaphospholide ligands. The two nitrogen atoms from the 2,6-iPr2C6H3NC(Me)C(H)C(Me)NH ligand form a six-member ring with the aluminum center, and the other two nitrogen atoms from the 1,2,4-diazaphospholide ligands coordinate to aluminum atom in a eta(1) mode. The four nitrogen atoms are arranged in a slightly distorted tetrahedral fashion. The plane of the six-membered ring C3—N2—Al is nearly perpendicular to the 1,2,4-diazaphospholide heterocycle rings.

For the similar related 1,2,4-diazaphospholide complexes, see: Schmidpeter & Willhalm (1984); Cui et al. (2000); Ding et al. (2001); Kumar et al. (2004, 2005); Zheng et al. (2006); Wan et al. (2008); Pi et al. (2008, 2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex with the atom numbering scheme. The thermal displacements are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.
[N,N-Bis(2,6-diisopropylphenyl)pent-2-ene- 2,4-diiminato(1-)]bis(1,2,4-diazaphosphol-1-yl)aluminium(III) top
Crystal data top
[Al(C29H41N2)(C2H2N2P)2]Z = 2
Mr = 614.67F(000) = 656
Triclinic, P1Dx = 1.159 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.578 (4) ÅCell parameters from 872 reflections
b = 12.578 (5) Åθ = 3.4–25.6°
c = 13.498 (5) ŵ = 0.18 mm1
α = 92.059 (5)°T = 293 K
β = 98.766 (5)°Sheet, yellow
γ = 96.516 (5)°0.35 × 0.20 × 0.20 mm
V = 1760.8 (11) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6082 independent reflections
Radiation source: fine-focus sealed tube4238 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1210
Tmin = 0.940, Tmax = 0.965k = 1114
7337 measured reflectionsl = 1612
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.075 w = 1/[σ2(Fo2) + (0.1531P)2 + ]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.224(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.47 e Å3
6082 reflectionsΔρmin = 0.56 e Å3
389 parameters
Crystal data top
[Al(C29H41N2)(C2H2N2P)2]γ = 96.516 (5)°
Mr = 614.67V = 1760.8 (11) Å3
Triclinic, P1Z = 2
a = 10.578 (4) ÅMo Kα radiation
b = 12.578 (5) ŵ = 0.18 mm1
c = 13.498 (5) ÅT = 293 K
α = 92.059 (5)°0.35 × 0.20 × 0.20 mm
β = 98.766 (5)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6082 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4238 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.965Rint = 0.037
7337 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 1.02Δρmax = 0.47 e Å3
6082 reflectionsΔρmin = 0.56 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.22665 (7)0.79946 (6)0.78731 (6)0.0419 (3)
P10.16571 (10)0.71060 (10)0.62146 (10)0.0880 (4)
P20.18913 (13)1.08771 (11)0.97295 (11)0.1047 (5)
N10.0608 (2)0.7524 (2)0.7248 (2)0.0574 (6)
N20.0133 (3)0.7202 (4)0.7910 (3)0.1033 (13)
N30.2190 (2)0.9204 (2)0.86843 (18)0.0537 (6)
N40.3412 (2)0.9627 (2)0.9076 (2)0.0652 (7)
N50.3149 (2)0.70050 (18)0.86114 (16)0.0479 (6)
N60.3367 (2)0.83042 (17)0.69477 (16)0.0435 (5)
C10.1375 (5)0.6917 (5)0.7425 (4)0.125 (2)
H10.20250.66320.77660.149*
C20.0057 (4)0.7533 (3)0.6309 (3)0.0762 (10)
H20.03270.77530.57630.091*
C30.1292 (3)0.9771 (3)0.8954 (3)0.0717 (9)
H30.04150.95810.87380.086*
C40.3387 (4)1.0485 (3)0.9637 (3)0.0806 (11)
H40.41411.08710.99750.097*
C50.5225 (3)0.6473 (3)0.9408 (3)0.0738 (10)
H5A0.50840.66551.00760.111*
H5B0.61230.66380.93640.111*
H5C0.49670.57220.92530.111*
C60.4445 (3)0.7107 (2)0.8674 (2)0.0504 (7)
C70.5112 (3)0.7783 (2)0.8092 (2)0.0525 (7)
H70.60000.79000.82910.063*
C80.4642 (3)0.8307 (2)0.7260 (2)0.0493 (7)
C90.5580 (3)0.8893 (3)0.6683 (3)0.0737 (10)
H9A0.53490.86820.59830.111*
H9B0.64320.87210.69200.111*
H9C0.55620.96510.67780.111*
C100.2540 (3)0.6173 (3)0.9171 (2)0.0582 (8)
C110.2390 (3)0.6407 (3)1.0157 (3)0.0725 (10)
C120.1862 (4)0.5554 (5)1.0671 (4)0.0997 (16)
H120.17700.56761.13390.120*
C130.1485 (5)0.4568 (5)1.0230 (5)0.1080 (17)
H130.11320.40271.05930.130*
C140.1618 (4)0.4355 (4)0.9258 (4)0.0977 (14)
H140.13700.36670.89660.117*
C150.2122 (3)0.5161 (3)0.8695 (3)0.0715 (10)
C160.2732 (4)0.7513 (4)1.0672 (3)0.0849 (12)
H160.30840.79881.01940.102*
C170.3773 (6)0.7541 (6)1.1615 (3)0.138 (2)
H17A0.34160.71631.21330.207*
H17B0.40570.82721.18490.207*
H17C0.44910.72071.14500.207*
C180.1544 (5)0.7959 (5)1.0947 (4)0.1133 (16)
H18A0.08860.79051.03660.170*
H18B0.17660.86971.11780.170*
H18C0.12310.75551.14680.170*
C190.2203 (4)0.4905 (3)0.7606 (3)0.0836 (11)
H190.23470.55870.72890.100*
C200.0958 (6)0.4301 (5)0.7050 (5)0.142 (2)
H20A0.07600.36480.73710.213*
H20B0.10560.41370.63680.213*
H20C0.02710.47370.70590.213*
C210.3319 (6)0.4291 (5)0.7488 (5)0.149 (2)
H21A0.41120.47220.77610.224*
H21B0.33130.41180.67890.224*
H21C0.32420.36420.78390.224*
C220.2938 (3)0.8573 (2)0.5916 (2)0.0476 (6)
C230.2616 (3)0.9594 (2)0.5707 (2)0.0548 (7)
C240.2151 (4)0.9782 (3)0.4717 (3)0.0702 (9)
H240.19281.04580.45610.084*
C250.2012 (4)0.8998 (4)0.3964 (3)0.0782 (10)
H250.16990.91400.33060.094*
C260.2336 (4)0.8011 (3)0.4187 (3)0.0776 (10)
H260.22430.74840.36720.093*
C270.2802 (3)0.7761 (3)0.5160 (2)0.0613 (8)
C280.2762 (4)1.0491 (3)0.6497 (3)0.0691 (9)
H280.31241.02250.71400.083*
C290.3710 (4)1.1436 (3)0.6248 (3)0.0898 (12)
H29A0.45101.11830.61610.135*
H29B0.38601.19750.67890.135*
H29C0.33481.17370.56410.135*
C300.1480 (5)1.0861 (4)0.6605 (3)0.0971 (14)
H30A0.11751.12320.60230.146*
H30B0.15791.13360.71930.146*
H30C0.08691.02520.66690.146*
C310.3132 (4)0.6642 (3)0.5355 (3)0.0788 (10)
H310.32990.65820.60840.095*
C320.2037 (7)0.5800 (4)0.4934 (5)0.143 (2)
H32A0.12740.59430.51930.214*
H32B0.22530.51070.51250.214*
H32C0.18850.58130.42150.214*
C330.4358 (7)0.6444 (5)0.4945 (6)0.163 (3)
H33A0.41680.63310.42280.244*
H33B0.46810.58220.52320.244*
H33C0.49960.70560.51170.244*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0409 (4)0.0430 (5)0.0436 (4)0.0117 (3)0.0059 (3)0.0077 (3)
P10.0608 (6)0.0820 (7)0.1125 (9)0.0055 (5)0.0134 (5)0.0134 (6)
P20.0950 (8)0.0948 (9)0.1276 (10)0.0281 (7)0.0282 (7)0.0450 (8)
N10.0461 (13)0.0545 (15)0.0702 (16)0.0116 (11)0.0003 (11)0.0041 (12)
N20.069 (2)0.160 (4)0.084 (2)0.013 (2)0.0102 (17)0.052 (2)
N30.0525 (13)0.0565 (15)0.0545 (13)0.0158 (12)0.0100 (11)0.0011 (11)
N40.0556 (15)0.0683 (18)0.0710 (17)0.0125 (13)0.0084 (12)0.0148 (14)
N50.0490 (13)0.0486 (13)0.0482 (12)0.0112 (11)0.0077 (10)0.0143 (10)
N60.0479 (12)0.0416 (12)0.0439 (12)0.0139 (10)0.0088 (9)0.0069 (9)
C10.087 (3)0.152 (5)0.157 (5)0.031 (3)0.061 (3)0.084 (4)
C20.071 (2)0.086 (3)0.069 (2)0.005 (2)0.0050 (17)0.0152 (19)
C30.0625 (19)0.077 (2)0.082 (2)0.0228 (18)0.0210 (16)0.0035 (18)
C40.073 (2)0.079 (3)0.085 (2)0.0090 (19)0.0056 (18)0.029 (2)
C50.062 (2)0.081 (2)0.083 (2)0.0280 (18)0.0020 (17)0.0361 (19)
C60.0485 (15)0.0505 (16)0.0531 (15)0.0147 (13)0.0034 (12)0.0080 (13)
C70.0419 (14)0.0551 (17)0.0626 (17)0.0149 (13)0.0074 (12)0.0071 (14)
C80.0491 (15)0.0446 (15)0.0570 (16)0.0123 (13)0.0119 (12)0.0037 (12)
C90.0579 (19)0.086 (3)0.084 (2)0.0121 (18)0.0261 (17)0.026 (2)
C100.0487 (16)0.066 (2)0.0618 (18)0.0156 (15)0.0032 (13)0.0298 (15)
C110.0610 (19)0.100 (3)0.0609 (19)0.0191 (19)0.0094 (15)0.0404 (19)
C120.080 (3)0.142 (5)0.087 (3)0.028 (3)0.023 (2)0.069 (3)
C130.086 (3)0.109 (4)0.132 (4)0.008 (3)0.016 (3)0.073 (4)
C140.081 (3)0.078 (3)0.136 (4)0.012 (2)0.009 (3)0.057 (3)
C150.0608 (19)0.060 (2)0.094 (3)0.0116 (17)0.0055 (18)0.0335 (19)
C160.083 (2)0.124 (4)0.0481 (18)0.015 (2)0.0081 (17)0.019 (2)
C170.114 (4)0.229 (7)0.066 (3)0.032 (4)0.004 (3)0.000 (4)
C180.112 (4)0.148 (5)0.089 (3)0.034 (3)0.029 (3)0.012 (3)
C190.098 (3)0.0468 (19)0.105 (3)0.0131 (19)0.010 (2)0.0077 (19)
C200.137 (5)0.130 (5)0.139 (5)0.030 (4)0.008 (4)0.003 (4)
C210.143 (5)0.138 (5)0.175 (6)0.058 (4)0.028 (4)0.031 (4)
C220.0482 (14)0.0521 (16)0.0449 (14)0.0108 (13)0.0095 (11)0.0087 (12)
C230.0603 (17)0.0542 (17)0.0519 (16)0.0130 (14)0.0088 (13)0.0122 (13)
C240.078 (2)0.072 (2)0.064 (2)0.0208 (19)0.0079 (16)0.0246 (17)
C250.086 (2)0.099 (3)0.0493 (18)0.018 (2)0.0036 (16)0.0194 (19)
C260.092 (3)0.091 (3)0.0501 (18)0.016 (2)0.0098 (17)0.0016 (18)
C270.072 (2)0.0618 (19)0.0533 (17)0.0107 (16)0.0168 (14)0.0032 (14)
C280.094 (2)0.0515 (18)0.0631 (19)0.0244 (18)0.0038 (17)0.0110 (15)
C290.108 (3)0.060 (2)0.095 (3)0.006 (2)0.002 (2)0.013 (2)
C300.122 (4)0.087 (3)0.097 (3)0.052 (3)0.033 (3)0.012 (2)
C310.111 (3)0.059 (2)0.069 (2)0.017 (2)0.017 (2)0.0058 (16)
C320.202 (6)0.065 (3)0.139 (5)0.008 (4)0.023 (4)0.014 (3)
C330.169 (6)0.097 (4)0.255 (8)0.072 (4)0.089 (6)0.026 (5)
Geometric parameters (Å, º) top
Al1—N11.848 (3)C16—H160.9800
Al1—N61.855 (2)C17—H17A0.9600
Al1—N31.858 (3)C17—H17B0.9600
Al1—N51.867 (2)C17—H17C0.9600
P1—C11.646 (6)C18—H18A0.9600
P1—C21.700 (4)C18—H18B0.9600
P2—C31.711 (4)C18—H18C0.9600
P2—C41.731 (4)C19—C211.506 (7)
N1—N21.320 (4)C19—C201.518 (7)
N1—C21.354 (4)C19—H190.9800
N2—C11.378 (6)C20—H20A0.9600
N3—C31.336 (4)C20—H20B0.9600
N3—N41.360 (4)C20—H20C0.9600
N4—C41.301 (4)C21—H21A0.9600
N5—C61.352 (4)C21—H21B0.9600
N5—C101.460 (4)C21—H21C0.9600
N6—C81.350 (4)C22—C231.393 (4)
N6—C221.461 (3)C22—C271.397 (4)
C1—H10.9300C23—C241.390 (4)
C2—H20.9300C23—C281.503 (4)
C3—H30.9300C24—C251.370 (5)
C4—H40.9300C24—H240.9300
C5—C61.502 (4)C25—C261.356 (5)
C5—H5A0.9600C25—H250.9300
C5—H5B0.9600C26—C271.391 (5)
C5—H5C0.9600C26—H260.9300
C6—C71.384 (4)C27—C311.511 (5)
C7—C81.379 (4)C28—C301.509 (6)
C7—H70.9300C28—C291.546 (6)
C8—C91.498 (4)C28—H280.9800
C9—H9A0.9600C29—H29A0.9600
C9—H9B0.9600C29—H29B0.9600
C9—H9C0.9600C29—H29C0.9600
C10—C111.389 (5)C30—H30A0.9600
C10—C151.398 (5)C30—H30B0.9600
C11—C121.407 (6)C30—H30C0.9600
C11—C161.513 (6)C31—C321.504 (7)
C12—C131.347 (7)C31—C331.527 (7)
C12—H120.9300C31—H310.9800
C13—C141.361 (7)C32—H32A0.9600
C13—H130.9300C32—H32B0.9600
C14—C151.395 (5)C32—H32C0.9600
C14—H140.9300C33—H33A0.9600
C15—C191.511 (6)C33—H33B0.9600
C16—C181.523 (6)C33—H33C0.9600
C16—C171.548 (6)
N1—Al1—N6111.60 (12)C16—C17—H17C109.5
N1—Al1—N3107.50 (11)H17A—C17—H17C109.5
N6—Al1—N3110.79 (11)H17B—C17—H17C109.5
N1—Al1—N5116.84 (12)C16—C18—H18A109.5
N6—Al1—N599.77 (10)C16—C18—H18B109.5
N3—Al1—N5110.22 (11)H18A—C18—H18B109.5
C1—P1—C286.8 (2)C16—C18—H18C109.5
C3—P2—C485.27 (17)H18A—C18—H18C109.5
N2—N1—C2112.7 (3)H18B—C18—H18C109.5
N2—N1—Al1110.9 (2)C21—C19—C15112.2 (4)
C2—N1—Al1135.9 (3)C21—C19—C20110.1 (4)
N1—N2—C1109.3 (3)C15—C19—C20112.1 (4)
C3—N3—N4113.3 (3)C21—C19—H19107.4
C3—N3—Al1138.0 (2)C15—C19—H19107.4
N4—N3—Al1108.65 (18)C20—C19—H19107.4
C4—N4—N3109.9 (3)C19—C20—H20A109.5
C6—N5—C10118.2 (2)C19—C20—H20B109.5
C6—N5—Al1117.43 (19)H20A—C20—H20B109.5
C10—N5—Al1124.27 (18)C19—C20—H20C109.5
C8—N6—C22118.4 (2)H20A—C20—H20C109.5
C8—N6—Al1117.63 (18)H20B—C20—H20C109.5
C22—N6—Al1123.90 (17)C19—C21—H21A109.5
N2—C1—P1116.9 (3)C19—C21—H21B109.5
N2—C1—H1121.6H21A—C21—H21B109.5
P1—C1—H1121.6C19—C21—H21C109.5
N1—C2—P1114.1 (3)H21A—C21—H21C109.5
N1—C2—H2122.9H21B—C21—H21C109.5
P1—C2—H2122.9C23—C22—C27121.4 (3)
N3—C3—P2114.3 (3)C23—C22—N6120.7 (2)
N3—C3—H3122.8C27—C22—N6117.8 (3)
P2—C3—H3122.8C24—C23—C22117.8 (3)
N4—C4—P2117.2 (3)C24—C23—C28119.2 (3)
N4—C4—H4121.4C22—C23—C28123.0 (3)
P2—C4—H4121.4C25—C24—C23121.7 (3)
C6—C5—H5A109.5C25—C24—H24119.2
C6—C5—H5B109.5C23—C24—H24119.2
H5A—C5—H5B109.5C26—C25—C24119.4 (3)
C6—C5—H5C109.5C26—C25—H25120.3
H5A—C5—H5C109.5C24—C25—H25120.3
H5B—C5—H5C109.5C25—C26—C27122.3 (3)
N5—C6—C7123.2 (3)C25—C26—H26118.9
N5—C6—C5119.6 (3)C27—C26—H26118.9
C7—C6—C5117.2 (3)C26—C27—C22117.5 (3)
C8—C7—C6129.0 (3)C26—C27—C31119.4 (3)
C8—C7—H7115.5C22—C27—C31123.2 (3)
C6—C7—H7115.5C23—C28—C30111.5 (3)
N6—C8—C7122.1 (3)C23—C28—C29110.2 (3)
N6—C8—C9119.2 (3)C30—C28—C29110.5 (3)
C7—C8—C9118.8 (3)C23—C28—H28108.2
C8—C9—H9A109.5C30—C28—H28108.2
C8—C9—H9B109.5C29—C28—H28108.2
H9A—C9—H9B109.5C28—C29—H29A109.5
C8—C9—H9C109.5C28—C29—H29B109.5
H9A—C9—H9C109.5H29A—C29—H29B109.5
H9B—C9—H9C109.5C28—C29—H29C109.5
C11—C10—C15121.9 (3)H29A—C29—H29C109.5
C11—C10—N5119.3 (3)H29B—C29—H29C109.5
C15—C10—N5118.8 (3)C28—C30—H30A109.5
C10—C11—C12116.5 (4)C28—C30—H30B109.5
C10—C11—C16123.5 (3)H30A—C30—H30B109.5
C12—C11—C16120.1 (4)C28—C30—H30C109.5
C13—C12—C11122.2 (5)H30A—C30—H30C109.5
C13—C12—H12118.9H30B—C30—H30C109.5
C11—C12—H12118.9C32—C31—C27112.0 (4)
C12—C13—C14120.7 (4)C32—C31—C33110.7 (5)
C12—C13—H13119.7C27—C31—C33111.0 (4)
C14—C13—H13119.7C32—C31—H31107.6
C13—C14—C15120.5 (5)C27—C31—H31107.6
C13—C14—H14119.8C33—C31—H31107.6
C15—C14—H14119.8C31—C32—H32A109.5
C14—C15—C10118.2 (4)C31—C32—H32B109.5
C14—C15—C19118.9 (4)H32A—C32—H32B109.5
C10—C15—C19122.9 (3)C31—C32—H32C109.5
C11—C16—C18111.3 (4)H32A—C32—H32C109.5
C11—C16—C17112.8 (4)H32B—C32—H32C109.5
C18—C16—C17109.8 (4)C31—C33—H33A109.5
C11—C16—H16107.6C31—C33—H33B109.5
C18—C16—H16107.6H33A—C33—H33B109.5
C17—C16—H16107.6C31—C33—H33C109.5
C16—C17—H17A109.5H33A—C33—H33C109.5
C16—C17—H17B109.5H33B—C33—H33C109.5
H17A—C17—H17B109.5

Experimental details

Crystal data
Chemical formula[Al(C29H41N2)(C2H2N2P)2]
Mr614.67
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.578 (4), 12.578 (5), 13.498 (5)
α, β, γ (°)92.059 (5), 98.766 (5), 96.516 (5)
V3)1760.8 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.35 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.940, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
7337, 6082, 4238
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.224, 1.02
No. of reflections6082
No. of parameters389
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.56

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds