Download citation
Download citation
link to html
Single crystals of the langbeinite-related phosphate Rb0.743K0.845Co0.293Ti1.707(PO4)3 have been prepared by crystallization of high-temperature self-flux K2O–Rb2O–P2O5–TiO2–CoO.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015001826/br2246sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015001826/br2246Isup2.hkl
Contains datablock I

CCDC reference: 1045876

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](P-O) = 0.002 Å
  • Disorder in main residue
  • R factor = 0.026
  • wR factor = 0.051
  • Data-to-parameter ratio = 21.1

checkCIF/PLATON results

No syntax errors found



Alert level C SHFSU01_ALERT_2_C The absolute value of parameter shift to su ratio > 0.05 Absolute value of the parameter shift to su ratio given 0.051 Additional refinement cycles may be required. PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ Please Check PLAT077_ALERT_4_C Unitcell contains non-integer number of atoms .. Please Check
Alert level G PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension 3 Info PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT033_ALERT_4_G Flack x Value Deviates > 2*sigma from Zero ..... 0.024 Note PLAT045_ALERT_1_G Calculated and Reported Z Differ by ............ 0.25 Ratio PLAT152_ALERT_1_G The Supplied and Calc. Volume s.u. Differ by ... 13 Units PLAT199_ALERT_1_G Reported _cell_measurement_temperature ..... (K) 293 Check PLAT200_ALERT_1_G Reported _diffrn_ambient_temperature ..... (K) 293 Check PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Co1 -- O1 .. 6.0 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Ti1 -- O1 .. 6.0 su PLAT301_ALERT_3_G Main Residue Disorder ............ Percentage = 5 Note PLAT302_ALERT_4_G Anion/Solvent Disorder ............ Percentage = 100 Note PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms .... ! Info PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 3 Note PLAT950_ALERT_5_G Calculated (ThMax) and CIF-Reported Hmax Differ 5 Units PLAT951_ALERT_5_G Calculated (ThMax) and CIF-Reported Kmax Differ 4 Units PLAT961_ALERT_5_G Dataset Contains no Negative Intensities ....... Please Check
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 16 ALERT level G = General information/check it is not something unexpected 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 6 ALERT type 5 Informative message, check

Chemical context top

Nowadays, there are a number of reports on the synthesis and investigation of langbeinite-related complex phosphates, which exhibit inter­esting properties such as magnetic (Ogorodnyk et al., 2006), luminescence (Zhang et al., 2013; Chawla et al., 2013) and phase transitions (Hikita et al., 1977). It should be noted that compounds with a langbeinite-like structure are prospects for use as a matrix for the storage of nuclear waste (Orlova et al., 2011). Zaripov et al. (2009) and Ogorodnyk et al. (2007a) proved that caesium can be introduced into the cavity of a langbeinite framework that can be used for the immobilization of 137Cs in an inert matrix for safe disposal.

A large number of compounds with a langbeinite framework based on a variety of different valence element are known. Three major types of substitutions of the elements are known as well as their combinations. They are: metal substitution in o­cta­hedra, element substitution in anion tetra­hedra, and substitution of ions in cavities. Among these compounds, potassium-containing langbeinites are the most studied (Ogorodnyk et al., 2006, 2007b,c; Norberg, 2002; Orlova et al., 2003). However, several reports concerning phosphate langbeinites with Rb in the cavities of the framework are known: Rb2FeZr(PO4)3 (Trubach et al., 2004), Rb2YbTi(PO4)3 (Gustafsson et al., 2005) and Rb2TiY(PO4)3 (Gustafsson et al., 2006).

Herein, the structure of Rb0.743K0.845Co0.293Ti1.707(PO4)3, potassium rubidium cobalt(II)/titanium(IV) tris­(orthophosphate) is reported.

Structural commentary top

The unit of Rb0.743K0.845Co0.293Ti1.707(PO4)3 consists of two mixed-occupied (Co/TiIV), two (Rb/K), one P and four oxygen positions (Fig. 1). The structure of Rb0.743K0.845Co0.293Ti1.707(PO4)3 is built up from mixed (Co/TiIV)O6 o­cta­hedra and PO4 tetra­hedra, which are connected via common O-atom vertices. Each o­cta­hedron is linked to six adjacent tetra­hedra and reciprocally, each tetra­hedron is connected to four neighboring o­cta­hedra into three-dimensional rigid framework (Fig. 2).

The oxygen environment of the metal atoms in the (Co/TiIV)1O6 o­cta­hedra shows slightly distorted geometry, with M—O bonds of 1.940 (2) and 1.966 (2) Å. These distances are close to the corresponding bond lengths in K2Ti2(PO4)3 [d(Ti—O) = 1.877 (10)–1.965 (10) Å; Masse et al., 1972], which could be explained by the small occupancy of cobalt in the mixed (Co/TiIV)1 [occupancy = 0.1307 (9)] and (Co/TiIV)2 [occupancy = 0.162 (3)] sites. It should be noted that (Co/TiIV)2—O distances [1.949 (2) and 1.969 (2) Å] are slightly shorter than those in K2Co0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2006).

The orthophosphate tetra­hedra are also slightly distorted with P—O bond lengths ranging from 1.525 (2) to 1.531 (2) Å. These distances are almost identical to corresponding in K2Co0.5Ti1.5(PO4)3 [d(P—O) =1.525 (2)–1.529 (9) Å; Ogorodnyk et al., 2006). A comparison of the corresponding inter­atomic distances for the o­cta­hedra and tetra­hedra in Rb0.743K0.845Co0.293Ti1.707(PO4)3 and K2Co0.5Ti1.5(PO4)3 shows that partial substitution of K by Rb and decreasing the amount of cobalt slightly influences the distances in the polyhedra for Rb0.743K0.845Co0.293Ti1.707(PO4)3.

The K+ and Rb+ cations are located in large cavities of the three-dimensional framework in Rb0.743K0.845Co0.293Ti1.707(PO4)3. They are statistically distributed over two distinct sites in which they have partial occupancies of 0.540 (9) and 0.330 (18) for Rb1 and K1, respectively and 0.203 (8) and 0.514 (17) for Rb2 and K2, respectively. For the determination of the (Rb/K)1 and (Rb/K)2 coordination numbers (CN), Voronoi–Dirichlet polyhedra (VDP) were built using the DIRICHLET program included in the TOPOS package (Blatov et al., 1995). Analysis of the solid-angle (Ω) distribution revealed twelve (Rb/K)—O contacts for both the (Rb/K)1 and (Rb/K)2 sites (cut-off distance of 4.0 Å, neglecting those corresponding to Ω < 1.5%; Blatov et al., 1998). The results of the construction of the Voronoi–Dirichlet polyhedra (Blatov et al., 1995) indicated that the coordination scheme for (Rb/K)1 is described as [9 + 3] [nine meaning `ion–covalent' bonds are in the range 2.896 (2)–3.095 (2) Å which have Ω > 5.0% and three (Rb/K)1—O distances equal to 3.438 (8) Å with Ω = 2.42%]. The (Rb/K)—O distances in the [(Rb/K)2O12]-polyhedra are in the range 2.870 (2)–3.219 (2) Å (4.91% < Ω < 9.5%).

The corresponding K1—O contacts in the K2Co0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2006) are in the range 2.872 (2)–3.231 (3) Å while the K2—O distances in the K2O12 polyhedra are in the range 2.855 (2)–3.473 (3) Å, slightly longer than those in Rb0.743K0.845Co0.293Ti1.707(PO4)3. These results indicate that the substitution of K atoms by Rb atoms in Rb0.743K0.845Co0.293Ti1.707(PO4)3 caused a decrease of the (Rb/K)—O bond length. This fact confirms the rigidity of the framework and the suitability of the cavity dimensions to accommodate different sized ions whose size and nature insignificantly influence the framework.

Synthesis and crystallization top

The title compound was prepared during crystallization of the self-flux of the Rb2O–K2O–P2O5–TiO2–CoO system. The starting components RbH2PO4 (4.0 g), KPO3 (2.4 g), TiO2 (0.532 g) and CoO (0.50 g) were ground in an agate mortar, placed in a platinum crucible and H3PO4 (0.42 g) was added. The mixture was heated up to 1273 K. The melt was kept at this temperature for one hour. After that, the temperature was decreased to 873 K at a rate of 10 K h-1. The crystals of Rb0.743K0.845Co0.293Ti1.707(PO4)3 were separated from the rest flux by washing in hot water. The chemical composition of a single crystal was verified using EDX analysis. Analysis found: K 6.72, Rb 13.85, Co 3.74, Ti 16.86, P 19.96 and O 38.87 at%, while Rb0.743K0.845Co0.293Ti1.707(PO4)3 requires K 6.86, Rb 13.15, Co 3.60, Ti 17.06, P 19.36 and O 39.97 at%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The structure was solved by direct method. The O-atom sites were determined from difference Fourier maps. It was assumed that both types of alkaline metals occupy cavity sites while the transition metals occupy framework sites. The occupancies were refined using linear combinations of free variables taking into account the total charge of the cell.

Related literature top

For related structure, see: Ogorodnyk et al. (2006); Ogorodnyk et al. (2007b); Ogorodnyk etal. (2007c); Gustafsson et al. (2006). For application of langbeinite-related phosphates, see: Zhang et al. (2013); Chawla et al. (2013); Orlova et al. (2011). For crystal-space analysis using Voronoi–Dirichlet polyhedra, see Blatov et al. (1995); Blatov et al. (1998).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. A connected set of numbered atoms in Rb0.743K0.845Co0.293Ti1.707(PO4)3, showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Two-dimensional net and three-dimensional framework for Rb0.743K0.845Co0.293Ti1.707(PO4)3.
Potassium rubidium cobalt(II)/titanium(IV) tris(orthophosphate) top
Crystal data top
Rb0.743K0.845Co0.293Ti1.707(PO4)3Dx = 3.336 Mg m3
Mr = 480.40Mo Kα radiation, λ = 0.71073 Å
Cubic, P213Cell parameters from 1414 reflections
Hall symbol: P 2ac 2ab 3θ = 2.9–34.9°
a = 9.8527 (1) ŵ = 6.63 mm1
V = 956.46 (2) Å3T = 293 K
Z = 4Tetrahedron, dark red
F(000) = 9200.1 × 0.07 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
1414 independent reflections
Radiation source: fine focus sealed tube1312 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 34.9°, θmin = 2.9°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1010
Tmin = 0.559, Tmax = 0.734k = 011
1414 measured reflectionsl = 115
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0183P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.026(Δ/σ)max = 0.051
wR(F2) = 0.051Δρmax = 0.37 e Å3
S = 1.05Δρmin = 0.36 e Å3
1414 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008)
67 parametersExtinction coefficient: 0.0026 (6)
3 restraintsAbsolute structure: Flack (1983), 612 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.024 (10)
Crystal data top
Rb0.743K0.845Co0.293Ti1.707(PO4)3Z = 4
Mr = 480.40Mo Kα radiation
Cubic, P213µ = 6.63 mm1
a = 9.8527 (1) ÅT = 293 K
V = 956.46 (2) Å30.1 × 0.07 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
1414 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1312 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 0.734Rint = 0.025
1414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0263 restraints
wR(F2) = 0.051Δρmax = 0.37 e Å3
S = 1.05Δρmin = 0.36 e Å3
1414 reflectionsAbsolute structure: Flack (1983), 612 Friedel pairs
67 parametersAbsolute structure parameter: 0.024 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb10.71155 (4)0.71155 (4)0.71155 (4)0.02169 (18)0.540 (9)
K10.71155 (4)0.71155 (4)0.71155 (4)0.02169 (18)0.330 (18)
Rb20.93045 (5)0.93045 (5)0.93045 (5)0.0199 (3)0.203 (8)
K20.93045 (5)0.93045 (5)0.93045 (5)0.0199 (3)0.514 (17)
Ti10.14135 (4)0.14135 (4)0.14135 (4)0.00760 (12)0.8693 (9)
Co10.14135 (4)0.14135 (4)0.14135 (4)0.00760 (12)0.1307 (9)
Ti20.41386 (3)0.41386 (3)0.41386 (3)0.00709 (12)0.838 (3)
Co20.41386 (3)0.41386 (3)0.41386 (3)0.00709 (12)0.162 (3)
P10.45604 (5)0.22826 (5)0.12582 (5)0.00682 (10)
O10.30739 (16)0.23395 (16)0.08086 (17)0.0141 (3)
O20.54329 (18)0.29756 (17)0.01814 (17)0.0179 (3)
O30.50157 (16)0.08190 (16)0.14744 (18)0.0168 (3)
O40.47835 (17)0.30686 (19)0.25786 (18)0.0190 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.02169 (18)0.02169 (18)0.02169 (18)0.00120 (13)0.00120 (13)0.00120 (13)
K10.02169 (18)0.02169 (18)0.02169 (18)0.00120 (13)0.00120 (13)0.00120 (13)
Rb20.0199 (3)0.0199 (3)0.0199 (3)0.00172 (19)0.00172 (19)0.00172 (19)
K20.0199 (3)0.0199 (3)0.0199 (3)0.00172 (19)0.00172 (19)0.00172 (19)
Ti10.00760 (12)0.00760 (12)0.00760 (12)0.00051 (11)0.00051 (11)0.00051 (11)
Co10.00760 (12)0.00760 (12)0.00760 (12)0.00051 (11)0.00051 (11)0.00051 (11)
Ti20.00709 (12)0.00709 (12)0.00709 (12)0.00033 (11)0.00033 (11)0.00033 (11)
Co20.00709 (12)0.00709 (12)0.00709 (12)0.00033 (11)0.00033 (11)0.00033 (11)
P10.0059 (2)0.0076 (2)0.0070 (2)0.00019 (16)0.00100 (16)0.00054 (17)
O10.0088 (7)0.0167 (8)0.0169 (8)0.0001 (5)0.0032 (6)0.0021 (6)
O20.0183 (9)0.0185 (8)0.0170 (8)0.0001 (7)0.0075 (6)0.0049 (6)
O30.0160 (8)0.0130 (8)0.0214 (8)0.0064 (6)0.0022 (6)0.0034 (6)
O40.0196 (9)0.0229 (10)0.0146 (8)0.0027 (7)0.0001 (7)0.0099 (6)
Geometric parameters (Å, º) top
Rb1—O1i2.8956 (17)Rb2—O4ix3.219 (2)
Rb1—O1ii2.8956 (17)Rb2—O4viii3.219 (2)
Rb1—O1iii2.8956 (17)Ti1—O2x1.9404 (17)
Rb1—O2iv3.0780 (19)Ti1—O2xi1.9404 (17)
Rb1—O2v3.0780 (19)Ti1—O2xii1.9404 (17)
Rb1—O2vi3.0780 (19)Ti1—O1xiii1.9657 (16)
Rb1—O4iv3.0945 (18)Ti1—O11.9657 (16)
Rb1—O4vi3.0945 (18)Ti1—O1xiv1.9657 (16)
Rb1—O4v3.0945 (18)Ti2—O3ii1.9494 (16)
Rb2—O3iv2.8703 (18)Ti2—O3iii1.9494 (16)
Rb2—O3vi2.8703 (18)Ti2—O3i1.9494 (16)
Rb2—O3v2.8703 (18)Ti2—O4xiii1.9691 (17)
Rb2—O2vii2.9452 (19)Ti2—O41.9691 (17)
Rb2—O2viii2.9452 (19)Ti2—O4xiv1.9691 (17)
Rb2—O2ix2.9452 (19)P1—O31.5252 (17)
Rb2—O4iv3.028 (2)P1—O21.5266 (17)
Rb2—O4vi3.028 (2)P1—O41.5299 (17)
Rb2—O4v3.028 (2)P1—O11.5312 (16)
Rb2—O4vii3.219 (2)
O1i—Rb1—O1ii90.95 (5)O2ix—Rb2—O4v94.29 (5)
O1i—Rb1—O1iii90.95 (5)O4iv—Rb2—O4v87.83 (5)
O1ii—Rb1—O1iii90.95 (5)O4vi—Rb2—O4v87.83 (5)
O1i—Rb1—O2iv145.70 (5)O3iv—Rb2—O4vii86.01 (4)
O1ii—Rb1—O2iv82.60 (4)O3vi—Rb2—O4vii55.94 (4)
O1iii—Rb1—O2iv55.72 (4)O3v—Rb2—O4vii157.18 (5)
O1i—Rb1—O2v55.72 (4)O2vii—Rb2—O4vii46.55 (5)
O1ii—Rb1—O2v145.70 (5)O2viii—Rb2—O4vii86.90 (5)
O1iii—Rb1—O2v82.60 (4)O2ix—Rb2—O4vii101.29 (5)
O2iv—Rb1—O2v119.386 (9)O4iv—Rb2—O4vii53.03 (6)
O1i—Rb1—O2vi82.60 (4)O4vi—Rb2—O4vii104.695 (9)
O1ii—Rb1—O2vi55.72 (4)O4v—Rb2—O4vii137.38 (4)
O1iii—Rb1—O2vi145.70 (5)O3iv—Rb2—O4ix55.94 (4)
O2iv—Rb1—O2vi119.386 (9)O3vi—Rb2—O4ix157.18 (5)
O2v—Rb1—O2vi119.386 (9)O3v—Rb2—O4ix86.01 (4)
O1i—Rb1—O4iv165.33 (5)O2vii—Rb2—O4ix86.90 (5)
O1ii—Rb1—O4iv82.87 (5)O2viii—Rb2—O4ix101.29 (5)
O1iii—Rb1—O4iv102.41 (5)O2ix—Rb2—O4ix46.55 (5)
O2iv—Rb1—O4iv46.75 (5)O4iv—Rb2—O4ix104.695 (9)
O2v—Rb1—O4iv131.42 (5)O4vi—Rb2—O4ix137.38 (4)
O2vi—Rb1—O4iv82.92 (5)O4v—Rb2—O4ix53.03 (6)
O1i—Rb1—O4vi82.87 (5)O4vii—Rb2—O4ix115.47 (2)
O1ii—Rb1—O4vi102.41 (5)O3iv—Rb2—O4viii157.18 (5)
O1iii—Rb1—O4vi165.33 (5)O3vi—Rb2—O4viii86.01 (4)
O2iv—Rb1—O4vi131.42 (5)O3v—Rb2—O4viii55.94 (4)
O2v—Rb1—O4vi82.92 (5)O2vii—Rb2—O4viii101.29 (5)
O2vi—Rb1—O4vi46.75 (5)O2viii—Rb2—O4viii46.55 (5)
O4iv—Rb1—O4vi85.47 (6)O2ix—Rb2—O4viii86.90 (5)
O1i—Rb1—O4v102.41 (5)O4iv—Rb2—O4viii137.38 (4)
O1ii—Rb1—O4v165.33 (5)O4vi—Rb2—O4viii53.03 (6)
O1iii—Rb1—O4v82.87 (5)O4v—Rb2—O4viii104.695 (9)
O2iv—Rb1—O4v82.92 (5)O4vii—Rb2—O4viii115.47 (2)
O2v—Rb1—O4v46.75 (5)O4ix—Rb2—O4viii115.47 (2)
O2vi—Rb1—O4v131.42 (5)O2x—Ti1—O2xi90.14 (7)
O4iv—Rb1—O4v85.47 (6)O2x—Ti1—O2xii90.14 (7)
O4vi—Rb1—O4v85.47 (6)O2xi—Ti1—O2xii90.14 (7)
O3iv—Rb2—O3vi101.27 (5)O2x—Ti1—O1xiii91.43 (7)
O3iv—Rb2—O3v101.27 (5)O2xi—Ti1—O1xiii88.09 (7)
O3vi—Rb2—O3v101.27 (5)O2xii—Ti1—O1xiii177.64 (7)
O3iv—Rb2—O2vii99.30 (5)O2x—Ti1—O188.09 (7)
O3vi—Rb2—O2vii96.75 (5)O2xi—Ti1—O1177.64 (7)
O3v—Rb2—O2vii149.30 (5)O2xii—Ti1—O191.43 (7)
O3iv—Rb2—O2viii149.30 (5)O1xiii—Ti1—O190.39 (7)
O3vi—Rb2—O2viii99.30 (5)O2x—Ti1—O1xiv177.64 (7)
O3v—Rb2—O2viii96.75 (5)O2xi—Ti1—O1xiv91.43 (7)
O2vii—Rb2—O2viii55.61 (6)O2xii—Ti1—O1xiv88.09 (7)
O3iv—Rb2—O2ix96.75 (5)O1xiii—Ti1—O1xiv90.39 (7)
O3vi—Rb2—O2ix149.30 (5)O1—Ti1—O1xiv90.39 (7)
O3v—Rb2—O2ix99.30 (5)O3ii—Ti2—O3iii91.87 (7)
O2vii—Rb2—O2ix55.61 (6)O3ii—Ti2—O3i91.87 (7)
O2viii—Rb2—O2ix55.61 (6)O3iii—Ti2—O3i91.87 (7)
O3iv—Rb2—O4iv49.64 (5)O3ii—Ti2—O4xiii94.30 (7)
O3vi—Rb2—O4iv52.65 (5)O3iii—Ti2—O4xiii172.63 (8)
O3v—Rb2—O4iv116.41 (6)O3i—Ti2—O4xiii83.90 (7)
O2vii—Rb2—O4iv94.29 (5)O3ii—Ti2—O483.90 (7)
O2viii—Rb2—O4iv138.73 (5)O3iii—Ti2—O494.30 (7)
O2ix—Rb2—O4iv133.42 (5)O3i—Ti2—O4172.63 (8)
O3iv—Rb2—O4vi116.41 (6)O4xiii—Ti2—O490.39 (7)
O3vi—Rb2—O4vi49.64 (5)O3ii—Ti2—O4xiv172.63 (8)
O3v—Rb2—O4vi52.65 (5)O3iii—Ti2—O4xiv83.90 (7)
O2vii—Rb2—O4vi133.42 (5)O3i—Ti2—O4xiv94.30 (7)
O2viii—Rb2—O4vi94.29 (5)O4xiii—Ti2—O4xiv90.39 (7)
O2ix—Rb2—O4vi138.73 (5)O4—Ti2—O4xiv90.39 (7)
O4iv—Rb2—O4vi87.83 (5)O3—P1—O2110.75 (9)
O3iv—Rb2—O4v52.65 (5)O3—P1—O4108.52 (11)
O3vi—Rb2—O4v116.41 (6)O2—P1—O4106.48 (10)
O3v—Rb2—O4v49.64 (5)O3—P1—O1110.87 (9)
O2vii—Rb2—O4v138.73 (5)O2—P1—O1108.74 (10)
O2viii—Rb2—O4v133.42 (5)O4—P1—O1111.40 (10)
Symmetry codes: (i) z+1/2, x+1, y+1/2; (ii) y+1/2, z+1/2, x+1; (iii) x+1, y+1/2, z+1/2; (iv) x+3/2, y+1, z+1/2; (v) z+1/2, x+3/2, y+1; (vi) y+1, z+1/2, x+3/2; (vii) y+3/2, z+1, x+1/2; (viii) z+1, x+1/2, y+3/2; (ix) x+1/2, y+3/2, z+1; (x) y+1/2, z, x1/2; (xi) z, x1/2, y+1/2; (xii) x1/2, y+1/2, z; (xiii) y, z, x; (xiv) z, x, y.

Experimental details

Crystal data
Chemical formulaRb0.743K0.845Co0.293Ti1.707(PO4)3
Mr480.40
Crystal system, space groupCubic, P213
Temperature (K)293
a (Å)9.8527 (1)
V3)956.46 (2)
Z4
Radiation typeMo Kα
µ (mm1)6.63
Crystal size (mm)0.1 × 0.07 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur-3
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.559, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
1414, 1414, 1312
Rint0.025
(sin θ/λ)max1)0.804
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.051, 1.05
No. of reflections1414
No. of parameters67
No. of restraints3
Δρmax, Δρmin (e Å3)0.37, 0.36
Absolute structureFlack (1983), 612 Friedel pairs
Absolute structure parameter0.024 (10)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds