Download citation
Download citation
link to html
K2[H7CrIIIMo6O24]·8H2O contains a symmetric hydrogen bond in which the H atom does not lie on a crystallographic centre of symmetry. The structure has been redetermined in order to locate the position of the seventh H atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015000390/br2242sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015000390/br2242Isup2.hkl
Contains datablock I

CCDC reference: 1042715

Key indicators

  • Single-crystal X-ray study
  • T = 446 K
  • Mean [sigma](Mo-O) = 0.002 Å
  • R factor = 0.024
  • wR factor = 0.064
  • Data-to-parameter ratio = 13.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT222_ALERT_3_B Large Non-Solvent H Uiso(max)/Uiso(min) ... 8.0 Ratio
Author Response: Because of H5. H5 on the psudo centre of O5b between O16b (-x+1, -y, -y+1).

Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.35 Report PLAT303_ALERT_2_C Full Occupancy H-Atom H5 with # Connections 2.00 Check
Author Response: 'Explain in the Abstract & Comment. H5 on the psudo-centre/not centre of O5b between O16b (-x+1, -y, -y+1).'
PLAT354_ALERT_3_C Short   O-H (X0.82,N0.98A) O1C    -   H1     ...       0.70 Ang.
Author Response: Because of short HY bonding.
PLAT354_ALERT_3_C Short   O-H (X0.82,N0.98A) O13C   -   H13    ...       0.70 Ang.
Author Response: Because of short HY bonding.
PLAT417_ALERT_2_C Short Inter D-H..H-D       H3     ..  H31A    ..       2.11 Ang.
Author Response: Because of short HY bonding.
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L=  0.600         25 Report
PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF ....          1 Note
PLAT971_ALERT_2_C Check Calcd Residual Density  1.25A From     O1C       1.57 eA-3
PLAT975_ALERT_2_C Check Calcd Residual Density  1.00A From    O26W       1.03 eA-3
PLAT975_ALERT_2_C Check Calcd Residual Density  0.92A From    O26W       0.74 eA-3
PLAT975_ALERT_2_C Check Calcd Residual Density  0.77A From    O26W       0.71 eA-3
PLAT976_ALERT_2_C Check Calcd Residual Density  1.06A From    O30W      -0.54 eA-3
PLAT976_ALERT_2_C Check Calcd Residual Density  0.42A From    O29W      -0.45 eA-3

Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 26 Note PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension 2 Info PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large. 6.31 Why ? PLAT154_ALERT_1_G The su's on the Cell Angles are Equal .......... 0.00100 Degree PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 17 Note PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 4 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 13 ALERT level C = Check. Ensure it is not caused by an omission or oversight 7 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 11 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Chemical context top

This redetermined structure of a typical Anderson-type heteropolyoxometalate (Anderson, 1937), K2[H7CrIIIMo6O24]·8H2O reveals the position of the extra or seventh H atom in the [HCrIII(OH)6Mo6O18]2- polyanion. This has not only an extra H atom but this atom also forms a very short hydrogen bond [2.461 (3) Å]; however, the H atom that contributes to the short hydrogen bond does not lie on a crystallographic centre of symmetry.

An example of a relatively short hydrogen bond in which the H atom does lie on a crystallographic centre of symmetry in an Anderson-type polyanion was reported in the polyoxometalate, viz. K7[H4.5α-PtMo6O24]2·11H2O (Lee et al., 2010). In this compound, the two polyanions form a dimer, viz. [(H4.5PtMo6O24)2]7- via seven hydrogen bonds, viz. four µ3-O—H···µ1–O (terminal MoO atom), two µ2-O—H···µ2-O and one central/symmetric µ3-O···H···µ3-O. The H atom of the central hydrogen bond in the compound lies on a crystallographic centre of symmetry (space group P1 : 1/2, 0, 1/2) with a µ3-O···H···µ3-O (1) distance of 2.553 (3) Å. In this way, the hydrogen bond is symmetric, O···H···O, and the donor and acceptor cannot be distinguished. The dimerization of the polyanion by these hydrogen bonds is possible because the µ3-O atoms in the polyanion are only partially protonated. The location of the H atom in the central µ3-O···H···µ3-O unit was determined from a centrosymmetric electron density map around the H-atom position. This centrosymmetric inter­pretation of the hydrogen bond is strongly supported by the bond-valence sums (BVS; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991). The sum around the strongly bonded µ3-O atom is 1.92 valence units (v.u.) in the [(H4.5PtMo6O24)2]7- polyanion. The reasonable BVS values of very short or very long O—H bond distances can be obtained from the graphical correlation (Brown, 2001).

However, the title compound belongs to the B-series Anderson-type polyanions (Tsigdinos, 1978) viz. [Xn+(OH)6MoO18](12-n)- (X = heteroatom), in which such dimerization is impossible, because all six µ3-O atoms are fully protonated. The polyanion structure in the title compound is shown in Fig. 1.

Structural commentary top

This study was carried out to identify the position of the seventh or extra H atom in the [HCrIII(OH)6Mo6O18]2- polyanion. After considering the electron density maps and BVS values of the protonated OB (O-bridged µ2-O atom) atoms in the previously reported structure (Lee, 2007), we considered that the positional disorder model of the H atom was wrong. The electron density (Fig. 2) is not symmetric in the title compound, but we expect the H atoms to lie in the middle of the bond because of the short O···O distance of 2.461 (3) Å, which corresponds to a pseudosymmetric hydrogen bond. The description of the rest of the structure and the composition of the atoms in the polyanion are the same as in the previous report of the compound, viz. K2[H7CrIIIMo6O24]·8H2O (Lee, 2007). The O atoms of the polyoxometalate are designated as OT (terminal MoO atom), OB, and OC (centre of two Mo and one Cr atom, µ3-O atom), respectively.

In the present case, the O5B···H5 and O16Bi···H5 distances are both 1.23 Å (Table 1). This hydrogen bond is considered to be a symmetric hydrogen bond because the O5B···O16Bi distance, 2.461 (3) Å, is very short. However, since the H atom does not lie on a crystallographic centre of symmetry, the present structure is considered to be particularly significant. As a result, the H5 atom is co-shared as O5B···H5···O16Bi, and the average equation of the polyanion is [CrIII3-OH)62-O(0.5H)}2Mo6O17]2-.

The calculated BVS for the O5B and O16B atoms are 1.59 and 1.57 v.u., respectively, if the valence of the O—H bond is not included. Since the BVS value around the µ2-O atom should be 2.0 v.u., the missing valences of O5B and O16B are 0.41 and 0.43 v.u., respectively, corresponding to the valence of the O—H bonds. The obtained graphical correlation valence of H5 from its distance, 1.232 (7) Å, is 0.41 v.u., which is sufficient to satisfy the sums around the O5B and O16B atoms. As a result, the valence sums around O5B and O16B are 2.00 and 1.98 v.u., respectively. The BVS around the unprotonated µ2-O atoms, viz. O4B, O6B, O17B and O18B are 1.98, 1.96, 2.13 and 2.02 v.u., respectively.

The positional disordered model in the previous report (Lee, 2007) showed unreasonable BVS values. The calculated BVS for the O5B and O16B atoms are 1.62 and 1.57 v.u., respectively, if the valence of the O—H bond is not included. The obtained graphical correlation valences of H5 and H16 from its distances [O5B—H5 = 0.71 (8), H5···O16B = 1.79 (8) Å and O16B—H16 = 0.83 (8), H16···O5B = 1.65 (8) Å] are 0.24 and 0.26 v.u. Therefore, the total BVS values of O5B and O16B are 1.86 and 1.83 v.u., respectively.

As a result, we consider that the present model of the title compound is reasonable, and the one extra H atom is located at the mid-point between the O5B and O16B atoms, and shared equally by two discrete polyanions. All H atoms and hydrogen bonds were well-defined in the title compound (Table 1).

Supra­molecular features top

Two discrete polyanions A and B are linked into chains along [011] by two normal, and one strong and pseudosymmetric hydrogen bonds (Table 1 and Fig.3). The K+ ions are variously coordinated by O atoms as [K1(OT)4(OW)4]+ and [K2(OT)4(OB)(OW)3]+ in the distance range 2.722 (3)–3.075 (3) Å. Furthermore, the polyanions are three dimensionally linked via clusters of K···OT, OB and OW inter­actions. All water molecules form hydrogen bonds with polyanions except for the O30W and O31W water molecules.

Synthesis and crystallization top

The crude potassium salt of title compound was obtained from the reaction of Na3[H6CrMo6O24].8H2O (Perloff, 1970) solution and excess KCl solution. The title compound was obtained by recrystallization of crude K3[H6CrMo6O24].8H2O at pH 1.80.

Refinement top

All the H atoms in the polyanions and all water H atoms were positioned using difference Fourier maps. All H atoms in the polyanion were refined freely, but the H5 atoms were refined with a distance restraint of O5B—H5 and O16Biii—H5 (Table 1) using the SADI command in SHELXL97 (Sheldrick, 2008); σ = 0.01, the distances between the first and second named bonds were restrained to be equal with an effective standard deviation sigma in order to locate the H5 atom on the pseudocentre between the O5B and O16B atoms. The H atoms of all water molecules (OW) were refined with a distance restraint of O—H = 0.95 (3) Å using the DFIX command, and were included in the refinement with Uiso(H) = 1.5Ueq(O). The highest peak in the difference map is 1.62 Å from O9T.

Related literature top

For related literature, see: Brese & O'Keeffe (1991); Brown & Altermatt (1985); Lee (2007); Lee & Joo (2004); Perloff (1970); Sheldrick (2008); Tsigdinos (1978).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The polyanion structure in the title compound. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. H atoms are shown as small spheres of arbitrary radius. [Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. Difference Fourier map around atom H5 where atom H5 is absent.
[Figure 3] Fig. 3. Polyhedral view of the heteropolyanion in (I), with O···O contacts of the inter-polyanion hydrogen bonds shown as dashed lines. [Symmetry codes; (i) -x + 1, -y, -z + 1; (ii) x , y, z - 1; (iii) -x + 1, -y + 1, -z + 1; (iv) x, y + 1, z; (v) -x + 1, -y + 1, -z + 2.]
Dipotassium heptahydrogen hexamolybdochromate(III) octahydrate top
Crystal data top
K2[H7CrMo6O24]·8H2OZ = 2
Mr = 1241.02F(000) = 1186
Triclinic, P1Dx = 2.968 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4588 (2) ÅCell parameters from 9896 reflections
b = 10.8553 (2) Åθ = 2.5–33.5°
c = 12.6287 (3) ŵ = 3.42 mm1
α = 99.296 (1)°T = 446 K
β = 94.469 (1)°Block, purple
γ = 99.283 (1)°0.18 × 0.11 × 0.09 mm
V = 1388.44 (5) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
6028 independent reflections
Radiation source: Rotating Anode5893 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.025
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.6°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1313
Tmin = 0.645, Tmax = 0.746l = 1616
23489 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0255P)2 + 6.3059P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
6028 reflectionsΔρmax = 1.58 e Å3
450 parametersΔρmin = 0.67 e Å3
17 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00391 (16)
Crystal data top
K2[H7CrMo6O24]·8H2Oγ = 99.283 (1)°
Mr = 1241.02V = 1388.44 (5) Å3
Triclinic, P1Z = 2
a = 10.4588 (2) ÅMo Kα radiation
b = 10.8553 (2) ŵ = 3.42 mm1
c = 12.6287 (3) ÅT = 446 K
α = 99.296 (1)°0.18 × 0.11 × 0.09 mm
β = 94.469 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6028 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
5893 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.746Rint = 0.025
23489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02417 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 1.58 e Å3
6028 reflectionsΔρmin = 0.67 e Å3
450 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.50000.00001.00000.00813 (15)
Cr20.50000.50000.50000.00762 (15)
Mo10.23267 (3)0.13627 (3)0.99546 (2)0.01127 (8)
Mo20.20792 (3)0.17249 (3)0.90598 (2)0.01086 (8)
Mo30.47636 (3)0.31129 (3)0.92212 (2)0.01051 (8)
Mo40.79232 (3)0.42389 (3)0.46268 (2)0.00994 (8)
Mo50.52144 (3)0.19391 (3)0.43518 (2)0.00938 (8)
Mo60.23147 (3)0.27465 (3)0.46825 (2)0.00952 (8)
K10.06894 (8)0.02275 (9)0.66878 (7)0.02014 (17)
K20.92835 (8)0.58495 (9)0.77823 (7)0.02212 (18)
O1C0.4157 (2)0.1138 (2)1.0986 (2)0.0113 (5)
H10.414 (6)0.100 (5)1.151 (5)0.033 (16)*
O2C0.3526 (2)0.0070 (2)0.8952 (2)0.0099 (5)
H20.362 (5)0.029 (5)0.842 (4)0.028 (14)*
O3C0.3916 (2)0.1598 (2)1.0194 (2)0.0109 (5)
H30.386 (5)0.166 (5)1.083 (5)0.034 (15)*
O4B0.1720 (2)0.0378 (2)1.0107 (2)0.0137 (5)
O5B0.3370 (2)0.2592 (2)0.83029 (19)0.0121 (5)
H50.334 (9)0.271 (9)0.7314 (10)0.12 (3)*
O6B0.6225 (2)0.2660 (2)1.0259 (2)0.0131 (5)
O7T0.1329 (3)0.1463 (3)0.8855 (2)0.0196 (6)
O8T0.1748 (3)0.2124 (3)1.1047 (2)0.0201 (6)
O9T0.1160 (3)0.1627 (3)0.7911 (2)0.0171 (5)
O10T0.1270 (3)0.2975 (3)0.9535 (2)0.0192 (6)
O11T0.3862 (3)0.4281 (3)0.9735 (2)0.0184 (5)
O12T0.5387 (3)0.3860 (2)0.8119 (2)0.0158 (5)
O13C0.4147 (2)0.3516 (2)0.3922 (2)0.0099 (5)
H130.415 (5)0.359 (5)0.338 (4)0.015 (12)*
O14C0.3526 (2)0.4487 (2)0.5815 (2)0.0100 (5)
H140.357 (5)0.437 (5)0.643 (4)0.019 (12)*
O15C0.3920 (2)0.6197 (2)0.4556 (2)0.0096 (5)
H150.376 (5)0.616 (5)0.395 (5)0.034 (15)*
O16B0.6638 (2)0.2882 (2)0.36714 (19)0.0110 (5)
O17B0.8278 (2)0.5773 (2)0.56733 (19)0.0113 (5)
O18B0.3755 (2)0.1934 (2)0.5151 (2)0.0116 (5)
O19T0.8822 (3)0.4581 (3)0.3615 (2)0.0179 (5)
O20T0.8741 (3)0.3335 (3)0.5323 (2)0.0187 (6)
O21T0.6089 (2)0.1094 (3)0.5064 (2)0.0165 (5)
O22T0.4583 (3)0.0957 (2)0.3159 (2)0.0157 (5)
O23T0.1361 (2)0.2368 (3)0.5654 (2)0.0155 (5)
O24T0.1681 (3)0.1718 (3)0.3527 (2)0.0176 (5)
O25W0.8716 (3)0.0732 (3)0.5305 (2)0.0206 (6)
H25A0.783 (3)0.069 (5)0.535 (4)0.031*
H25B0.891 (5)0.159 (3)0.530 (4)0.031*
O26W0.8483 (3)0.0653 (3)0.7784 (2)0.0235 (6)
H26A0.863 (5)0.051 (5)0.847 (3)0.035*
H26B0.827 (5)0.012 (3)0.735 (4)0.035*
O27W0.3568 (3)0.1168 (3)0.7134 (2)0.0261 (7)
H27A0.367 (6)0.113 (5)0.643 (2)0.039*
H27B0.337 (6)0.194 (3)0.739 (4)0.039*
O28W0.6802 (3)0.4221 (3)0.7521 (2)0.0208 (6)
H28A0.629 (4)0.464 (5)0.794 (4)0.031*
H28B0.669 (5)0.345 (3)0.770 (4)0.031*
O29W0.8747 (4)0.5437 (4)0.9821 (3)0.0390 (8)
H29A0.810 (5)0.479 (5)0.998 (5)0.059*
H29B0.851 (6)0.611 (5)0.948 (5)0.059*
O30W0.0221 (5)0.3490 (4)0.7849 (5)0.0640 (14)
H30A0.019 (9)0.333 (9)0.716 (4)0.096*
H30B0.022 (8)0.268 (4)0.786 (7)0.096*
O31W0.3602 (3)0.8223 (3)0.2192 (2)0.0206 (6)
H31A0.295 (4)0.868 (5)0.226 (4)0.031*
H31B0.432 (4)0.870 (4)0.261 (4)0.031*
O32W0.3044 (3)0.3645 (3)0.7732 (2)0.0245 (6)
H32A0.219 (3)0.366 (5)0.772 (4)0.037*
H32B0.346 (5)0.392 (5)0.839 (3)0.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0082 (3)0.0076 (4)0.0084 (3)0.0010 (3)0.0006 (3)0.0013 (3)
Cr20.0070 (3)0.0074 (4)0.0086 (3)0.0013 (3)0.0009 (3)0.0015 (3)
Mo10.01095 (14)0.01186 (15)0.01156 (14)0.00390 (11)0.00131 (11)0.00177 (11)
Mo20.00957 (14)0.01067 (15)0.01165 (14)0.00013 (11)0.00034 (10)0.00198 (11)
Mo30.01252 (14)0.00810 (15)0.01083 (14)0.00194 (11)0.00182 (11)0.00109 (11)
Mo40.00749 (13)0.00962 (15)0.01315 (14)0.00208 (10)0.00177 (10)0.00245 (11)
Mo50.00942 (14)0.00756 (14)0.01113 (14)0.00169 (10)0.00103 (10)0.00138 (10)
Mo60.00820 (14)0.00838 (15)0.01158 (14)0.00012 (10)0.00090 (10)0.00201 (11)
K10.0189 (4)0.0248 (4)0.0182 (4)0.0039 (3)0.0019 (3)0.0081 (3)
K20.0173 (4)0.0303 (5)0.0177 (4)0.0012 (3)0.0017 (3)0.0040 (3)
O1C0.0135 (12)0.0115 (12)0.0089 (12)0.0027 (9)0.0016 (9)0.0011 (10)
O2C0.0108 (11)0.0116 (12)0.0081 (11)0.0022 (9)0.0019 (9)0.0036 (9)
O3C0.0135 (12)0.0103 (12)0.0093 (11)0.0018 (9)0.0017 (9)0.0024 (9)
O4B0.0130 (12)0.0148 (13)0.0135 (12)0.0022 (10)0.0041 (9)0.0022 (10)
O5B0.0127 (12)0.0128 (12)0.0106 (11)0.0036 (9)0.0005 (9)0.0004 (9)
O6B0.0144 (12)0.0117 (12)0.0129 (12)0.0024 (10)0.0009 (9)0.0026 (9)
O7T0.0159 (13)0.0214 (15)0.0212 (14)0.0031 (11)0.0022 (10)0.0058 (11)
O8T0.0206 (14)0.0200 (14)0.0203 (13)0.0046 (11)0.0066 (11)0.0019 (11)
O9T0.0168 (13)0.0182 (14)0.0157 (13)0.0024 (11)0.0004 (10)0.0028 (10)
O10T0.0184 (13)0.0168 (14)0.0230 (14)0.0013 (11)0.0040 (11)0.0062 (11)
O11T0.0199 (13)0.0145 (13)0.0219 (13)0.0023 (11)0.0037 (11)0.0063 (11)
O12T0.0198 (13)0.0140 (13)0.0136 (12)0.0047 (10)0.0029 (10)0.0002 (10)
O13C0.0118 (12)0.0104 (12)0.0073 (12)0.0014 (9)0.0006 (9)0.0019 (9)
O14C0.0086 (11)0.0130 (12)0.0088 (11)0.0014 (9)0.0007 (9)0.0039 (9)
O15C0.0110 (11)0.0096 (12)0.0082 (11)0.0019 (9)0.0002 (9)0.0021 (9)
O16B0.0122 (11)0.0120 (12)0.0083 (11)0.0014 (9)0.0033 (9)0.0003 (9)
O17B0.0103 (11)0.0106 (12)0.0124 (11)0.0013 (9)0.0005 (9)0.0022 (9)
O18B0.0112 (11)0.0106 (12)0.0140 (12)0.0022 (9)0.0029 (9)0.0045 (9)
O19T0.0144 (12)0.0169 (14)0.0225 (14)0.0003 (10)0.0089 (10)0.0031 (11)
O20T0.0147 (13)0.0159 (14)0.0263 (14)0.0055 (10)0.0019 (11)0.0055 (11)
O21T0.0127 (12)0.0150 (13)0.0240 (14)0.0046 (10)0.0028 (10)0.0075 (11)
O22T0.0162 (12)0.0136 (13)0.0156 (12)0.0005 (10)0.0014 (10)0.0001 (10)
O23T0.0139 (12)0.0150 (13)0.0187 (13)0.0008 (10)0.0049 (10)0.0065 (10)
O24T0.0165 (13)0.0187 (14)0.0168 (13)0.0050 (11)0.0018 (10)0.0005 (10)
O25W0.0178 (13)0.0182 (14)0.0278 (15)0.0071 (11)0.0016 (11)0.0062 (12)
O26W0.0302 (16)0.0238 (16)0.0165 (13)0.0047 (13)0.0058 (12)0.0023 (12)
O27W0.0351 (17)0.0310 (17)0.0174 (14)0.0118 (14)0.0055 (12)0.0121 (13)
O28W0.0271 (15)0.0180 (14)0.0195 (14)0.0085 (12)0.0042 (11)0.0050 (11)
O29W0.040 (2)0.040 (2)0.043 (2)0.0083 (16)0.0114 (16)0.0201 (17)
O30W0.046 (3)0.038 (2)0.117 (4)0.015 (2)0.013 (3)0.030 (3)
O31W0.0258 (15)0.0192 (15)0.0157 (13)0.0010 (12)0.0010 (11)0.0034 (11)
O32W0.0257 (15)0.0305 (17)0.0152 (13)0.0007 (13)0.0019 (12)0.0036 (12)
Geometric parameters (Å, º) top
Cr1—O1Ci1.970 (2)Mo6—O18B1.964 (2)
Cr1—O1C1.970 (3)Mo6—O14C2.301 (2)
Cr1—O2C1.971 (2)Mo6—O13C2.307 (3)
Cr1—O2Ci1.971 (2)K1—O25Wiii2.722 (3)
Cr1—O3Ci1.975 (2)K1—O25Wiv2.778 (3)
Cr1—O3C1.975 (2)K1—O9T2.809 (3)
Cr2—O13Cii1.970 (2)K1—O7T2.825 (3)
Cr2—O13C1.970 (2)K1—O26Wiv2.844 (3)
Cr2—O15C1.972 (2)K1—O23T2.862 (3)
Cr2—O15Cii1.972 (2)K1—O24Tv2.950 (3)
Cr2—O14Cii1.976 (2)K1—O27W2.997 (3)
Cr2—O14C1.976 (2)K2—O29W2.767 (4)
Mo1—O8T1.696 (3)K2—O17B2.769 (3)
Mo1—O7T1.699 (3)K2—O19Tvi2.799 (3)
Mo1—O4B1.939 (3)K2—O8Tvii2.855 (3)
Mo1—O6Bi1.962 (3)K2—O28W2.858 (3)
Mo1—O1C2.299 (3)K2—O10Tviii2.891 (3)
Mo1—O2C2.321 (2)K2—O30Wix2.897 (4)
Mo2—O10T1.701 (3)K2—O9Tviii3.074 (3)
Mo2—O9T1.705 (3)O1C—H10.70 (6)
Mo2—O4B1.913 (3)O2C—H20.76 (6)
Mo2—O5B1.986 (2)O3C—H30.82 (6)
Mo2—O3C2.276 (2)O5B—O16Biii2.461 (3)
Mo2—O2C2.296 (3)O5B—H51.232 (7)
Mo3—O11T1.701 (3)O13C—H130.70 (5)
Mo3—O12T1.722 (3)O14C—H140.81 (5)
Mo3—O6B1.879 (2)O15C—H150.76 (6)
Mo3—O5B2.001 (2)O16B—H5iii1.231 (7)
Mo3—O3C2.233 (2)O25W—H25A0.92 (3)
Mo3—O1Ci2.321 (3)O25W—H25B0.93 (3)
Mo4—O19T1.698 (3)O26W—H26A0.91 (3)
Mo4—O20T1.702 (3)O26W—H26B0.91 (3)
Mo4—O17B1.916 (2)O27W—H27A0.90 (3)
Mo4—O16B1.992 (2)O27W—H27B0.91 (3)
Mo4—O15Cii2.275 (2)O28W—H28A0.91 (3)
Mo4—O14Cii2.306 (2)O28W—H28B0.90 (3)
Mo5—O21T1.703 (3)O29W—H29A0.95 (3)
Mo5—O22T1.715 (3)O29W—H29B0.96 (3)
Mo5—O18B1.894 (2)O30W—H30A0.92 (3)
Mo5—O16B1.998 (2)O30W—H30B0.93 (3)
Mo5—O15Cii2.264 (2)O31W—H31A0.90 (3)
Mo5—O13C2.301 (2)O31W—H31B0.92 (3)
Mo6—O23T1.700 (3)O32W—H32A0.89 (3)
Mo6—O24T1.703 (3)O32W—H32B0.89 (3)
Mo6—O17Bii1.919 (2)
O1Ci—Cr1—O1C180.00 (13)O23T—Mo6—O24T106.46 (13)
O1Ci—Cr1—O2C96.36 (11)O23T—Mo6—O17Bii102.39 (12)
O1C—Cr1—O2C83.64 (10)O24T—Mo6—O17Bii98.17 (12)
O1Ci—Cr1—O2Ci83.64 (10)O23T—Mo6—O18B95.85 (11)
O1C—Cr1—O2Ci96.36 (11)O24T—Mo6—O18B100.31 (12)
O2C—Cr1—O2Ci180.000 (1)O17Bii—Mo6—O18B149.10 (10)
O1Ci—Cr1—O3Ci96.40 (11)O23T—Mo6—O14C92.72 (11)
O1C—Cr1—O3Ci83.60 (11)O24T—Mo6—O14C160.17 (11)
O2C—Cr1—O3Ci96.11 (10)O17Bii—Mo6—O14C72.22 (9)
O2Ci—Cr1—O3Ci83.89 (10)O18B—Mo6—O14C82.29 (10)
O1Ci—Cr1—O3C83.60 (11)O23T—Mo6—O13C158.88 (11)
O1C—Cr1—O3C96.40 (11)O24T—Mo6—O13C92.55 (11)
O2C—Cr1—O3C83.89 (10)O17Bii—Mo6—O13C83.47 (10)
O2Ci—Cr1—O3C96.11 (10)O18B—Mo6—O13C71.21 (9)
O3Ci—Cr1—O3C180.0O14C—Mo6—O13C69.50 (9)
O13Cii—Cr2—O13C180.00 (11)O25Wiii—K1—O25Wiv76.62 (9)
O13Cii—Cr2—O15C83.38 (10)O25Wiii—K1—O9T103.15 (9)
O13C—Cr2—O15C96.62 (10)O25Wiv—K1—O9T139.32 (9)
O13Cii—Cr2—O15Cii96.62 (10)O25Wiii—K1—O7T153.61 (9)
O13C—Cr2—O15Cii83.38 (10)O25Wiv—K1—O7T123.85 (9)
O15C—Cr2—O15Cii180.00 (14)O9T—K1—O7T72.86 (8)
O13Cii—Cr2—O14Cii83.45 (11)O25Wiii—K1—O26Wiv140.01 (9)
O13C—Cr2—O14Cii96.55 (10)O25Wiv—K1—O26Wiv68.70 (9)
O15C—Cr2—O14Cii96.19 (10)O9T—K1—O26Wiv91.09 (9)
O15Cii—Cr2—O14Cii83.81 (10)O7T—K1—O26Wiv66.28 (8)
O13Cii—Cr2—O14C96.55 (10)O25Wiii—K1—O23T74.25 (8)
O13C—Cr2—O14C83.45 (11)O25Wiv—K1—O23T64.14 (8)
O15C—Cr2—O14C83.81 (10)O9T—K1—O23T156.00 (8)
O15Cii—Cr2—O14C96.19 (10)O7T—K1—O23T98.65 (8)
O14Cii—Cr2—O14C180.000 (1)O26Wiv—K1—O23T106.24 (9)
O8T—Mo1—O7T106.84 (14)O25Wiii—K1—O24Tv91.73 (9)
O8T—Mo1—O4B99.43 (12)O25Wiv—K1—O24Tv68.54 (8)
O7T—Mo1—O4B100.45 (12)O9T—K1—O24Tv70.82 (8)
O8T—Mo1—O6Bi101.16 (12)O7T—K1—O24Tv110.61 (8)
O7T—Mo1—O6Bi96.54 (12)O26Wiv—K1—O24Tv57.72 (8)
O4B—Mo1—O6Bi148.14 (11)O23T—K1—O24Tv132.52 (8)
O8T—Mo1—O1C91.58 (12)O25Wiii—K1—O27W83.91 (9)
O7T—Mo1—O1C160.03 (12)O25Wiv—K1—O27W134.40 (9)
O4B—Mo1—O1C83.63 (10)O9T—K1—O27W84.97 (8)
O6Bi—Mo1—O1C71.79 (10)O7T—K1—O27W69.83 (8)
O8T—Mo1—O2C159.33 (12)O26Wiv—K1—O27W135.05 (9)
O7T—Mo1—O2C93.25 (12)O23T—K1—O27W71.05 (8)
O4B—Mo1—O2C71.53 (10)O24Tv—K1—O27W153.77 (8)
O6Bi—Mo1—O2C80.83 (10)O29W—K2—O17B146.30 (10)
O1C—Mo1—O2C69.32 (9)O29W—K2—O19Tvi137.95 (10)
O10T—Mo2—O9T105.54 (13)O17B—K2—O19Tvi70.05 (8)
O10T—Mo2—O4B98.88 (12)O29W—K2—O8Tvii67.52 (10)
O9T—Mo2—O4B104.05 (12)O17B—K2—O8Tvii102.90 (8)
O10T—Mo2—O5B98.79 (12)O19Tvi—K2—O8Tvii140.83 (9)
O9T—Mo2—O5B95.15 (11)O29W—K2—O28W73.32 (10)
O4B—Mo2—O5B149.26 (11)O17B—K2—O28W74.70 (8)
O10T—Mo2—O3C93.09 (11)O19Tvi—K2—O28W121.69 (9)
O9T—Mo2—O3C157.67 (11)O8Tvii—K2—O28W91.06 (9)
O4B—Mo2—O3C84.69 (10)O29W—K2—O10Tviii63.77 (10)
O5B—Mo2—O3C69.42 (9)O17B—K2—O10Tviii147.47 (8)
O10T—Mo2—O2C161.78 (11)O19Tvi—K2—O10Tviii91.15 (8)
O9T—Mo2—O2C92.28 (11)O8Tvii—K2—O10Tviii74.69 (8)
O4B—Mo2—O2C72.55 (10)O28W—K2—O10Tviii137.05 (8)
O5B—Mo2—O2C83.06 (10)O29W—K2—O30Wix79.00 (15)
O3C—Mo2—O2C70.46 (9)O17B—K2—O30Wix107.05 (14)
O11T—Mo3—O12T106.13 (13)O19Tvi—K2—O30Wix66.13 (12)
O11T—Mo3—O6B100.61 (12)O8Tvii—K2—O30Wix146.33 (14)
O12T—Mo3—O6B102.43 (12)O28W—K2—O30Wix82.43 (11)
O11T—Mo3—O5B100.44 (12)O10Tviii—K2—O30Wix87.75 (13)
O12T—Mo3—O5B92.82 (11)O29W—K2—O9Tviii110.89 (10)
O6B—Mo3—O5B149.33 (11)O17B—K2—O9Tviii94.26 (7)
O11T—Mo3—O3C92.56 (11)O19Tvi—K2—O9Tviii72.19 (8)
O12T—Mo3—O3C156.92 (11)O8Tvii—K2—O9Tviii69.98 (8)
O6B—Mo3—O3C86.90 (10)O28W—K2—O9Tviii155.67 (8)
O5B—Mo3—O3C70.11 (9)O10Tviii—K2—O9Tviii53.95 (7)
O11T—Mo3—O1Ci161.82 (11)O30Wix—K2—O9Tviii121.81 (11)
O12T—Mo3—O1Ci91.92 (11)Cr1—O1C—Mo1103.93 (11)
O6B—Mo3—O1Ci72.66 (10)Cr1—O1C—Mo3i101.37 (11)
O5B—Mo3—O1Ci80.47 (10)Mo1—O1C—Mo3i91.53 (9)
O3C—Mo3—O1Ci70.51 (9)Cr1—O2C—Mo2102.54 (11)
O19T—Mo4—O20T106.50 (14)Cr1—O2C—Mo1103.10 (10)
O19T—Mo4—O17B104.09 (12)Mo2—O2C—Mo192.00 (9)
O20T—Mo4—O17B98.21 (12)Cr1—O3C—Mo3104.32 (11)
O19T—Mo4—O16B94.09 (12)Cr1—O3C—Mo2103.08 (11)
O20T—Mo4—O16B99.92 (12)Mo3—O3C—Mo297.93 (10)
O17B—Mo4—O16B149.41 (10)Mo2—O4B—Mo1119.12 (13)
O19T—Mo4—O15Cii156.61 (11)Mo2—O5B—Mo3117.13 (12)
O20T—Mo4—O15Cii93.29 (11)Mo2—O5B—O16Biii121.72 (12)
O17B—Mo4—O15Cii84.78 (10)Mo3—O5B—O16Biii121.01 (12)
O16B—Mo4—O15Cii69.81 (9)Mo3—O6B—Mo1i118.98 (13)
O19T—Mo4—O14Cii91.56 (11)Cr2—O13C—Mo5102.58 (10)
O20T—Mo4—O14Cii161.32 (12)Cr2—O13C—Mo6103.49 (11)
O17B—Mo4—O14Cii72.15 (9)Mo5—O13C—Mo692.48 (9)
O16B—Mo4—O14Cii83.13 (9)Cr2—O14C—Mo6103.53 (11)
O15Cii—Mo4—O14Cii70.30 (9)Cr2—O14C—Mo4ii102.33 (10)
O21T—Mo5—O22T106.65 (13)Mo6—O14C—Mo4ii91.61 (8)
O21T—Mo5—O18B99.32 (12)Cr2—O15C—Mo5ii103.82 (10)
O22T—Mo5—O18B102.90 (12)Cr2—O15C—Mo4ii103.53 (10)
O21T—Mo5—O16B100.17 (11)Mo5ii—O15C—Mo4ii97.60 (9)
O22T—Mo5—O16B93.06 (11)Mo4—O16B—Mo5117.72 (11)
O18B—Mo5—O16B150.02 (10)Mo4—O17B—Mo6ii118.91 (12)
O21T—Mo5—O15Cii93.02 (11)Mo5—O18B—Mo6119.24 (12)
O22T—Mo5—O15Cii156.22 (11)H25A—O25W—H25B96 (5)
O18B—Mo5—O15Cii86.51 (10)H26A—O26W—H26B107 (5)
O16B—Mo5—O15Cii69.93 (9)H27A—O27W—H27B108 (5)
O21T—Mo5—O13C161.33 (11)H28A—O28W—H28B104 (5)
O22T—Mo5—O13C91.69 (11)H29A—O29W—H29B121 (6)
O18B—Mo5—O13C72.50 (10)H30A—O30W—H30B83 (7)
O16B—Mo5—O13C81.93 (10)H31A—O31W—H31B107 (5)
O15Cii—Mo5—O13C70.11 (9)H32A—O32W—H32B112 (5)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x1, y, z; (v) x, y, z+1; (vi) x+2, y+1, z+1; (vii) x+1, y+1, z+2; (viii) x+1, y+1, z; (ix) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1C—H1···O22Tx0.70 (6)2.11 (6)2.789 (4)164 (6)
O2C—H2···O27W0.76 (6)2.01 (6)2.753 (4)166 (6)
O3C—H3···O31Wxi0.82 (6)1.79 (6)2.604 (4)176 (6)
O5B—H5···O16Biii1.23 (1)1.23 (1)2.461 (3)175 (5)
O13C—H13···O12Tiii0.70 (5)2.05 (5)2.734 (4)167 (5)
O14C—H14···O32W0.81 (5)2.01 (5)2.776 (4)158 (5)
O15C—H15···O28Wii0.76 (6)1.87 (6)2.619 (4)170 (6)
O25W—H25A···O21T0.92 (3)1.96 (3)2.838 (4)157 (5)
O25W—H25B···O20T0.93 (3)1.92 (3)2.819 (4)162 (5)
O26W—H26A···O4Bi0.91 (3)1.89 (3)2.748 (4)158 (5)
O26W—H26B···O24Tiii0.91 (3)1.91 (3)2.798 (4)164 (5)
O27W—H27A···O18B0.90 (3)1.95 (4)2.775 (4)151 (5)
O27W—H27B···O32W0.91 (3)1.92 (3)2.825 (5)171 (5)
O28W—H28A···O12Txii0.91 (3)2.00 (4)2.785 (4)144 (5)
O28W—H28B···O31Wii0.90 (3)1.82 (3)2.706 (4)170 (5)
O29W—H29A···O11Ti0.95 (3)2.11 (4)2.949 (5)146 (6)
O29W—H29B···O8Tvii0.96 (3)2.18 (3)3.126 (5)169 (6)
O31W—H31A···O26Wii0.90 (3)1.77 (3)2.665 (4)170 (5)
O31W—H31B···O27Wii0.92 (3)2.18 (4)2.952 (4)141 (4)
O32W—H32A···O30W0.89 (3)2.06 (3)2.947 (6)171 (5)
O32W—H32B···O6Bi0.89 (3)2.39 (5)3.000 (4)126 (5)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (vii) x+1, y+1, z+2; (x) x, y, z+1; (xi) x, y1, z+1; (xii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1C—H1···O22Ti0.70 (6)2.11 (6)2.789 (4)164 (6)
O2C—H2···O27W0.76 (6)2.01 (6)2.753 (4)166 (6)
O3C—H3···O31Wii0.82 (6)1.79 (6)2.604 (4)176 (6)
O5B—H5···O16Biii1.232 (7)1.232 (7)2.461 (3)175 (5)
O13C—H13···O12Tiii0.70 (5)2.05 (5)2.734 (4)167 (5)
O14C—H14···O32W0.81 (5)2.01 (5)2.776 (4)158 (5)
O15C—H15···O28Wiv0.76 (6)1.87 (6)2.619 (4)170 (6)
O25W—H25A···O21T0.92 (3)1.96 (3)2.838 (4)157 (5)
O25W—H25B···O20T0.93 (3)1.92 (3)2.819 (4)162 (5)
O26W—H26A···O4Bv0.91 (3)1.89 (3)2.748 (4)158 (5)
O26W—H26B···O24Tiii0.91 (3)1.91 (3)2.798 (4)164 (5)
O27W—H27A···O18B0.90 (3)1.95 (4)2.775 (4)151 (5)
O27W—H27B···O32W0.91 (3)1.92 (3)2.825 (5)171 (5)
O28W—H28A···O12Tvi0.91 (3)2.00 (4)2.785 (4)144 (5)
O28W—H28B···O31Wiv0.90 (3)1.82 (3)2.706 (4)170 (5)
O29W—H29A···O11Tv0.95 (3)2.11 (4)2.949 (5)146 (6)
O29W—H29B···O8Tvii0.96 (3)2.18 (3)3.126 (5)169 (6)
O31W—H31A···O26Wiv0.90 (3)1.77 (3)2.665 (4)170 (5)
O31W—H31B···O27Wiv0.92 (3)2.18 (4)2.952 (4)141 (4)
O32W—H32A···O30W0.89 (3)2.06 (3)2.947 (6)171 (5)
O32W—H32B···O6Bv0.89 (3)2.39 (5)3.000 (4)126 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z+2; (vi) x, y+1, z; (vii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaK2[H7CrMo6O24]·8H2O
Mr1241.02
Crystal system, space groupTriclinic, P1
Temperature (K)446
a, b, c (Å)10.4588 (2), 10.8553 (2), 12.6287 (3)
α, β, γ (°)99.296 (1), 94.469 (1), 99.283 (1)
V3)1388.44 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.42
Crystal size (mm)0.18 × 0.11 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.645, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
23489, 6028, 5893
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.11
No. of reflections6028
No. of parameters450
No. of restraints17
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.58, 0.67

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1998).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds