

Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812037038/br2208sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536812037038/br2208Isup2.hkl |
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean
(Co-O) = 0.007 Å
- R factor = 0.025
- wR factor = 0.056
- Data-to-parameter ratio = 27.9
checkCIF/PLATON results
No syntax errors found
Alert level A PLAT971_ALERT_2_A Large Calcd. Non-Metal Positive Residual Density 3.52 eA-3
Author Response: From the SHELX output ALL relevant remaining electron density is found NEAR the Pb atoms (as expected, see CIF). Probably another problem with respect to differences between PLATON and SHELXL. |
Alert level C PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: PB1 -- PB2 .. 3.58 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: PB1 -- PB2 .. 3.58 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 Co9 O30 Pb6 Te5 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 6 PLAT924_ALERT_1_C The Reported and Calculated Rho(min) Differ by . 1.04 eA-3 PLAT972_ALERT_2_C Large Calcd. Non-Metal Negative Residual Density -2.50 eA-3 PLAT972_ALERT_2_C Large Calcd. Non-Metal Negative Residual Density -2.04 eA-3 PLAT972_ALERT_2_C Large Calcd. Non-Metal Negative Residual Density -1.74 eA-3 PLAT972_ALERT_2_C Large Calcd. Non-Metal Negative Residual Density -1.54 eA-3 PLAT975_ALERT_2_C Positive Residual Density at 0.73A from O1 . 1.08 eA-3 PLAT976_ALERT_2_C Negative Residual Density at 0.81A from O6 . -1.33 eA-3
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 37.57 From the CIF: _reflns_number_total 2262 Count of symmetry unique reflns 1386 Completeness (_total/calc) 163.20% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 876 Fraction of Friedel pairs measured 0.632 Are heavy atom types Z>Si present yes PLAT004_ALERT_5_G Info: Polymeric Structure Found with Dimension . 3 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Pb1 -- Te2 .. 38.4 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Pb2 -- Te1 .. 36.5 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Te1 -- Co1 .. 6.8 su
1 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 11 ALERT level C = Check. Ensure it is not caused by an omission or oversight 8 ALERT level G = General information/check it is not something unexpected 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 10 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check
1.281 (5.7 mmol) PbO, 0.216 g (2.9 mmol) CoO and 0.914 g (5.7 mmol) TeO2 were mixed and thoroughly ground and heated in an alumina crucible under atmospheric conditions during 6 h to 1023 K and held at that temperature for 48 h. Then the furnace was shut-off. Several crystal phases could be identified from the cooled reaction mixture by single-crystal diffraction: Dark blue isometric crystals of Pb2CoTeO6, dark-red (nearly black) block-like crystals of Pb5TeO8 (Artner & Weil, 2012), colourless crystals of α-Al2O3 and dark red crystals of Pb6Co9(TeO6)5 with a block-like shape.
The highest remaining electron density was found 1.49 Å from atom Pb1 and the lowest remaining electron density 0.52 Å from atom Pb2. The refined Flack parameter indicates racemic twinning with an approximate ratio of 1:6 for the twin components.
Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Pb6Co9(TeO6)5 | Dx = 7.535 Mg m−3 |
Mr = 2891.51 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P6322 | Cell parameters from 6739 reflections |
Hall symbol: P 6c 2c | θ = 2.8–36.8° |
a = 10.3915 (1) Å | µ = 50.89 mm−1 |
c = 13.6273 (2) Å | T = 293 K |
V = 1274.37 (3) Å3 | Parallelepiped, dark red |
Z = 2 | 0.07 × 0.06 × 0.05 mm |
F(000) = 2470 |
Bruker APEXII CCD diffractometer | 2262 independent reflections |
Radiation source: fine-focus sealed tube | 1908 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.068 |
ω and ϕ scans | θmax = 37.6°, θmin = 2.3° |
Absorption correction: numerical (HABITUS; Herrendorf, 1997) | h = −16→17 |
Tmin = 0.123, Tmax = 0.200 | k = −17→17 |
45686 measured reflections | l = −22→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0244P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.025 | (Δ/σ)max < 0.001 |
wR(F2) = 0.056 | Δρmax = 2.96 e Å−3 |
S = 1.09 | Δρmin = −2.59 e Å−3 |
2262 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
81 parameters | Extinction coefficient: 0.00019 (3) |
0 restraints | Absolute structure: Flack (1983), 882 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.134 (10) |
Pb6Co9(TeO6)5 | Z = 2 |
Mr = 2891.51 | Mo Kα radiation |
Hexagonal, P6322 | µ = 50.89 mm−1 |
a = 10.3915 (1) Å | T = 293 K |
c = 13.6273 (2) Å | 0.07 × 0.06 × 0.05 mm |
V = 1274.37 (3) Å3 |
Bruker APEXII CCD diffractometer | 2262 independent reflections |
Absorption correction: numerical (HABITUS; Herrendorf, 1997) | 1908 reflections with I > 2σ(I) |
Tmin = 0.123, Tmax = 0.200 | Rint = 0.068 |
45686 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.056 | Δρmax = 2.96 e Å−3 |
S = 1.09 | Δρmin = −2.59 e Å−3 |
2262 reflections | Absolute structure: Flack (1983), 882 Friedel pairs |
81 parameters | Absolute structure parameter: 0.134 (10) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pb1 | 0.26736 (3) | 0.26736 (3) | 0.0000 | 0.01216 (6) | |
Pb2 | 0.38848 (3) | 1.0000 | 0.0000 | 0.01881 (8) | |
Te1 | 0.3333 | 0.6667 | −0.09611 (4) | 0.00407 (10) | |
Te2 | 0.16730 (4) | 0.33460 (9) | 0.2500 | 0.00433 (8) | |
Co1 | 0.3333 | 0.6667 | 0.11832 (9) | 0.0066 (2) | |
Co2 | 0.16885 (10) | 0.3377 (2) | −0.2500 | 0.00664 (18) | |
Co3 | 0.0000 | 0.0000 | 0.2500 | 0.0087 (3) | |
Co4 | 0.00992 (19) | 0.50496 (10) | −0.2500 | 0.00566 (18) | |
O1 | 0.3366 (5) | 0.3241 (5) | −0.1717 (3) | 0.0077 (8) | |
O2 | 0.1726 (7) | 0.5050 (6) | −0.1628 (3) | 0.0083 (10) | |
O3 | 0.1702 (7) | 0.1801 (6) | 0.3277 (3) | 0.0105 (9) | |
O5 | 0.3239 (8) | 0.4818 (6) | 0.3295 (3) | 0.0076 (10) | |
O6 | 0.3481 (4) | 0.5265 (4) | −0.0034 (4) | 0.0069 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pb1 | 0.01117 (9) | 0.01117 (9) | 0.01243 (12) | 0.00429 (9) | 0.00014 (9) | −0.00014 (9) |
Pb2 | 0.01104 (9) | 0.01201 (13) | 0.03372 (18) | 0.00601 (7) | −0.00268 (13) | −0.0054 (3) |
Te1 | 0.00414 (14) | 0.00414 (14) | 0.0039 (2) | 0.00207 (7) | 0.000 | 0.000 |
Te2 | 0.00362 (13) | 0.00380 (19) | 0.00564 (18) | 0.00190 (10) | 0.0002 (4) | 0.000 |
Co1 | 0.0066 (3) | 0.0066 (3) | 0.0066 (5) | 0.00332 (16) | 0.000 | 0.000 |
Co2 | 0.0057 (3) | 0.0069 (5) | 0.0077 (4) | 0.0035 (2) | 0.0006 (10) | 0.000 |
Co3 | 0.0061 (4) | 0.0061 (4) | 0.0140 (7) | 0.00305 (19) | 0.000 | 0.000 |
Co4 | 0.0031 (5) | 0.0045 (3) | 0.0089 (4) | 0.0015 (2) | 0.000 | −0.0002 (3) |
O1 | 0.011 (2) | 0.008 (2) | 0.0048 (15) | 0.0055 (14) | 0.0003 (13) | −0.0022 (13) |
O2 | 0.007 (2) | 0.006 (2) | 0.012 (2) | 0.0022 (17) | −0.0001 (16) | −0.0034 (15) |
O3 | 0.011 (2) | 0.012 (2) | 0.0077 (16) | 0.0059 (15) | 0.0000 (15) | 0.0011 (15) |
O5 | 0.004 (2) | 0.006 (2) | 0.0072 (18) | −0.0011 (18) | −0.0005 (18) | 0.0009 (15) |
O6 | 0.0058 (14) | 0.0070 (14) | 0.0075 (15) | 0.0029 (11) | −0.001 (2) | 0.002 (2) |
Pb1—O6i | 2.387 (4) | Te2—O3iii | 1.937 (7) |
Pb1—O6 | 2.387 (4) | Te2—O3 | 1.937 (7) |
Pb1—O1i | 2.432 (4) | Te2—O1xii | 1.939 (5) |
Pb1—O1 | 2.432 (4) | Te2—O1i | 1.939 (5) |
Pb1—O3ii | 3.327 (7) | Co1—O5x | 2.004 (6) |
Pb1—O3iii | 3.327 (7) | Co1—O5iii | 2.004 (6) |
Pb1—O3iv | 3.453 (7) | Co1—O5xiii | 2.004 (6) |
Pb1—O3v | 3.453 (7) | Co1—O6vi | 2.262 (5) |
Pb1—Pb2vi | 3.5764 (4) | Co1—O6vii | 2.262 (5) |
Pb1—Pb2vii | 3.5777 (2) | Co1—O6 | 2.262 (5) |
Pb2—O6viii | 2.420 (3) | Co2—O2xiv | 2.090 (6) |
Pb2—O6vii | 2.420 (3) | Co2—O2 | 2.090 (6) |
Pb2—O2ix | 2.726 (5) | Co2—O3i | 2.090 (8) |
Pb2—O2vi | 2.726 (5) | Co2—O3iv | 2.090 (8) |
Pb2—O5x | 2.727 (5) | Co2—O1 | 2.108 (6) |
Pb2—O5xi | 2.727 (5) | Co2—O1xiv | 2.108 (6) |
Pb2—O6vi | 3.155 (3) | Co3—O3xv | 2.107 (4) |
Pb2—O6ix | 3.155 (3) | Co3—O3 | 2.107 (4) |
Pb2—O3xi | 3.230 (4) | Co3—O3xvi | 2.107 (4) |
Pb2—O3x | 3.230 (4) | Co3—O3xvii | 2.107 (4) |
Te1—O2vi | 1.906 (5) | Co3—O3iii | 2.107 (4) |
Te1—O2 | 1.906 (5) | Co3—O3v | 2.107 (4) |
Te1—O2vii | 1.906 (5) | Co4—O2 | 2.067 (7) |
Te1—O6vi | 1.991 (4) | Co4—O2xviii | 2.067 (7) |
Te1—O6vii | 1.991 (4) | Co4—O1vi | 2.071 (4) |
Te1—O6 | 1.991 (4) | Co4—O1xiv | 2.071 (4) |
Te2—O5 | 1.917 (6) | Co4—O5xix | 2.116 (7) |
Te2—O5iii | 1.917 (6) | Co4—O5iv | 2.116 (7) |
O6i—Pb1—O6 | 84.58 (16) | O5iii—Te2—O1xii | 85.9 (2) |
O6i—Pb1—O1i | 79.26 (18) | O3iii—Te2—O1xii | 87.0 (2) |
O6—Pb1—O1i | 77.79 (18) | O3—Te2—O1xii | 93.7 (2) |
O6i—Pb1—O1 | 77.79 (18) | O5—Te2—O1i | 85.9 (2) |
O6—Pb1—O1 | 79.26 (18) | O5iii—Te2—O1i | 93.3 (2) |
O1i—Pb1—O1 | 148.79 (19) | O3iii—Te2—O1i | 93.7 (2) |
O6i—Pb1—O3ii | 95.87 (13) | O3—Te2—O1i | 87.0 (2) |
O6—Pb1—O3ii | 133.98 (17) | O1xii—Te2—O1i | 179.0 (3) |
O1i—Pb1—O3ii | 147.68 (15) | O5x—Co1—O5iii | 108.14 (14) |
O1—Pb1—O3ii | 56.26 (15) | O5x—Co1—O5xiii | 108.14 (14) |
O6i—Pb1—O3iii | 133.98 (17) | O5iii—Co1—O5xiii | 108.14 (14) |
O6—Pb1—O3iii | 95.87 (13) | O5x—Co1—O6vi | 87.99 (18) |
O1i—Pb1—O3iii | 56.26 (15) | O5iii—Co1—O6vi | 85.39 (19) |
O1—Pb1—O3iii | 147.68 (15) | O5xiii—Co1—O6vi | 153.55 (18) |
O3ii—Pb1—O3iii | 114.8 (2) | O5x—Co1—O6vii | 85.39 (19) |
O6i—Pb1—O3iv | 138.20 (17) | O5iii—Co1—O6vii | 153.55 (18) |
O6—Pb1—O3iv | 95.05 (13) | O5xiii—Co1—O6vii | 87.99 (18) |
O1i—Pb1—O3iv | 141.63 (15) | O6vi—Co1—O6vii | 72.17 (17) |
O1—Pb1—O3iv | 61.26 (14) | O5x—Co1—O6 | 153.55 (18) |
O3ii—Pb1—O3iv | 55.44 (13) | O5iii—Co1—O6 | 87.99 (18) |
O3iii—Pb1—O3iv | 87.73 (10) | O5xiii—Co1—O6 | 85.39 (18) |
O6i—Pb1—O3v | 95.05 (13) | O6vi—Co1—O6 | 72.17 (17) |
O6—Pb1—O3v | 138.20 (17) | O6vii—Co1—O6 | 72.17 (17) |
O1i—Pb1—O3v | 61.26 (14) | O2xiv—Co2—O2 | 87.8 (3) |
O1—Pb1—O3v | 141.63 (15) | O2xiv—Co2—O3i | 92.52 (17) |
O3ii—Pb1—O3v | 87.73 (10) | O2—Co2—O3i | 174.4 (3) |
O3iii—Pb1—O3v | 55.44 (13) | O2xiv—Co2—O3iv | 174.4 (3) |
O3iv—Pb1—O3v | 111.4 (2) | O2—Co2—O3iv | 92.52 (17) |
O6viii—Pb2—O6vii | 83.17 (17) | O3i—Co2—O3iv | 87.7 (2) |
O6viii—Pb2—O2ix | 61.34 (16) | O2xiv—Co2—O1 | 89.3 (2) |
O6vii—Pb2—O2ix | 107.91 (19) | O2—Co2—O1 | 95.5 (2) |
O6viii—Pb2—O2vi | 107.91 (19) | O3i—Co2—O1 | 78.9 (2) |
O6vii—Pb2—O2vi | 61.34 (16) | O3iv—Co2—O1 | 96.2 (2) |
O2ix—Pb2—O2vi | 166.8 (3) | O2xiv—Co2—O1xiv | 95.5 (2) |
O6viii—Pb2—O5x | 106.77 (19) | O2—Co2—O1xiv | 89.3 (2) |
O6vii—Pb2—O5x | 68.25 (16) | O3i—Co2—O1xiv | 96.2 (2) |
O2ix—Pb2—O5x | 66.27 (12) | O3iv—Co2—O1xiv | 78.9 (2) |
O2vi—Pb2—O5x | 112.94 (13) | O1—Co2—O1xiv | 173.3 (3) |
O6viii—Pb2—O5xi | 68.25 (16) | O3xv—Co3—O3 | 175.2 (5) |
O6vii—Pb2—O5xi | 106.77 (19) | O3xv—Co3—O3xvi | 79.5 (4) |
O2ix—Pb2—O5xi | 112.94 (13) | O3—Co3—O3xvi | 96.96 (14) |
O2vi—Pb2—O5xi | 66.27 (12) | O3xv—Co3—O3xvii | 86.8 (4) |
O5x—Pb2—O5xi | 173.7 (3) | O3—Co3—O3xvii | 96.96 (14) |
O6viii—Pb2—O6vi | 138.39 (2) | O3xvi—Co3—O3xvii | 96.96 (14) |
O6vii—Pb2—O6vi | 55.23 (15) | O3xv—Co3—O3iii | 96.96 (14) |
O2ix—Pb2—O6vi | 126.25 (15) | O3—Co3—O3iii | 79.5 (4) |
O2vi—Pb2—O6vi | 55.67 (17) | O3xvi—Co3—O3iii | 86.8 (4) |
O5x—Pb2—O6vi | 60.10 (16) | O3xvii—Co3—O3iii | 175.2 (5) |
O5xi—Pb2—O6vi | 120.76 (15) | O3xv—Co3—O3v | 96.96 (14) |
O6viii—Pb2—O6ix | 55.23 (15) | O3—Co3—O3v | 86.8 (4) |
O6vii—Pb2—O6ix | 138.39 (2) | O3xvi—Co3—O3v | 175.2 (5) |
O2ix—Pb2—O6ix | 55.67 (17) | O3xvii—Co3—O3v | 79.5 (4) |
O2vi—Pb2—O6ix | 126.25 (15) | O3iii—Co3—O3v | 96.96 (14) |
O5x—Pb2—O6ix | 120.76 (15) | O2—Co4—O2xviii | 89.8 (3) |
O5xi—Pb2—O6ix | 60.10 (16) | O2—Co4—O1vi | 96.9 (2) |
O6vi—Pb2—O6ix | 166.38 (13) | O2xviii—Co4—O1vi | 91.0 (2) |
O6viii—Pb2—O3xi | 120.59 (18) | O2—Co4—O1xiv | 91.0 (2) |
O6vii—Pb2—O3xi | 121.18 (18) | O2xviii—Co4—O1xiv | 96.9 (2) |
O2ix—Pb2—O3xi | 130.9 (2) | O1vi—Co4—O1xiv | 168.8 (4) |
O2vi—Pb2—O3xi | 60.21 (13) | O2—Co4—O5xix | 174.7 (3) |
O5x—Pb2—O3xi | 132.1 (2) | O2xviii—Co4—O5xix | 90.92 (16) |
O5xi—Pb2—O3xi | 53.44 (14) | O1vi—Co4—O5xix | 77.8 (2) |
O6vi—Pb2—O3xi | 86.29 (19) | O1xiv—Co4—O5xix | 94.2 (2) |
O6ix—Pb2—O3xi | 84.37 (18) | O2—Co4—O5iv | 90.92 (16) |
O6viii—Pb2—O3x | 121.18 (18) | O2xviii—Co4—O5iv | 174.7 (3) |
O6vii—Pb2—O3x | 120.59 (18) | O1vi—Co4—O5iv | 94.2 (2) |
O2ix—Pb2—O3x | 60.21 (13) | O1xiv—Co4—O5iv | 77.8 (2) |
O2vi—Pb2—O3x | 130.9 (2) | O5xix—Co4—O5iv | 88.9 (3) |
O5x—Pb2—O3x | 53.44 (14) | Te2ii—O1—Co4vii | 98.54 (19) |
O5xi—Pb2—O3x | 132.1 (2) | Te2ii—O1—Co2 | 96.67 (17) |
O6vi—Pb2—O3x | 84.37 (18) | Co4vii—O1—Co2 | 89.3 (2) |
O6ix—Pb2—O3x | 86.29 (19) | Te2ii—O1—Pb1 | 116.6 (2) |
O3xi—Pb2—O3x | 93.32 (14) | Co4vii—O1—Pb1 | 136.07 (18) |
O2vi—Te1—O2 | 99.15 (18) | Co2—O1—Pb1 | 110.4 (2) |
O2vi—Te1—O2vii | 99.15 (18) | Te1—O2—Co4 | 129.1 (3) |
O2—Te1—O2vii | 99.15 (18) | Te1—O2—Co2 | 130.4 (4) |
O2vi—Te1—O6vi | 90.7 (2) | Co4—O2—Co2 | 89.87 (19) |
O2—Te1—O6vi | 85.2 (2) | Te1—O2—Pb2vii | 95.48 (17) |
O2vii—Te1—O6vi | 168.4 (2) | Co4—O2—Pb2vii | 96.4 (2) |
O2vi—Te1—O6vii | 85.2 (2) | Co2—O2—Pb2vii | 111.0 (2) |
O2—Te1—O6vii | 168.4 (2) | Te2—O3—Co2xx | 97.34 (17) |
O2vii—Te1—O6vii | 90.7 (2) | Te2—O3—Co3 | 96.2 (2) |
O6vi—Te1—O6vii | 84.0 (2) | Co2xx—O3—Co3 | 92.8 (3) |
O2vi—Te1—O6 | 168.4 (2) | Te2—O5—Co1xiii | 125.5 (4) |
O2—Te1—O6 | 90.7 (2) | Te2—O5—Co4xx | 97.7 (2) |
O2vii—Te1—O6 | 85.2 (2) | Co1xiii—O5—Co4xx | 120.3 (3) |
O6vi—Te1—O6 | 84.0 (2) | Te2—O5—Pb2xxi | 117.3 (2) |
O6vii—Te1—O6 | 84.0 (2) | Co1xiii—O5—Pb2xxi | 97.82 (18) |
O5—Te2—O5iii | 92.5 (3) | Co4xx—O5—Pb2xxi | 95.2 (2) |
O5—Te2—O3iii | 177.8 (2) | Te1—O6—Co1 | 86.54 (14) |
O5iii—Te2—O3iii | 89.6 (2) | Te1—O6—Pb1 | 136.5 (2) |
O5—Te2—O3 | 89.6 (2) | Co1—O6—Pb1 | 127.8 (2) |
O5iii—Te2—O3 | 177.8 (2) | Te1—O6—Pb2vi | 103.41 (16) |
O3iii—Te2—O3 | 88.2 (2) | Co1—O6—Pb2vi | 100.34 (16) |
O5—Te2—O1xii | 93.3 (2) | Pb1—O6—Pb2vi | 96.12 (13) |
Symmetry codes: (i) y, x, −z; (ii) y, −x+y, z−1/2; (iii) −x+y, y, −z+1/2; (iv) x−y, x, z−1/2; (v) x, x−y, −z+1/2; (vi) −x+y, −x+1, z; (vii) −y+1, x−y+1, z; (viii) −x+1, −x+y+1, −z; (ix) y, x+1, −z; (x) x, x−y+1, −z+1/2; (xi) y, −x+y+1, z−1/2; (xii) x−y, x, z+1/2; (xiii) −y+1, −x+1, −z+1/2; (xiv) −x+y, y, −z−1/2; (xv) −y, −x, −z+1/2; (xvi) −y, x−y, z; (xvii) −x+y, −x, z; (xviii) x, x−y+1, −z−1/2; (xix) x−y, −y+1, −z; (xx) y, −x+y, z+1/2; (xxi) x−y+1, x, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | Pb6Co9(TeO6)5 |
Mr | 2891.51 |
Crystal system, space group | Hexagonal, P6322 |
Temperature (K) | 293 |
a, c (Å) | 10.3915 (1), 13.6273 (2) |
V (Å3) | 1274.37 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 50.89 |
Crystal size (mm) | 0.07 × 0.06 × 0.05 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Numerical (HABITUS; Herrendorf, 1997) |
Tmin, Tmax | 0.123, 0.200 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 45686, 2262, 1908 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.858 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.056, 1.09 |
No. of reflections | 2262 |
No. of parameters | 81 |
Δρmax, Δρmin (e Å−3) | 2.96, −2.59 |
Absolute structure | Flack (1983), 882 Friedel pairs |
Absolute structure parameter | 0.134 (10) |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS for Windows (Dowty, 2006), publCIF (Westrip, 2010).
Te1—O2 | 1.906 (5) | Co2—O2 | 2.090 (6) |
Te1—O6 | 1.991 (4) | Co2—O3iii | 2.090 (8) |
Te2—O5 | 1.917 (6) | Co2—O1 | 2.108 (6) |
Te2—O3 | 1.937 (7) | Co3—O3 | 2.107 (4) |
Te2—O1i | 1.939 (5) | Co4—O2 | 2.067 (7) |
Co1—O5ii | 2.004 (6) | Co4—O1iv | 2.071 (4) |
Co1—O6 | 2.262 (5) | Co4—O5v | 2.116 (7) |
Symmetry codes: (i) x−y, x, z+1/2; (ii) −x+y, y, −z+1/2; (iii) y, x, −z; (iv) −x+y, −x+1, z; (v) x−y, −y+1, −z. |
Single crystals of the title compound, Pb6Co9(TeO6)5, were serendipitously obtained as a minority phase during phase formation studies in the system PbII/CoII/TeVI/O intended on crystal growth of cubic Pb2CoTeO6.
The crystal structure of Pb6Co9(TeO6)5 is isotypic with its nickel analogue (Wedel et al., 1998). The two Te(VI) and the four Co(II) atoms are in slightly distorted octahedral coordination environments with mean bond lengths of ¯d(Te—O) = 1.940 Å and ¯d(Co—O) = 2.105 Å, both in good agreement with literature data for oxotellurates (Levason, 1997) and for [CoO6] octahedra (Wildner, 1992). The two lead(II) atoms exhibit coordination numbers of four and six. The crresponding Pb—O, Te—O and M—O (M = Co, Ni) bond lengths are very similar in the two isotypic structures.
The crystal structure of Pb6Co9(TeO6)5 can be described in terms of (001) layers A at z ≈ 0.25 and B at z ≈ 0 that stack alternately along [100] (Fig. 1). In layer A [TeO6] and [CoO6] octahedra share edges with 1/6 of the octahedral holes at the 2c and 2d positions, both with site symmetry 3.2, not occupied. The corresponding vacancies, denominated as X1 at the 2d position and as X2 at the 2c position, have different sizes. X1 has a diagonal diameter of 4.1076 (8) Å whereas X2 is somewhat larger with a diagonal diameter of 4.3258 (8) Å. This difference might be correlated with the size of the surrounding octahedra. Whereas the smaller X1 vacancy is encircled by a ring of six [CoO6] octahedra, the larger X2 is encircled by a ring of three [CoO6] and three slightly smaller [TeO6] octahedra (Fig. 2). Layer B consists of double octahedra that are made up from face-sharing [CoO6] and [TeO6] octahedra, and by surrounding lead(II) atoms (Fig. 3). Adjacent A and B layers are linked together above and below the X1 and X2 vacancies through corner-sharing of [CoO6] and [TeO6] octahedra.
The resulting [Co9Te5O30]12- framework anion leaves space for the stereochemically active lead(II) cations. The oxygen coordination of the two Pb2+ cations is one-sided, with a [4]-coordination for Pb1 and a [6]-coordination for Pb2, if only Pb—O distances less than 2.75 Å are taken into account. The two cations share a common edge (O6—O6') with the lone pair electrons E pointing towards opposite directions. However, a bond valence calculation (Brown, 2002) shows a significant contribution of the four additional Pb—O distances for each of the two Pb atoms if interactions up to 3.5 Å are considered. Inclusion of these bonds increases the bond valence sum at Pb1 from 1.61 valence units (vu) to 1.83 vu and at Pb2 from 1.64 to 1.96 vu. The bond valence sum at O3 is also raised from 1.60 to 1.80 vu. Therefore the overall coordination of Pb1 might be described as [4 + 4] and that of Pb2 as [6 + 4] (Fig. 4).