Download citation
Download citation
link to html
Single crystals of octaiodine henacosarsenic pentacosagermanium were grown by chemical transport reactions. The structure is isotypic with the analogous clathrates-I. In this structure, the statistically occupied clathrand atoms (As,Ge)46 form bonds in a distorted tetra­hedral coordination and their arrangement can define two polyhedra of different sizes; one is an (As,Ge)20 penta­gonal dodeca­hedron, and the other is an (As,Ge)24 tetra­kaideca­hedron. The guest atom (iodine) resides inside these polyhedra with site symmetry m3 (Wyckoff position 2a) and \overline{4}2m (Wyckoff position 6d), respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809004991/br2095sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809004991/br2095Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma]() = 0.000 Å
  • Disorder in main residue
  • R factor = 0.030
  • wR factor = 0.037
  • Data-to-parameter ratio = 40.4

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT301_ALERT_3_A Main Residue Disorder ......................... 89.00 Perc.
Author Response: Structure refinement shows a statistical occupation of the framework positions 6c, 16i and 24k within the space group Pm3-n. All the Ge/As sites were refined with a total occupancy constrained to unity, see_publ_section_exptl_refinement.

Alert level C ABSMU01_ALERT_1_C The ratio of given/expected absorption coefficient lies outside the range 0.99 <> 1.01 Calculated value of mu = 35.205 Value of mu given = 34.296 Value of measurement temperature given = 293.000 Value of melting point given = 0.000 PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT051_ALERT_1_C Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by . 2.65 Perc. PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT951_ALERT_1_C Reported and Calculated Kmax Values Differ by .. 6
Alert level G ABSTM02_ALERT_3_G The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.137 0.330 Tmin and Tmax expected: 0.091 0.301 RR = 1.378 Please check that your absorption correction is appropriate. REFLT03_ALERT_1_G ALERT: Expected hkl max differ from CIF values From the CIF: _diffrn_reflns_theta_max 38.00 From the CIF: _reflns_number_total 606 From the CIF: _diffrn_reflns_limit_ max hkl 18. 10. 17. From the CIF: _diffrn_reflns_limit_ min hkl -17. -12. -10. TEST1: Expected hkl limits for theta max Calculated maximum hkl 18. 18. 18. Calculated minimum hkl -18. -18. -18. PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
1 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Les clathrates-I de germanium en particulier ceux encapsulant des halogènes ont connus un regain d'intérêt au cours de ces dernières années, essentiellement en raison de leurs propriétés semiconductrices (Chu et al., 1982) et thermoélectriques très prometteuses (Kishimoto et al., 2006). Les premiers clathrates de ce type synthétisés sont de formulation M8A8Ge38 (M: halogènes, A: P, As, Sb) (Menke & von Schnering, 1973) suivi par l'iodide avec I8Ge46-xIx (x = 8/3) (Nesper et al., 1986). Les structures de ces clathrates ont été déterminées par isotypie aux hydrates de gaz correspondants (Pauling & Marsh, 1952). Dans la structure du composé I8As21Ge25 tous les atomes clathrands (Ge,As)46 forment des chaînes tétraédriques légèrement distordues, le réseau est alors décrit par la juxtaposition de deux types de polyèdres: les dodécaèdres pentagonaux (Ge,As)20 et les tétrakaīdècaèdres (Ge,As)24. Les sommets de ces polyèdres sont occupés par les atomes de germanium et d'arsenic, alors que les atomes d'iode se logent aux centres des cavités formées par ces deux types de polyèdres. Les distances entre atomes clathrands [2.4456 (6)–2.4925 (9) Å] sont légèrement supérieures à celle observées dans la structure germanium type diamant 2.4498 Å, mais comparables à celles obtenues dans I8As8Ge38 [2.4457 (6)–2.4925 (9) Å] (Menke & von Schnering, 1973), ou dans d'autres combinaisons avec le dimère AsGe [2.4457 (6)–2.4925 (9) Å] (Shreeve-Keyer et al., 1997). Les angles de liaisons entre atomes clathrands [104.13 (3)–124.91 (3) °] sont similaires à ceux d'une hybridation sp3 dans la structure germanium type diamant. Enfin, il faut noter que l'agitation thermique (ADP's) autour de l'atome I2 (site 6d) est comparable à celles des autres atomes constituants le clathrate, ce n'est pas le cas de nombreux clathrates au germanium où l'agitation thermique autour de M2 (M: métaux alcalins, Eu) est beaucoup plus large (Nolas et al., 2000).

Related literature top

La synthèse en phase vapeur des premiers clathrates M8A8Ge38 (M = halogènes, A = P, As, Sb) est décrite par Menke & von Schnering (1973). Les structures sont isotypes aux hydrates de gaz correspondants (Pauling & Marsh, 1952). Pour les propriétés semiconductrices et thermoélectriques, voir respectivement Chu et al. (1982) et Kishimoto et al. (2006). Pour les propriétés structurales et la conductivité thermique de M8A16Ge30 (M = Sr, Eu), voir Nolas et al. (2000). Pour autres composées d'intérêt, voir Nespa et al. (1986) et Shreeve-Keyer et al. (1997).

Experimental top

Les monocristaux de I8As21Ge25 ont été élaborés par transport en phase vapeur à partir d'un mélange stoechiométrique des éléments purs. Le mélange est chauffé dans un tube en quartz scellé pendant 4 jours à 1133 K. Le composé obtenu en fin de réaction est constitué de cristaux stables de forme cubique.

Refinement top

La structure a été déterminée par isotypie aux clathrates-I dans le groupe d'espace Pm3n avec une occupation statistique des sites 6c, 16i et 24k par les atomes de germanium et d'arsenic. Tous les sites mixtes Ge/As ont été affinés avec une contrainte d'occupation totale égale à l'unité; donnant enfin d'affinement la formulation I8As21Ge25 dont la composition atomique [I(at.%) = 14.81, As(at.%) = 38.88, Ge(at.%) = 46.3] est proche de celle déduite par analyse chimique au MEB [I(at.%) = 14.10, As(at.%) = 41.48, Ge(at.%) = 44.41].

Computing details top

Data collection: KappaCCD Software (Nonius, 1998); cell refinement: KappaCCD Software (Nonius, 1998); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: coordinates taken from analogous clathrates-I (Reference?); program(s) used to refine structure: JANA2000 (Petříček & Dušek, 2000); molecular graphics: GRETEP (Laugier & Bochu, 2002); software used to prepare material for publication: JANA2000 (Petříček & Dušek, 2000).

Figures top
[Figure 1] Fig. 1. Projection de la structure de I8As21Ge25 sur le plan (100) montrant les atomes d'Iode (en rouge); d'Arsenic (en bleu) et de Germanium (en gris), avec un déplacement des ellipsoīdes à 90% de probabilité.
octaiodine henacosarsenic pentacosagermanium top
Crystal data top
I8As21Ge25Dx = 6.143 (1) Mg m3
Mr = 4403Mo Kα radiation, λ = 0.71069 Å
Cubic, Pm3nCell parameters from 25 reflections
Hall symbol: -P 4n 2 3θ = 6.1–38.0°
a = 10.5963 (6) ŵ = 34.30 mm1
V = 1189.77 (13) Å3T = 293 K
Z = 1Cubic, colourless
F(000) = 19170.08 × 0.07 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
606 independent reflections
Radiation source: fine-focus sealed tube454 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.064
ϕ scansθmax = 38.0°, θmin = 6.1°
Absorption correction: gaussian
(JANA2000; Petříček & Dušek, 2000)
h = 1718
Tmin = 0.137, Tmax = 0.330k = 1210
5499 measured reflectionsl = 1017
Refinement top
Refinement on F3 restraints
R[F2 > 2σ(F2)] = 0.030Weighting scheme based on measured s.u.'s w = 1/[σ2(F) + 0.0001F2]
wR(F2) = 0.037(Δ/σ)max = 0.0001
S = 1.75Δρmax = 2.48 e Å3
606 reflectionsΔρmin = 3.60 e Å3
15 parameters
Crystal data top
I8As21Ge25Z = 1
Mr = 4403Mo Kα radiation
Cubic, Pm3nµ = 34.30 mm1
a = 10.5963 (6) ÅT = 293 K
V = 1189.77 (13) Å30.08 × 0.07 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
606 independent reflections
Absorption correction: gaussian
(JANA2000; Petříček & Dušek, 2000)
454 reflections with I > 3σ(I)
Tmin = 0.137, Tmax = 0.330Rint = 0.064
5499 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03015 parameters
wR(F2) = 0.0373 restraints
S = 1.75Δρmax = 2.48 e Å3
606 reflectionsΔρmin = 3.60 e Å3
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors are based on F, with F set to zero for negative F2. The threshold expression of F2 > n*σ(F2) is used only for calculating R-factors etc. and is not relevant to the choice of reflections for refinement. The program used for refinement, Jana2000, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger then the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10000.01086 (12)
I20.250.500.01537 (14)
Ge300.31029 (6)0.11761 (6)0.01180 (15)0.971 (4)
As300.31029 (6)0.11761 (6)0.01180 (15)0.029 (4)
As20.18337 (4)0.18337 (4)0.18337 (4)0.01082 (8)0.900 (4)
Ge20.18337 (4)0.18337 (4)0.18337 (4)0.01082 (8)0.100 (4)
As10.2500.50.0144 (2)0.966 (8)
Ge10.2500.50.0144 (2)0.034 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0109 (2)0.0109 (2)0.0109 (2)000
I20.0110 (3)0.0176 (2)0.0176 (2)000
Ge30.0112 (3)0.0129 (3)0.0113 (3)000.0009 (2)
As30.0112 (3)0.0129 (3)0.0113 (3)000.0009 (2)
As20.01082 (14)0.01082 (14)0.01082 (14)0.00079 (13)0.00079 (13)0.00079 (13)
Ge20.01082 (14)0.01082 (14)0.01082 (14)0.00079 (13)0.00079 (13)0.00079 (13)
As10.0152 (5)0.0140 (3)0.0140 (3)000
Ge10.0152 (5)0.0140 (3)0.0140 (3)000
Geometric parameters (Å, º) top
I1—Ge33.5161 (7)I2—Ge33.5513 (4)
I1—Ge3i3.5161 (7)I2—Ge3xvi3.5513 (4)
I1—Ge3ii3.5161 (7)I2—Ge3xvii3.5513 (4)
I1—Ge3iii3.5161 (7)I2—Ge3v3.5513 (4)
I1—Ge3iv3.5161 (7)I2—Ge3xviii3.5513 (4)
I1—Ge3v3.5161 (7)I2—Ge3xix3.5513 (4)
I1—Ge3vi3.5161 (7)I2—Ge3xx3.5513 (4)
I1—Ge3vii3.5161 (7)I2—Ge3xxi3.5513 (4)
I1—Ge3viii3.5161 (7)I2—As1xxii3.7464 (2)
I1—Ge3ix3.5161 (7)I2—As1xxiii3.7464 (2)
I1—Ge3x3.5161 (7)I2—As1xxiv3.7464 (2)
I1—Ge3xi3.5161 (7)I2—As1xxv3.7464 (2)
I1—As23.3655 (4)Ge3—Ge3v2.4925 (9)
I1—As2i3.3655 (4)Ge3—As22.4636 (6)
I1—As2xii3.3655 (4)Ge3—As2xiii2.4636 (6)
I1—As2xiii3.3655 (4)Ge3—As1xxv2.4513 (7)
I1—As2iv3.3655 (4)As2—As2xiii3.8862 (6)
I1—As2v3.3655 (4)As2—As2v3.8862 (6)
I1—As2xiv3.3655 (4)As2—As2xv3.8862 (6)
I1—As2xv3.3655 (4)As2—As2xxvi2.4457 (6)
Ge3—I1—Ge3i180As2xiii—I1—As2i109.471 (10)
Ge3—I1—Ge3ii70.644 (10)As2xiii—I1—As2xii180
Ge3—I1—Ge3iii109.356 (10)As2xiii—I1—As2iv70.529 (10)
Ge3—I1—Ge3iv138.482 (15)As2xiii—I1—As2v109.471 (10)
Ge3—I1—Ge3vi70.644 (10)As2xiii—I1—As2xiv70.529 (10)
Ge3—I1—Ge3vii109.356 (10)As2xiii—I1—As2xv109.471 (10)
Ge3—I1—Ge3viii70.644 (10)As2iv—I1—As2109.471 (10)
Ge3—I1—Ge3ix109.356 (10)As2iv—I1—As2i70.529 (10)
Ge3—I1—Ge3x70.644 (10)As2iv—I1—As2xii109.471 (10)
Ge3—I1—Ge3xi109.356 (10)As2iv—I1—As2xiii70.529 (10)
Ge3—I1—As2i138.117 (9)As2iv—I1—As2v180
Ge3—I1—As2xii138.117 (9)As2iv—I1—As2xiv109.471 (10)
Ge3—I1—As2iv109.587 (11)As2iv—I1—As2xv70.529 (10)
Ge3—I1—As2v70.413 (11)As2v—I1—As270.529 (10)
Ge3—I1—As2xiv70.413 (11)As2v—I1—As2i109.471 (10)
Ge3—I1—As2xv109.587 (11)As2v—I1—As2xii70.529 (10)
Ge3i—I1—Ge3180As2v—I1—As2xiii109.471 (10)
Ge3i—I1—Ge3ii109.356 (10)As2v—I1—As2iv180
Ge3i—I1—Ge3iii70.644 (10)As2v—I1—As2xiv70.529 (10)
Ge3i—I1—Ge3v138.482 (15)As2v—I1—As2xv109.471 (10)
Ge3i—I1—Ge3vi109.356 (10)As2xiv—I1—As2109.471 (10)
Ge3i—I1—Ge3vii70.644 (10)As2xiv—I1—As2i70.529 (10)
Ge3i—I1—Ge3viii109.356 (10)As2xiv—I1—As2xii109.471 (10)
Ge3i—I1—Ge3ix70.644 (10)As2xiv—I1—As2xiii70.529 (10)
Ge3i—I1—Ge3x109.356 (10)As2xiv—I1—As2iv109.471 (10)
Ge3i—I1—Ge3xi70.644 (10)As2xiv—I1—As2v70.529 (10)
Ge3i—I1—As2138.117 (9)As2xiv—I1—As2xv180
Ge3i—I1—As2xiii138.117 (9)As2xv—I1—As270.529 (10)
Ge3i—I1—As2iv70.413 (11)As2xv—I1—As2i109.471 (10)
Ge3i—I1—As2v109.587 (11)As2xv—I1—As2xii70.529 (10)
Ge3i—I1—As2xiv109.587 (11)As2xv—I1—As2xiii109.471 (10)
Ge3i—I1—As2xv70.413 (11)As2xv—I1—As2iv70.529 (10)
Ge3ii—I1—Ge370.644 (10)As2xv—I1—As2v109.471 (10)
Ge3ii—I1—Ge3i109.356 (10)As2xv—I1—As2xiv180
Ge3ii—I1—Ge3iii180Ge3—I2—Ge3xvi83.521 (11)
Ge3ii—I1—Ge3iv70.644 (10)Ge3—I2—Ge3xvii68.952 (13)
Ge3ii—I1—Ge3v109.356 (10)Ge3—I2—Ge3xviii162.500 (15)
Ge3ii—I1—Ge3vii138.482 (15)Ge3—I2—Ge3xix99.156 (11)
Ge3ii—I1—Ge3viii70.644 (10)Ge3—I2—Ge3xx123.809 (13)
Ge3ii—I1—Ge3ix109.356 (10)Ge3—I2—Ge3xxi123.809 (13)
Ge3ii—I1—Ge3x109.356 (10)Ge3—I2—As1xxii158.083 (10)
Ge3ii—I1—Ge3xi70.644 (10)Ge3—I2—As1xxiii97.307 (9)
Ge3ii—I1—As2i138.117 (9)Ge3—I2—As1xxiv73.781 (9)
Ge3ii—I1—As2xii109.587 (11)Ge3xvi—I2—Ge383.521 (11)
Ge3ii—I1—As2xiii70.413 (11)Ge3xvi—I2—Ge3v68.952 (13)
Ge3ii—I1—As2iv70.413 (11)Ge3xvi—I2—Ge3xviii99.156 (11)
Ge3ii—I1—As2v109.587 (11)Ge3xvi—I2—Ge3xix162.500 (15)
Ge3ii—I1—As2xiv138.117 (9)Ge3xvi—I2—Ge3xx123.809 (13)
Ge3iii—I1—Ge3109.356 (10)Ge3xvi—I2—Ge3xxi123.809 (13)
Ge3iii—I1—Ge3i70.644 (10)Ge3xvi—I2—As1xxii97.307 (9)
Ge3iii—I1—Ge3ii180Ge3xvi—I2—As1xxiii158.083 (10)
Ge3iii—I1—Ge3iv109.356 (10)Ge3xvii—I2—Ge368.952 (13)
Ge3iii—I1—Ge3v70.644 (10)Ge3xvii—I2—Ge3v83.521 (11)
Ge3iii—I1—Ge3vi138.482 (15)Ge3xvii—I2—Ge3xviii123.809 (13)
Ge3iii—I1—Ge3viii109.356 (10)Ge3xvii—I2—Ge3xix123.809 (13)
Ge3iii—I1—Ge3ix70.644 (10)Ge3xvii—I2—Ge3xx162.500 (15)
Ge3iii—I1—Ge3x70.644 (10)Ge3xvii—I2—Ge3xxi99.156 (11)
Ge3iii—I1—Ge3xi109.356 (10)Ge3xvii—I2—As1xxii97.307 (9)
Ge3iii—I1—As2138.117 (9)Ge3xvii—I2—As1xxiii158.083 (10)
Ge3iii—I1—As2xii70.413 (11)Ge3xvii—I2—As1xxiv73.781 (9)
Ge3iii—I1—As2xiii109.587 (11)Ge3v—I2—Ge3xvi68.952 (13)
Ge3iii—I1—As2iv109.587 (11)Ge3v—I2—Ge3xvii83.521 (11)
Ge3iii—I1—As2v70.413 (11)Ge3v—I2—Ge3xviii123.809 (13)
Ge3iii—I1—As2xv138.117 (9)Ge3v—I2—Ge3xix123.809 (13)
Ge3iv—I1—Ge3138.482 (15)Ge3v—I2—Ge3xx99.156 (11)
Ge3iv—I1—Ge3ii70.644 (10)Ge3v—I2—Ge3xxi162.500 (15)
Ge3iv—I1—Ge3iii109.356 (10)Ge3v—I2—As1xxii158.083 (10)
Ge3iv—I1—Ge3v180Ge3v—I2—As1xxiii97.307 (9)
Ge3iv—I1—Ge3vi70.644 (10)Ge3v—I2—As1xxv73.781 (9)
Ge3iv—I1—Ge3vii109.356 (10)Ge3xviii—I2—Ge3162.500 (15)
Ge3iv—I1—Ge3viii109.356 (10)Ge3xviii—I2—Ge3xvi99.156 (11)
Ge3iv—I1—Ge3ix70.644 (10)Ge3xviii—I2—Ge3xvii123.809 (13)
Ge3iv—I1—Ge3x109.356 (10)Ge3xviii—I2—Ge3v123.809 (13)
Ge3iv—I1—Ge3xi70.644 (10)Ge3xviii—I2—Ge3xix83.521 (11)
Ge3iv—I1—As2109.587 (11)Ge3xviii—I2—Ge3xxi68.952 (13)
Ge3iv—I1—As2i70.413 (11)Ge3xviii—I2—As1xxiii73.781 (9)
Ge3iv—I1—As2xii70.413 (11)Ge3xviii—I2—As1xxiv97.307 (9)
Ge3iv—I1—As2xiii109.587 (11)Ge3xviii—I2—As1xxv158.083 (10)
Ge3iv—I1—As2v138.117 (9)Ge3xix—I2—Ge399.156 (11)
Ge3iv—I1—As2xiv138.117 (9)Ge3xix—I2—Ge3xvi162.500 (15)
Ge3v—I1—Ge3i138.482 (15)Ge3xix—I2—Ge3xvii123.809 (13)
Ge3v—I1—Ge3ii109.356 (10)Ge3xix—I2—Ge3v123.809 (13)
Ge3v—I1—Ge3iii70.644 (10)Ge3xix—I2—Ge3xviii83.521 (11)
Ge3v—I1—Ge3iv180Ge3xix—I2—Ge3xx68.952 (13)
Ge3v—I1—Ge3vi109.356 (10)Ge3xix—I2—As1xxii73.781 (9)
Ge3v—I1—Ge3vii70.644 (10)Ge3xix—I2—As1xxiv158.083 (10)
Ge3v—I1—Ge3viii70.644 (10)Ge3xix—I2—As1xxv97.307 (9)
Ge3v—I1—Ge3ix109.356 (10)Ge3xx—I2—Ge3123.809 (13)
Ge3v—I1—Ge3x70.644 (10)Ge3xx—I2—Ge3xvi123.809 (13)
Ge3v—I1—Ge3xi109.356 (10)Ge3xx—I2—Ge3xvii162.500 (15)
Ge3v—I1—As270.413 (11)Ge3xx—I2—Ge3v99.156 (11)
Ge3v—I1—As2i109.587 (11)Ge3xx—I2—Ge3xix68.952 (13)
Ge3v—I1—As2xii109.587 (11)Ge3xx—I2—Ge3xxi83.521 (11)
Ge3v—I1—As2xiii70.413 (11)Ge3xx—I2—As1xxii73.781 (9)
Ge3v—I1—As2iv138.117 (9)Ge3xx—I2—As1xxiv97.307 (9)
Ge3v—I1—As2xv138.117 (9)Ge3xx—I2—As1xxv158.083 (10)
Ge3vi—I1—Ge370.644 (10)Ge3xxi—I2—Ge3123.809 (13)
Ge3vi—I1—Ge3i109.356 (10)Ge3xxi—I2—Ge3xvi123.809 (13)
Ge3vi—I1—Ge3iii138.482 (15)Ge3xxi—I2—Ge3xvii99.156 (11)
Ge3vi—I1—Ge3iv70.644 (10)Ge3xxi—I2—Ge3v162.500 (15)
Ge3vi—I1—Ge3v109.356 (10)Ge3xxi—I2—Ge3xviii68.952 (13)
Ge3vi—I1—Ge3vii180Ge3xxi—I2—Ge3xx83.521 (11)
Ge3vi—I1—Ge3viii109.356 (10)Ge3xxi—I2—As1xxiii73.781 (9)
Ge3vi—I1—Ge3ix70.644 (10)Ge3xxi—I2—As1xxiv158.083 (10)
Ge3vi—I1—Ge3x70.644 (10)Ge3xxi—I2—As1xxv97.307 (9)
Ge3vi—I1—Ge3xi109.356 (10)As1xxii—I2—As1xxiii90
Ge3vi—I1—As270.413 (11)As1xxii—I2—As1xxiv120
Ge3vi—I1—As2i109.587 (11)As1xxii—I2—As1xxv120
Ge3vi—I1—As2xii138.117 (9)As1xxiii—I2—As1xxii90
Ge3vi—I1—As2v138.117 (9)As1xxiii—I2—As1xxiv120
Ge3vi—I1—As2xiv109.587 (11)As1xxiii—I2—As1xxv120
Ge3vi—I1—As2xv70.413 (11)As1xxiv—I2—As1xxii120
Ge3vii—I1—Ge3109.356 (10)As1xxiv—I2—As1xxiii120
Ge3vii—I1—Ge3i70.644 (10)As1xxiv—I2—As1xxv90
Ge3vii—I1—Ge3ii138.482 (15)As1xxv—I2—As1xxii120
Ge3vii—I1—Ge3iv109.356 (10)As1xxv—I2—As1xxiii120
Ge3vii—I1—Ge3v70.644 (10)As1xxv—I2—As1xxiv90
Ge3vii—I1—Ge3vi180I1—Ge3—I2113.887 (13)
Ge3vii—I1—Ge3viii70.644 (10)I1—Ge3—I2xvi113.887 (13)
Ge3vii—I1—Ge3ix109.356 (10)I1—Ge3—Ge3v69.24 (2)
Ge3vii—I1—Ge3x109.356 (10)I1—Ge3—As265.785 (17)
Ge3vii—I1—Ge3xi70.644 (10)I1—Ge3—As2xiii65.785 (17)
Ge3vii—I1—As2109.587 (11)I1—Ge3—As1xxv165.85 (3)
Ge3vii—I1—As2i70.413 (11)I2—Ge3—I2xvi96.479 (16)
Ge3vii—I1—As2xiii138.117 (9)I2—Ge3—Ge3v69.456 (15)
Ge3vii—I1—As2iv138.117 (9)I2—Ge3—As279.626 (11)
Ge3vii—I1—As2xiv70.413 (11)I2—Ge3—As2xiii175.25 (2)
Ge3vii—I1—As2xv109.587 (11)I2—Ge3—As1xxv74.729 (13)
Ge3viii—I1—Ge370.644 (10)I2xvi—Ge3—I296.479 (16)
Ge3viii—I1—Ge3i109.356 (10)I2xvi—Ge3—Ge3v69.456 (15)
Ge3viii—I1—Ge3ii70.644 (10)I2xvi—Ge3—As2175.25 (2)
Ge3viii—I1—Ge3iii109.356 (10)I2xvi—Ge3—As2xiii79.626 (11)
Ge3viii—I1—Ge3iv109.356 (10)I2xvi—Ge3—As1xxv74.729 (13)
Ge3viii—I1—Ge3v70.644 (10)Ge3v—Ge3—As2106.43 (2)
Ge3viii—I1—Ge3vi109.356 (10)Ge3v—Ge3—As2xiii106.43 (2)
Ge3viii—I1—Ge3vii70.644 (10)Ge3v—Ge3—As1xxv124.91 (3)
Ge3viii—I1—Ge3ix180As2—Ge3—As2xiii104.13 (3)
Ge3viii—I1—Ge3x138.482 (15)As2—Ge3—As1xxv106.61 (2)
Ge3viii—I1—As2i138.117 (9)As2xiii—Ge3—As2104.13 (3)
Ge3viii—I1—As2xii70.413 (11)As2xiii—Ge3—As1xxv106.61 (2)
Ge3viii—I1—As2xiii109.587 (11)I1—As2—Ge372.332 (17)
Ge3viii—I1—As2iv138.117 (9)I1—As2—Ge3ii72.332 (17)
Ge3viii—I1—As2xiv109.587 (11)I1—As2—Ge3viii72.332 (17)
Ge3viii—I1—As2xv70.413 (11)I1—As2—As2xiii54.736 (9)
Ge3ix—I1—Ge3109.356 (10)I1—As2—As2v54.736 (9)
Ge3ix—I1—Ge3i70.644 (10)I1—As2—As2xv54.736 (9)
Ge3ix—I1—Ge3ii109.356 (10)I1—As2—As2xxvi180
Ge3ix—I1—Ge3iii70.644 (10)Ge3—As2—Ge3ii111.21 (2)
Ge3ix—I1—Ge3iv70.644 (10)Ge3—As2—Ge3viii111.21 (2)
Ge3ix—I1—Ge3v109.356 (10)Ge3—As2—As2v73.570 (18)
Ge3ix—I1—Ge3vi70.644 (10)Ge3—As2—As2xv123.08 (2)
Ge3ix—I1—Ge3vii109.356 (10)Ge3—As2—As2xxvi107.67 (2)
Ge3ix—I1—Ge3viii180Ge3ii—As2—Ge3111.21 (2)
Ge3ix—I1—Ge3xi138.482 (15)Ge3ii—As2—Ge3viii111.21 (2)
Ge3ix—I1—As2138.117 (9)Ge3ii—As2—As2xiii73.570 (18)
Ge3ix—I1—As2xii109.587 (11)Ge3ii—As2—As2v123.08 (2)
Ge3ix—I1—As2xiii70.413 (11)Ge3ii—As2—As2xxvi107.67 (2)
Ge3ix—I1—As2v138.117 (9)Ge3viii—As2—Ge3111.21 (2)
Ge3ix—I1—As2xiv70.413 (11)Ge3viii—As2—Ge3ii111.21 (2)
Ge3ix—I1—As2xv109.587 (11)Ge3viii—As2—As2xiii123.08 (2)
Ge3x—I1—Ge370.644 (10)Ge3viii—As2—As2xv73.570 (18)
Ge3x—I1—Ge3i109.356 (10)Ge3viii—As2—As2xxvi107.67 (2)
Ge3x—I1—Ge3ii109.356 (10)As2xiii—As2—As2v90
Ge3x—I1—Ge3iii70.644 (10)As2xiii—As2—As2xv90
Ge3x—I1—Ge3iv109.356 (10)As2xiii—As2—As2xxvi125.264 (18)
Ge3x—I1—Ge3v70.644 (10)As2v—As2—As2xiii90
Ge3x—I1—Ge3vi70.644 (10)As2v—As2—As2xv90
Ge3x—I1—Ge3vii109.356 (10)As2v—As2—As2xxvi125.264 (18)
Ge3x—I1—Ge3viii138.482 (15)As2xv—As2—As2xiii90
Ge3x—I1—Ge3xi180As2xv—As2—As2v90
Ge3x—I1—As2109.587 (11)As2xv—As2—As2xxvi125.264 (18)
Ge3x—I1—As2i70.413 (11)As2xxvi—As2—As2xiii125.264 (18)
Ge3x—I1—As2xii138.117 (9)As2xxvi—As2—As2v125.264 (18)
Ge3x—I1—As2iv70.413 (11)As2xxvi—As2—As2xv125.264 (18)
Ge3x—I1—As2v109.587 (11)I2xxvii—As1—I2xxviii90
Ge3x—I1—As2xv138.117 (9)I2xxvii—As1—I2xxix120
Ge3xi—I1—Ge3109.356 (10)I2xxvii—As1—I2xxx120
Ge3xi—I1—Ge3i70.644 (10)I2xxvii—As1—Ge3ii66.131 (10)
Ge3xi—I1—Ge3ii70.644 (10)I2xxvii—As1—Ge3xxxi66.131 (10)
Ge3xi—I1—Ge3iii109.356 (10)I2xxvii—As1—Ge3xxx79.908 (15)
Ge3xi—I1—Ge3iv70.644 (10)I2xxvii—As1—Ge3xxxii169.908 (15)
Ge3xi—I1—Ge3v109.356 (10)I2xxviii—As1—I2xxvii90
Ge3xi—I1—Ge3vi109.356 (10)I2xxviii—As1—I2xxix120
Ge3xi—I1—Ge3vii70.644 (10)I2xxviii—As1—I2xxx120
Ge3xi—I1—Ge3ix138.482 (15)I2xxviii—As1—Ge3ii66.131 (10)
Ge3xi—I1—Ge3x180I2xxviii—As1—Ge3xxxi66.131 (10)
Ge3xi—I1—As270.413 (11)I2xxviii—As1—Ge3xxx169.908 (15)
Ge3xi—I1—As2i109.587 (11)I2xxviii—As1—Ge3xxxii79.908 (15)
Ge3xi—I1—As2xiii138.117 (9)I2xxix—As1—I2xxvii120
Ge3xi—I1—As2iv109.587 (11)I2xxix—As1—I2xxviii120
Ge3xi—I1—As2v70.413 (11)I2xxix—As1—I2xxx90
Ge3xi—I1—As2xiv138.117 (9)I2xxix—As1—Ge3ii169.908 (15)
As2—I1—As2i180I2xxix—As1—Ge3xxxi79.908 (15)
As2—I1—As2xii109.471 (10)I2xxix—As1—Ge3xxx66.131 (10)
As2—I1—As2xiii70.529 (10)I2xxix—As1—Ge3xxxii66.131 (10)
As2—I1—As2iv109.471 (10)I2xxx—As1—I2xxvii120
As2—I1—As2v70.529 (10)I2xxx—As1—I2xxviii120
As2—I1—As2xiv109.471 (10)I2xxx—As1—I2xxix90
As2—I1—As2xv70.529 (10)I2xxx—As1—Ge3ii79.908 (15)
As2i—I1—As2180I2xxx—As1—Ge3xxxi169.908 (15)
As2i—I1—As2xii70.529 (10)I2xxx—As1—Ge3xxx66.131 (10)
As2i—I1—As2xiii109.471 (10)I2xxx—As1—Ge3xxxii66.131 (10)
As2i—I1—As2iv70.529 (10)Ge3ii—As1—Ge3xxxi110.18 (2)
As2i—I1—As2v109.471 (10)Ge3ii—As1—Ge3xxx109.116 (11)
As2i—I1—As2xiv70.529 (10)Ge3ii—As1—Ge3xxxii109.116 (11)
As2i—I1—As2xv109.471 (10)Ge3xxxi—As1—Ge3ii110.18 (2)
As2xii—I1—As2109.471 (10)Ge3xxxi—As1—Ge3xxx109.116 (11)
As2xii—I1—As2i70.529 (10)Ge3xxxi—As1—Ge3xxxii109.116 (11)
As2xii—I1—As2xiii180Ge3xxx—As1—Ge3ii109.116 (11)
As2xii—I1—As2iv109.471 (10)Ge3xxx—As1—Ge3xxxi109.116 (11)
As2xii—I1—As2v70.529 (10)Ge3xxx—As1—Ge3xxxii110.18 (2)
As2xii—I1—As2xiv109.471 (10)Ge3xxxii—As1—Ge3ii109.116 (11)
As2xii—I1—As2xv70.529 (10)Ge3xxxii—As1—Ge3xxxi109.116 (11)
As2xiii—I1—As270.529 (10)Ge3xxxii—As1—Ge3xxx110.18 (2)
Symmetry codes: (i) x, y, z; (ii) z, x, y; (iii) z, x, y; (iv) x, y, z; (v) x, y, z; (vi) z, x, y; (vii) z, x, y; (viii) y, z, x; (ix) y, z, x; (x) y, z, x; (xi) y, z, x; (xii) x, y, z; (xiii) x, y, z; (xiv) x, y, z; (xv) x, y, z; (xvi) x, y+1, z; (xvii) x, y+1, z; (xviii) x+1/2, z+1/2, y1/2; (xix) x+1/2, z+1/2, y+1/2; (xx) x+1/2, z+1/2, y1/2; (xxi) x+1/2, z+1/2, y+1/2; (xxii) y+1/2, x+1/2, z1/2; (xxiii) y+1/2, x+1/2, z+1/2; (xxiv) z1/2, y+1/2, x1/2; (xxv) z+1/2, y+1/2, x+1/2; (xxvi) y+1/2, x+1/2, z+1/2; (xxvii) y+1/2, x1/2, z+1/2; (xxviii) y1/2, x+1/2, z+1/2; (xxix) z+1/2, y+1/2, x+1/2; (xxx) z+1/2, y1/2, x+1/2; (xxxi) z, x, y+1; (xxxii) z+1/2, y+1/2, x+1/2.

Experimental details

Crystal data
Chemical formulaI8As21Ge25
Mr4403
Crystal system, space groupCubic, Pm3n
Temperature (K)293
a (Å)10.5963 (6)
V3)1189.77 (13)
Z1
Radiation typeMo Kα
µ (mm1)34.30
Crystal size (mm)0.08 × 0.07 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(JANA2000; Petříček & Dušek, 2000)
Tmin, Tmax0.137, 0.330
No. of measured, independent and
observed [I > 3σ(I)] reflections
5499, 606, 454
Rint0.064
(sin θ/λ)max1)0.866
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.037, 1.75
No. of reflections606
No. of parameters15
No. of restraints3
Δρmax, Δρmin (e Å3)2.48, 3.60

Computer programs: KappaCCD Software (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), coordinates taken from analogous clathrates-I (Reference?), JANA2000 (Petříček & Dušek, 2000), GRETEP (Laugier & Bochu, 2002).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds