Download citation
Download citation
link to html
In the mol­ecular structure of the title compound, C14H12ClNO, the meta-Cl atom in the benzoyl ring is positioned anti to the C=O bond, while the ortho-methyl group in the aniline ring is positioned syn to the N—H bond. The two benzene rings are nearly coplanar [dihedral angle = 3.48 (5)°]. The crystal structure is stabilized by N—H...O hydrogen bonds, which link the mol­ecules into chains along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811048756/bq2320sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811048756/bq2320Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536811048756/bq2320Isup3.cml
Supplementary material

CCDC reference: 858461

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.036
  • wR factor = 0.098
  • Data-to-parameter ratio = 15.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 7
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT063_ALERT_4_G Crystal Size Likely too Large for Beam Size .... 0.83 mm PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT870_ALERT_4_G ALERTS Related to Twinning Effects Suppressed .. ! PLAT931_ALERT_5_G Check Twin Law ( )[ 0 0 1] Estimated BASF 0.07 PLAT931_ALERT_5_G Check Twin Law ( 0 0 1)[ ] Estimated BASF 0.07
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 8 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check

Comment top

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000; Rodrigues et al., 2011; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylamides (Gowda et al., 1996), in the present work, the crystal structure of 3-Chloro-N-(2-methylphenyl)- benzamide (I) has been determined (Fig.1).

In (I), the N—H and C=O bonds in the C—NH—C(O)—C segment are anti to each other. The meta-Cl atom in the benzoyl ring is positioned anti to the C=O bond, while the ortho-methyl group in the anilino ring is positioned syn to the N—H bond, in contrast to the syn conformation observed between the meta-Cl atom in the benzoyl ring and the C=O bond in 3-Chloro-N-(3-methylphenyl)benzamide (II) (Rodrigues et al., 2011), while the meta-methyl group in the anilino ring is positioned anti to the N—H bond. Further, the two aromatic rings are nearly coplanar with the dihedral angle of 3.48 (5)°, compared to the value of 77.4 (1)° in (II).

In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the b-axis. Part of the crystal structure is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (2000); Rodrigues et al. (2011); Saeed et al. (2010), on N-(aryl)-methanesulfonamides, see: Jayalakshmi & Gowda (2004) on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on N-chloroarylamides, see: Gowda et al. (1996).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra.

Rod like colorless single crystals of the title compound used in x-ray diffraction studies were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All H atoms were visible in difference maps and then treated as riding atoms with C–H distances of 0.93 Å (C-aromatic), 0.96 Å (C-methyl) and N—H = 0.86 Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Structure description top

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000; Rodrigues et al., 2011; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylamides (Gowda et al., 1996), in the present work, the crystal structure of 3-Chloro-N-(2-methylphenyl)- benzamide (I) has been determined (Fig.1).

In (I), the N—H and C=O bonds in the C—NH—C(O)—C segment are anti to each other. The meta-Cl atom in the benzoyl ring is positioned anti to the C=O bond, while the ortho-methyl group in the anilino ring is positioned syn to the N—H bond, in contrast to the syn conformation observed between the meta-Cl atom in the benzoyl ring and the C=O bond in 3-Chloro-N-(3-methylphenyl)benzamide (II) (Rodrigues et al., 2011), while the meta-methyl group in the anilino ring is positioned anti to the N—H bond. Further, the two aromatic rings are nearly coplanar with the dihedral angle of 3.48 (5)°, compared to the value of 77.4 (1)° in (II).

In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the b-axis. Part of the crystal structure is shown in Fig. 2.

For the preparation of the title compound, see: Gowda et al. (2003). For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (2000); Rodrigues et al. (2011); Saeed et al. (2010), on N-(aryl)-methanesulfonamides, see: Jayalakshmi & Gowda (2004) on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on N-chloroarylamides, see: Gowda et al. (1996).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound. Molecular chains are generated by N—H···O hydrogen bonds which are shown by dashed lines.
3-Chloro-N-(2-methylphenyl)benzamide top
Crystal data top
C14H12ClNOF(000) = 512
Mr = 245.70Dx = 1.383 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7179 reflections
a = 11.1699 (5) Åθ = 3.4–26.4°
b = 4.9171 (2) ŵ = 0.31 mm1
c = 21.4778 (8) ÅT = 293 K
β = 90.339 (3)°Rod, colorless
V = 1179.63 (8) Å30.83 × 0.55 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2411 independent reflections
Radiation source: Enhance (Mo) X-ray Source2154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 10.4340 pixels mm-1θmax = 26.4°, θmin = 3.4°
ω scansh = 1313
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)]
k = 66
Tmin = 0.818, Tmax = 0.970l = 2626
22104 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.4496P]
where P = (Fo2 + 2Fc2)/3
2411 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H12ClNOV = 1179.63 (8) Å3
Mr = 245.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1699 (5) ŵ = 0.31 mm1
b = 4.9171 (2) ÅT = 293 K
c = 21.4778 (8) Å0.83 × 0.55 × 0.10 mm
β = 90.339 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2411 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)]
2154 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.970Rint = 0.050
22104 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
2411 reflectionsΔρmin = 0.24 e Å3
155 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.78713 (15)0.6810 (3)0.51026 (8)0.0347 (4)
C20.84225 (16)0.5801 (3)0.45112 (8)0.0342 (4)
C30.78692 (16)0.3823 (3)0.41438 (8)0.0357 (4)
H3A0.71500.30410.42670.043*
C40.84060 (17)0.3043 (3)0.35942 (8)0.0380 (4)
C50.94821 (18)0.4136 (4)0.34075 (9)0.0434 (4)
H5A0.98390.35630.30400.052*
C61.00224 (17)0.6092 (4)0.37740 (9)0.0452 (4)
H6A1.07500.68370.36520.054*
C70.94945 (17)0.6957 (4)0.43205 (8)0.0395 (4)
H7A0.98560.83080.45590.047*
C80.66916 (16)0.5439 (3)0.60171 (8)0.0333 (4)
C90.56240 (16)0.4044 (3)0.61282 (8)0.0362 (4)
C100.50367 (19)0.4563 (4)0.66843 (9)0.0483 (5)
H10A0.43270.36500.67690.058*
C110.5475 (2)0.6388 (5)0.71132 (9)0.0547 (5)
H11A0.50590.67120.74790.066*
C120.6531 (2)0.7737 (4)0.69999 (9)0.0513 (5)
H12A0.68310.89670.72900.062*
C130.71473 (18)0.7262 (4)0.64539 (8)0.0418 (4)
H13A0.78650.81590.63790.050*
C140.51064 (18)0.2054 (4)0.56700 (9)0.0446 (4)
H14C0.43360.14600.58110.053*
H14B0.56300.05150.56350.053*
H14A0.50220.29140.52710.053*
N10.73102 (13)0.4923 (3)0.54513 (6)0.0348 (3)
H1A0.73280.32690.53210.042*
O10.79372 (14)0.9221 (2)0.52456 (7)0.0504 (4)
Cl10.77036 (5)0.06380 (10)0.31224 (2)0.05338 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0383 (9)0.0273 (8)0.0386 (9)0.0012 (7)0.0004 (7)0.0005 (7)
C20.0385 (9)0.0286 (8)0.0356 (8)0.0035 (7)0.0020 (7)0.0037 (6)
C30.0392 (9)0.0319 (8)0.0361 (8)0.0009 (7)0.0040 (7)0.0026 (7)
C40.0462 (10)0.0328 (9)0.0348 (9)0.0036 (7)0.0019 (7)0.0011 (7)
C50.0481 (10)0.0468 (11)0.0353 (9)0.0062 (8)0.0088 (8)0.0017 (8)
C60.0383 (10)0.0503 (11)0.0469 (10)0.0025 (8)0.0074 (8)0.0069 (9)
C70.0415 (9)0.0370 (9)0.0401 (9)0.0023 (7)0.0002 (7)0.0013 (7)
C80.0386 (9)0.0278 (8)0.0336 (8)0.0039 (7)0.0019 (7)0.0005 (6)
C90.0406 (9)0.0313 (8)0.0369 (9)0.0024 (7)0.0002 (7)0.0004 (7)
C100.0485 (11)0.0481 (11)0.0484 (11)0.0019 (9)0.0127 (9)0.0004 (9)
C110.0669 (14)0.0582 (12)0.0393 (10)0.0033 (11)0.0142 (9)0.0078 (9)
C120.0666 (13)0.0481 (11)0.0392 (10)0.0016 (10)0.0026 (9)0.0138 (8)
C130.0449 (10)0.0374 (9)0.0429 (10)0.0016 (8)0.0011 (8)0.0074 (8)
C140.0440 (10)0.0418 (10)0.0479 (10)0.0062 (8)0.0002 (8)0.0041 (8)
N10.0439 (8)0.0258 (6)0.0348 (7)0.0000 (6)0.0058 (6)0.0047 (5)
O10.0717 (10)0.0252 (6)0.0547 (8)0.0019 (6)0.0158 (7)0.0037 (5)
Cl10.0666 (3)0.0502 (3)0.0434 (3)0.0055 (2)0.0005 (2)0.0113 (2)
Geometric parameters (Å, º) top
C1—O11.227 (2)C8—C91.398 (3)
C1—N11.349 (2)C8—N11.424 (2)
C1—C21.499 (2)C9—C101.390 (3)
C2—C71.389 (3)C9—C141.501 (2)
C2—C31.395 (2)C10—C111.374 (3)
C3—C41.381 (2)C10—H10A0.9300
C3—H3A0.9300C11—C121.376 (3)
C4—C51.378 (3)C11—H11A0.9300
C4—Cl11.7412 (18)C12—C131.383 (3)
C5—C61.380 (3)C12—H12A0.9300
C5—H5A0.9300C13—H13A0.9300
C6—C71.384 (3)C14—H14C0.9600
C6—H6A0.9300C14—H14B0.9600
C7—H7A0.9300C14—H14A0.9600
C8—C131.392 (2)N1—H1A0.8600
O1—C1—N1123.60 (16)C10—C9—C8117.66 (17)
O1—C1—C2120.50 (16)C10—C9—C14120.08 (17)
N1—C1—C2115.91 (14)C8—C9—C14122.26 (16)
C7—C2—C3119.89 (16)C11—C10—C9121.86 (19)
C7—C2—C1118.25 (16)C11—C10—H10A119.1
C3—C2—C1121.82 (16)C9—C10—H10A119.1
C4—C3—C2118.93 (17)C10—C11—C12119.91 (18)
C4—C3—H3A120.5C10—C11—H11A120.0
C2—C3—H3A120.5C12—C11—H11A120.0
C5—C4—C3121.61 (17)C11—C12—C13119.99 (18)
C5—C4—Cl1119.08 (14)C11—C12—H12A120.0
C3—C4—Cl1119.31 (14)C13—C12—H12A120.0
C4—C5—C6119.01 (17)C12—C13—C8119.91 (18)
C4—C5—H5A120.5C12—C13—H13A120.0
C6—C5—H5A120.5C8—C13—H13A120.0
C5—C6—C7120.75 (18)C9—C14—H14C109.5
C5—C6—H6A119.6C9—C14—H14B109.5
C7—C6—H6A119.6H14C—C14—H14B109.5
C6—C7—C2119.78 (17)C9—C14—H14A109.5
C6—C7—H7A120.1H14C—C14—H14A109.5
C2—C7—H7A120.1H14B—C14—H14A109.5
C13—C8—C9120.67 (16)C1—N1—C8125.45 (14)
C13—C8—N1120.84 (16)C1—N1—H1A117.3
C9—C8—N1118.48 (15)C8—N1—H1A117.3
O1—C1—C2—C736.2 (2)N1—C8—C9—C10179.64 (16)
N1—C1—C2—C7144.13 (16)C13—C8—C9—C14179.74 (17)
O1—C1—C2—C3141.61 (19)N1—C8—C9—C140.6 (3)
N1—C1—C2—C338.0 (2)C8—C9—C10—C110.3 (3)
C7—C2—C3—C40.2 (3)C14—C9—C10—C11179.4 (2)
C1—C2—C3—C4177.98 (15)C9—C10—C11—C120.7 (3)
C2—C3—C4—C51.2 (3)C10—C11—C12—C130.3 (3)
C2—C3—C4—Cl1178.37 (13)C11—C12—C13—C80.6 (3)
C3—C4—C5—C61.2 (3)C9—C8—C13—C121.0 (3)
Cl1—C4—C5—C6178.37 (15)N1—C8—C13—C12179.91 (17)
C4—C5—C6—C70.2 (3)O1—C1—N1—C81.9 (3)
C5—C6—C7—C21.6 (3)C2—C1—N1—C8177.71 (15)
C3—C2—C7—C61.5 (3)C13—C8—N1—C140.0 (3)
C1—C2—C7—C6179.42 (16)C9—C8—N1—C1140.87 (17)
C13—C8—C9—C100.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.112.9237 (18)158
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.1699 (5), 4.9171 (2), 21.4778 (8)
β (°) 90.339 (3)
V3)1179.63 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.83 × 0.55 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)]
Tmin, Tmax0.818, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
22104, 2411, 2154
Rint0.050
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.04
No. of reflections2411
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2002), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.112.9237 (18)157.6
Symmetry code: (i) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds