In the title compound, C
15H
14BrNO
3S
2, the 2
H-chromene ring system is nearly planar, with a maximum deviation of 0.034 (2) Å, and the morpholine ring adopts a chair conformation. The dihedral angle between best plane through the 2
H-chromene ring system and the morpholine ring is 86.32 (9)°. Intramolecular C—H

S hydrogen bonds are observed. In the crystal, inversion-related C—H

S and C—H

O interactions generate
R22(10) and
R22(8) rings patterns, respectively. In addition, the crystal packing features π–π interactions between fused benzene rings [centroid–centroid distance = 3.7558 (12) Å].
Supporting information
CCDC reference: 1405247
Key indicators
- Single-crystal X-ray study
- T = 296 K
- Mean
(C-C) = 0.003 Å
- R factor = 0.026
- wR factor = 0.065
- Data-to-parameter ratio = 16.2
checkCIF/PLATON results
No syntax errors found
Alert level C
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 14 Report
Alert level G
PLAT154_ALERT_1_G The su's on the Cell Angles are Equal .......... 0.00200 Degree
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Th(Min) ... 1 Report
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
1 ALERT level C = Check. Ensure it is not caused by an omission or oversight
2 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
0 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
All the chemicals used were of analytical reagent grade and were used directly
without further purification. The title compound was synthesized according to
the reported method (Devarajegowda et al., 2013). The compound
is
recrystallized by ethanol-chloroform mixture. Colourless needles of the title
compound were grown from a mixed solution of Ethanol/Chloroform (V/V = 2/1) by
slow evaporation at room temperature. Yield =72%, m.p.: 433–435 K
All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H
and C—H = 0.97 Å for methylene H and refined using a riding model with
Uiso(H) = 1.2Ueq(C) for aromatic and methylene H.
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).
(6-Bromo-2-oxo-2
H-chromen-4-yl)methyl morpholine-4-carbodithioate
top
Crystal data top
C15H14BrNO3S2 | F(000) = 404 |
Mr = 400.30 | Dx = 1.704 Mg m−3 |
Triclinic, P1 | Melting point: 435 K |
a = 7.0500 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.6049 (3) Å | Cell parameters from 3224 reflections |
c = 15.1376 (7) Å | θ = 2.7–26.5° |
α = 78.782 (2)° | µ = 2.91 mm−1 |
β = 88.549 (2)° | T = 296 K |
γ = 78.515 (2)° | Plate, colourless |
V = 780.07 (6) Å3 | 0.24 × 0.20 × 0.12 mm |
Z = 2 | |
Data collection top
Bruker SMART CCD area-detector diffractometer | 3224 independent reflections |
Radiation source: fine-focus sealed tube | 2806 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω and ϕ scans | θmax = 26.5°, θmin = 2.7° |
Absorption correction: ψ scan (SADABS; Sheldrick, 2007) | h = −8→8 |
Tmin = 0.770, Tmax = 1.000 | k = −9→9 |
13789 measured reflections | l = −18→18 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0328P)2 + 0.2957P] where P = (Fo2 + 2Fc2)/3 |
3224 reflections | (Δ/σ)max = 0.001 |
199 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
Crystal data top
C15H14BrNO3S2 | γ = 78.515 (2)° |
Mr = 400.30 | V = 780.07 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.0500 (3) Å | Mo Kα radiation |
b = 7.6049 (3) Å | µ = 2.91 mm−1 |
c = 15.1376 (7) Å | T = 296 K |
α = 78.782 (2)° | 0.24 × 0.20 × 0.12 mm |
β = 88.549 (2)° | |
Data collection top
Bruker SMART CCD area-detector diffractometer | 3224 independent reflections |
Absorption correction: ψ scan (SADABS; Sheldrick, 2007) | 2806 reflections with I > 2σ(I) |
Tmin = 0.770, Tmax = 1.000 | Rint = 0.027 |
13789 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.26 e Å−3 |
3224 reflections | Δρmin = −0.43 e Å−3 |
199 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Br1 | 0.19477 (3) | 0.33461 (3) | 0.89681 (2) | 0.05002 (9) | |
S2 | 0.70559 (7) | 0.58659 (7) | 0.62666 (3) | 0.03418 (12) | |
S3 | 1.06683 (7) | 0.72703 (8) | 0.56091 (3) | 0.03905 (13) | |
O6 | 0.5420 (2) | 0.9077 (2) | 0.29823 (10) | 0.0520 (4) | |
O4 | 0.6263 (2) | 0.94245 (19) | 0.89038 (9) | 0.0404 (3) | |
O5 | 0.8534 (3) | 1.0955 (2) | 0.84135 (14) | 0.0650 (5) | |
N7 | 0.7479 (2) | 0.7625 (2) | 0.46382 (10) | 0.0303 (3) | |
C8 | 0.3315 (3) | 0.5266 (3) | 0.89259 (13) | 0.0373 (4) | |
C9 | 0.4939 (3) | 0.5289 (3) | 0.84039 (12) | 0.0337 (4) | |
H9 | 0.5346 | 0.4379 | 0.8070 | 0.040* | |
C10 | 0.5976 (3) | 0.6687 (2) | 0.83777 (11) | 0.0299 (4) | |
C11 | 0.5313 (3) | 0.8021 (3) | 0.88881 (12) | 0.0345 (4) | |
C12 | 0.3686 (3) | 0.7987 (3) | 0.94128 (14) | 0.0441 (5) | |
H12 | 0.3272 | 0.8889 | 0.9750 | 0.053* | |
C13 | 0.2683 (3) | 0.6601 (3) | 0.94310 (14) | 0.0450 (5) | |
H13 | 0.1585 | 0.6561 | 0.9782 | 0.054* | |
C14 | 0.7717 (3) | 0.6820 (2) | 0.78610 (11) | 0.0302 (4) | |
C15 | 0.8595 (3) | 0.8222 (3) | 0.78884 (14) | 0.0381 (4) | |
H15 | 0.9729 | 0.8289 | 0.7567 | 0.046* | |
C16 | 0.7858 (3) | 0.9630 (3) | 0.83943 (15) | 0.0428 (5) | |
C17 | 0.8495 (3) | 0.5444 (3) | 0.72867 (12) | 0.0328 (4) | |
H17A | 0.8481 | 0.4223 | 0.7622 | 0.039* | |
H17B | 0.9826 | 0.5515 | 0.7133 | 0.039* | |
C18 | 0.8436 (2) | 0.7021 (2) | 0.54254 (12) | 0.0275 (4) | |
C19 | 0.5618 (3) | 0.7172 (3) | 0.44561 (14) | 0.0392 (5) | |
H19A | 0.4913 | 0.6973 | 0.5014 | 0.047* | |
H19B | 0.5848 | 0.6047 | 0.4223 | 0.047* | |
C20 | 0.4422 (3) | 0.8674 (3) | 0.37879 (14) | 0.0418 (5) | |
H20A | 0.3232 | 0.8309 | 0.3659 | 0.050* | |
H20B | 0.4081 | 0.9764 | 0.4047 | 0.050* | |
C21 | 0.7118 (3) | 0.9691 (4) | 0.31608 (16) | 0.0503 (6) | |
H21A | 0.6753 | 1.0799 | 0.3403 | 0.060* | |
H21B | 0.7785 | 0.9988 | 0.2600 | 0.060* | |
C22 | 0.8474 (3) | 0.8295 (3) | 0.38134 (13) | 0.0381 (4) | |
H22A | 0.9027 | 0.7273 | 0.3530 | 0.046* | |
H22B | 0.9525 | 0.8835 | 0.3969 | 0.046* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Br1 | 0.04201 (14) | 0.05131 (15) | 0.05488 (15) | −0.01752 (10) | −0.00222 (10) | 0.00309 (10) |
S2 | 0.0345 (2) | 0.0421 (3) | 0.0294 (2) | −0.0157 (2) | 0.00236 (18) | −0.00731 (19) |
S3 | 0.0262 (2) | 0.0502 (3) | 0.0414 (3) | −0.0118 (2) | −0.00145 (19) | −0.0059 (2) |
O6 | 0.0422 (8) | 0.0743 (11) | 0.0365 (8) | −0.0190 (8) | −0.0082 (6) | 0.0050 (7) |
O4 | 0.0543 (9) | 0.0348 (7) | 0.0348 (7) | −0.0096 (6) | −0.0005 (6) | −0.0120 (6) |
O5 | 0.0792 (13) | 0.0475 (10) | 0.0813 (13) | −0.0312 (9) | 0.0080 (10) | −0.0262 (9) |
N7 | 0.0259 (7) | 0.0327 (8) | 0.0322 (8) | −0.0083 (6) | 0.0005 (6) | −0.0036 (6) |
C8 | 0.0350 (10) | 0.0413 (11) | 0.0321 (10) | −0.0085 (9) | −0.0031 (8) | 0.0025 (8) |
C9 | 0.0386 (10) | 0.0339 (10) | 0.0278 (9) | −0.0064 (8) | −0.0018 (8) | −0.0047 (7) |
C10 | 0.0356 (9) | 0.0293 (9) | 0.0225 (8) | −0.0036 (7) | −0.0026 (7) | −0.0022 (7) |
C11 | 0.0438 (11) | 0.0321 (10) | 0.0260 (9) | −0.0038 (8) | −0.0029 (8) | −0.0052 (7) |
C12 | 0.0507 (12) | 0.0463 (12) | 0.0335 (10) | −0.0010 (10) | 0.0067 (9) | −0.0133 (9) |
C13 | 0.0392 (11) | 0.0562 (14) | 0.0358 (11) | −0.0049 (10) | 0.0067 (9) | −0.0052 (10) |
C14 | 0.0330 (9) | 0.0296 (9) | 0.0256 (8) | −0.0035 (7) | −0.0032 (7) | −0.0018 (7) |
C15 | 0.0382 (10) | 0.0375 (11) | 0.0395 (10) | −0.0099 (8) | 0.0014 (8) | −0.0073 (8) |
C16 | 0.0522 (13) | 0.0352 (11) | 0.0422 (11) | −0.0112 (9) | −0.0040 (10) | −0.0072 (9) |
C17 | 0.0335 (10) | 0.0327 (10) | 0.0304 (9) | −0.0033 (8) | 0.0009 (7) | −0.0054 (8) |
C18 | 0.0269 (9) | 0.0238 (8) | 0.0325 (9) | −0.0037 (7) | 0.0026 (7) | −0.0089 (7) |
C19 | 0.0309 (10) | 0.0447 (12) | 0.0419 (11) | −0.0153 (9) | −0.0047 (8) | 0.0005 (9) |
C20 | 0.0305 (10) | 0.0471 (12) | 0.0449 (11) | −0.0067 (9) | −0.0030 (8) | −0.0022 (9) |
C21 | 0.0423 (12) | 0.0611 (15) | 0.0435 (12) | −0.0203 (11) | −0.0036 (9) | 0.0103 (11) |
C22 | 0.0293 (9) | 0.0480 (12) | 0.0356 (10) | −0.0085 (9) | 0.0050 (8) | −0.0044 (9) |
Geometric parameters (Å, º) top
Br1—C8 | 1.894 (2) | C12—C13 | 1.377 (3) |
S2—C18 | 1.7839 (18) | C12—H12 | 0.9300 |
S2—C17 | 1.8095 (19) | C13—H13 | 0.9300 |
S3—C18 | 1.6585 (18) | C14—C15 | 1.343 (3) |
O6—C20 | 1.405 (3) | C14—C17 | 1.501 (3) |
O6—C21 | 1.418 (3) | C15—C16 | 1.442 (3) |
O4—C16 | 1.365 (3) | C15—H15 | 0.9300 |
O4—C11 | 1.373 (2) | C17—H17A | 0.9700 |
O5—C16 | 1.202 (3) | C17—H17B | 0.9700 |
N7—C18 | 1.338 (2) | C19—C20 | 1.500 (3) |
N7—C19 | 1.466 (2) | C19—H19A | 0.9700 |
N7—C22 | 1.470 (2) | C19—H19B | 0.9700 |
C8—C9 | 1.376 (3) | C20—H20A | 0.9700 |
C8—C13 | 1.385 (3) | C20—H20B | 0.9700 |
C9—C10 | 1.400 (3) | C21—C22 | 1.501 (3) |
C9—H9 | 0.9300 | C21—H21A | 0.9700 |
C10—C11 | 1.394 (3) | C21—H21B | 0.9700 |
C10—C14 | 1.448 (3) | C22—H22A | 0.9700 |
C11—C12 | 1.380 (3) | C22—H22B | 0.9700 |
| | | |
C18—S2—C17 | 104.28 (9) | C14—C17—S2 | 110.63 (13) |
C20—O6—C21 | 109.57 (16) | C14—C17—H17A | 109.5 |
C16—O4—C11 | 121.90 (15) | S2—C17—H17A | 109.5 |
C18—N7—C19 | 123.45 (15) | C14—C17—H17B | 109.5 |
C18—N7—C22 | 121.02 (15) | S2—C17—H17B | 109.5 |
C19—N7—C22 | 112.94 (15) | H17A—C17—H17B | 108.1 |
C9—C8—C13 | 121.3 (2) | N7—C18—S3 | 124.57 (14) |
C9—C8—Br1 | 119.16 (16) | N7—C18—S2 | 112.39 (13) |
C13—C8—Br1 | 119.54 (16) | S3—C18—S2 | 123.03 (11) |
C8—C9—C10 | 119.64 (18) | N7—C19—C20 | 111.25 (16) |
C8—C9—H9 | 120.2 | N7—C19—H19A | 109.4 |
C10—C9—H9 | 120.2 | C20—C19—H19A | 109.4 |
C11—C10—C9 | 118.19 (18) | N7—C19—H19B | 109.4 |
C11—C10—C14 | 117.86 (17) | C20—C19—H19B | 109.4 |
C9—C10—C14 | 123.94 (17) | H19A—C19—H19B | 108.0 |
O4—C11—C12 | 116.55 (18) | O6—C20—C19 | 111.60 (17) |
O4—C11—C10 | 121.57 (18) | O6—C20—H20A | 109.3 |
C12—C11—C10 | 121.87 (19) | C19—C20—H20A | 109.3 |
C13—C12—C11 | 119.2 (2) | O6—C20—H20B | 109.3 |
C13—C12—H12 | 120.4 | C19—C20—H20B | 109.3 |
C11—C12—H12 | 120.4 | H20A—C20—H20B | 108.0 |
C12—C13—C8 | 119.8 (2) | O6—C21—C22 | 112.72 (18) |
C12—C13—H13 | 120.1 | O6—C21—H21A | 109.0 |
C8—C13—H13 | 120.1 | C22—C21—H21A | 109.0 |
C15—C14—C10 | 118.75 (17) | O6—C21—H21B | 109.0 |
C15—C14—C17 | 120.61 (18) | C22—C21—H21B | 109.0 |
C10—C14—C17 | 120.62 (16) | H21A—C21—H21B | 107.8 |
C14—C15—C16 | 122.92 (19) | N7—C22—C21 | 111.57 (16) |
C14—C15—H15 | 118.5 | N7—C22—H22A | 109.3 |
C16—C15—H15 | 118.5 | C21—C22—H22A | 109.3 |
O5—C16—O4 | 117.3 (2) | N7—C22—H22B | 109.3 |
O5—C16—C15 | 125.9 (2) | C21—C22—H22B | 109.3 |
O4—C16—C15 | 116.84 (18) | H22A—C22—H22B | 108.0 |
| | | |
C13—C8—C9—C10 | −0.2 (3) | C11—O4—C16—O5 | 176.05 (19) |
Br1—C8—C9—C10 | −179.11 (13) | C11—O4—C16—C15 | −4.6 (3) |
C8—C9—C10—C11 | 0.0 (3) | C14—C15—C16—O5 | −176.7 (2) |
C8—C9—C10—C14 | 179.09 (17) | C14—C15—C16—O4 | 4.1 (3) |
C16—O4—C11—C12 | −178.20 (18) | C15—C14—C17—S2 | −102.79 (18) |
C16—O4—C11—C10 | 2.7 (3) | C10—C14—C17—S2 | 75.62 (18) |
C9—C10—C11—O4 | 179.34 (16) | C18—S2—C17—C14 | 100.78 (14) |
C14—C10—C11—O4 | 0.2 (3) | C19—N7—C18—S3 | 171.30 (15) |
C9—C10—C11—C12 | 0.3 (3) | C22—N7—C18—S3 | 10.9 (3) |
C14—C10—C11—C12 | −178.90 (18) | C19—N7—C18—S2 | −7.7 (2) |
O4—C11—C12—C13 | −179.37 (18) | C22—N7—C18—S2 | −168.15 (14) |
C10—C11—C12—C13 | −0.3 (3) | C17—S2—C18—N7 | −173.01 (13) |
C11—C12—C13—C8 | 0.0 (3) | C17—S2—C18—S3 | 7.95 (14) |
C9—C8—C13—C12 | 0.2 (3) | C18—N7—C19—C20 | 150.27 (18) |
Br1—C8—C13—C12 | 179.12 (16) | C22—N7—C19—C20 | −47.9 (2) |
C11—C10—C14—C15 | −0.7 (3) | C21—O6—C20—C19 | −61.6 (2) |
C9—C10—C14—C15 | −179.84 (17) | N7—C19—C20—O6 | 56.1 (2) |
C11—C10—C14—C17 | −179.15 (16) | C20—O6—C21—C22 | 59.8 (3) |
C9—C10—C14—C17 | 1.7 (3) | C18—N7—C22—C21 | −151.82 (19) |
C10—C14—C15—C16 | −1.5 (3) | C19—N7—C22—C21 | 45.8 (2) |
C17—C14—C15—C16 | 176.98 (18) | O6—C21—C22—N7 | −51.9 (3) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17A···O5i | 0.97 | 2.53 | 3.501 (2) | 176 |
C17—H17B···S3 | 0.97 | 2.55 | 3.1633 (16) | 121 |
C19—H19A···S2 | 0.97 | 2.37 | 2.864 (2) | 111 |
C22—H22B···S3 | 0.97 | 2.61 | 3.0486 (19) | 108 |
Symmetry code: (i) x, y−1, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17A···O5i | 0.97 | 2.5300 | 3.501 (2) | 176 |
C17—H17B···S3 | 0.97 | 2.5500 | 3.1633 (16) | 121 |
C19—H19A···S2 | 0.97 | 2.3700 | 2.864 (2) | 111 |
C22—H22B···S3 | 0.97 | 2.6100 | 3.0486 (19) | 108 |
Symmetry code: (i) x, y−1, z. |
In recent years, much attention has been directed towards the synthesis of substituted coumarins owing to their tremendous application in various research fields including biological science and medicinal chemistry. Substituted coumarin derivatives are components of numerous natural products like warfarin, phenprocoumon, coumatetralyl, carbochromen, bromadialone, etc. These compounds also exhibit a wide band of biological activities including antibacterial, anti-HIV (Hesse & Kirsch, 2002), antiviral (Lee et al., 1998), anticoagulant (Jung et al., 2001), antioxidant (Melagraki et al., 2009) and anticancer activities (Jung et al.,(2004). Carbon–sulfur bond formation is a fundamental approach to bring sulfur into organic compounds, and this has received much attention due to its occurrence in many molecules that are of biological and pharmaceutical importance. The antibacterial and antifungal activities of dithiocarbamates were reported to arise by the reaction with HS-groups of the physiologically important enzymes by transferring the alkyl group of the dithioester to the HS-function of the enzyme (Schönenberger & Lippert, 1972). Organic dithiocarbamates, ubiquitously found in a variety of biologically active molecules (Dhooghe & De Kimpe, 2006), are of high importance in academia as well as in industry.
In view of the various physiological activities of coumarins and dithiocarbamates, our current studies are focused on the development of new routes for the synthesis of coumarins incorporating dithiocarbamate moieties.
The asymmetric unit of (6-bromo-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodi thioate is shown in Fig. 1. The 2H-chromene ring systems is nearly planar, with a maximum deviation of 0.0337 (23) Å for the atom C16 and the morpholine ring adopts a chair conformation. The dihedral angle between the 2H-chromene ring and the morpholine ring is 86.32 (9) °. In the crystal structure, intermolecular C—H···O and intramolecular C–H···S hydrogen bonds are observed (Table 1) and inversion related C—H···S and C—H···O interactions generate R2 2(10) and R2 2(8) rings pattern respectively. In addition, the crystal packing is stabilized by π–π [Cg (3)– Cg(3);C8–C13] interactions between fused benzene rings [centroid- centroid distance = 3.7558 (12)].