Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015001826/br2246sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2056989015001826/br2246Isup2.hkl |
CCDC reference: 1045876
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean (P-O) = 0.002 Å
- Disorder in main residue
- R factor = 0.026
- wR factor = 0.051
- Data-to-parameter ratio = 21.1
checkCIF/PLATON results
No syntax errors found
Alert level C SHFSU01_ALERT_2_C The absolute value of parameter shift to su ratio > 0.05 Absolute value of the parameter shift to su ratio given 0.051 Additional refinement cycles may be required. PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ Please Check PLAT077_ALERT_4_C Unitcell contains non-integer number of atoms .. Please Check
Alert level G PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension 3 Info PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT033_ALERT_4_G Flack x Value Deviates > 2*sigma from Zero ..... 0.024 Note PLAT045_ALERT_1_G Calculated and Reported Z Differ by ............ 0.25 Ratio PLAT152_ALERT_1_G The Supplied and Calc. Volume s.u. Differ by ... 13 Units PLAT199_ALERT_1_G Reported _cell_measurement_temperature ..... (K) 293 Check PLAT200_ALERT_1_G Reported _diffrn_ambient_temperature ..... (K) 293 Check PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Co1 -- O1 .. 6.0 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Ti1 -- O1 .. 6.0 su PLAT301_ALERT_3_G Main Residue Disorder ............ Percentage = 5 Note PLAT302_ALERT_4_G Anion/Solvent Disorder ............ Percentage = 100 Note PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms .... ! Info PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 3 Note PLAT950_ALERT_5_G Calculated (ThMax) and CIF-Reported Hmax Differ 5 Units PLAT951_ALERT_5_G Calculated (ThMax) and CIF-Reported Kmax Differ 4 Units PLAT961_ALERT_5_G Dataset Contains no Negative Intensities ....... Please Check
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 16 ALERT level G = General information/check it is not something unexpected 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 6 ALERT type 5 Informative message, check
Nowadays, there are a number of reports on the synthesis and investigation of langbeinite-related complex phosphates, which exhibit interesting properties such as magnetic (Ogorodnyk et al., 2006), luminescence (Zhang et al., 2013; Chawla et al., 2013) and phase transitions (Hikita et al., 1977). It should be noted that compounds with a langbeinite-like structure are prospects for use as a matrix for the storage of nuclear waste (Orlova et al., 2011). Zaripov et al. (2009) and Ogorodnyk et al. (2007a) proved that caesium can be introduced into the cavity of a langbeinite framework that can be used for the immobilization of 137Cs in an inert matrix for safe disposal.
A large number of compounds with a langbeinite framework based on a variety of different valence element are known. Three major types of substitutions of the elements are known as well as their combinations. They are: metal substitution in octahedra, element substitution in anion tetrahedra, and substitution of ions in cavities. Among these compounds, potassium-containing langbeinites are the most studied (Ogorodnyk et al., 2006, 2007b,c; Norberg, 2002; Orlova et al., 2003). However, several reports concerning phosphate langbeinites with Rb in the cavities of the framework are known: Rb2FeZr(PO4)3 (Trubach et al., 2004), Rb2YbTi(PO4)3 (Gustafsson et al., 2005) and Rb2TiY(PO4)3 (Gustafsson et al., 2006).
Herein, the structure of Rb0.743K0.845Co0.293Ti1.707(PO4)3, potassium rubidium cobalt(II)/titanium(IV) tris(orthophosphate) is reported.
The unit of Rb0.743K0.845Co0.293Ti1.707(PO4)3 consists of two mixed-occupied (Co/TiIV), two (Rb/K), one P and four oxygen positions (Fig. 1). The structure of Rb0.743K0.845Co0.293Ti1.707(PO4)3 is built up from mixed (Co/TiIV)O6 octahedra and PO4 tetrahedra, which are connected via common O-atom vertices. Each octahedron is linked to six adjacent tetrahedra and reciprocally, each tetrahedron is connected to four neighboring octahedra into three-dimensional rigid framework (Fig. 2).
The oxygen environment of the metal atoms in the (Co/TiIV)1O6 octahedra shows slightly distorted geometry, with M—O bonds of 1.940 (2) and 1.966 (2) Å. These distances are close to the corresponding bond lengths in K2Ti2(PO4)3 [d(Ti—O) = 1.877 (10)–1.965 (10) Å; Masse et al., 1972], which could be explained by the small occupancy of cobalt in the mixed (Co/TiIV)1 [occupancy = 0.1307 (9)] and (Co/TiIV)2 [occupancy = 0.162 (3)] sites. It should be noted that (Co/TiIV)2—O distances [1.949 (2) and 1.969 (2) Å] are slightly shorter than those in K2Co0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2006).
The orthophosphate tetrahedra are also slightly distorted with P—O bond lengths ranging from 1.525 (2) to 1.531 (2) Å. These distances are almost identical to corresponding in K2Co0.5Ti1.5(PO4)3 [d(P—O) =1.525 (2)–1.529 (9) Å; Ogorodnyk et al., 2006). A comparison of the corresponding interatomic distances for the octahedra and tetrahedra in Rb0.743K0.845Co0.293Ti1.707(PO4)3 and K2Co0.5Ti1.5(PO4)3 shows that partial substitution of K by Rb and decreasing the amount of cobalt slightly influences the distances in the polyhedra for Rb0.743K0.845Co0.293Ti1.707(PO4)3.
The K+ and Rb+ cations are located in large cavities of the three-dimensional framework in Rb0.743K0.845Co0.293Ti1.707(PO4)3. They are statistically distributed over two distinct sites in which they have partial occupancies of 0.540 (9) and 0.330 (18) for Rb1 and K1, respectively and 0.203 (8) and 0.514 (17) for Rb2 and K2, respectively. For the determination of the (Rb/K)1 and (Rb/K)2 coordination numbers (CN), Voronoi–Dirichlet polyhedra (VDP) were built using the DIRICHLET program included in the TOPOS package (Blatov et al., 1995). Analysis of the solid-angle (Ω) distribution revealed twelve (Rb/K)—O contacts for both the (Rb/K)1 and (Rb/K)2 sites (cut-off distance of 4.0 Å, neglecting those corresponding to Ω < 1.5%; Blatov et al., 1998). The results of the construction of the Voronoi–Dirichlet polyhedra (Blatov et al., 1995) indicated that the coordination scheme for (Rb/K)1 is described as [9 + 3] [nine meaning `ion–covalent' bonds are in the range 2.896 (2)–3.095 (2) Å which have Ω > 5.0% and three (Rb/K)1—O distances equal to 3.438 (8) Å with Ω = 2.42%]. The (Rb/K)—O distances in the [(Rb/K)2O12]-polyhedra are in the range 2.870 (2)–3.219 (2) Å (4.91% < Ω < 9.5%).
The corresponding K1—O contacts in the K2Co0.5Ti1.5(PO4)3 (Ogorodnyk et al., 2006) are in the range 2.872 (2)–3.231 (3) Å while the K2—O distances in the K2O12 polyhedra are in the range 2.855 (2)–3.473 (3) Å, slightly longer than those in Rb0.743K0.845Co0.293Ti1.707(PO4)3. These results indicate that the substitution of K atoms by Rb atoms in Rb0.743K0.845Co0.293Ti1.707(PO4)3 caused a decrease of the (Rb/K)—O bond length. This fact confirms the rigidity of the framework and the suitability of the cavity dimensions to accommodate different sized ions whose size and nature insignificantly influence the framework.
The title compound was prepared during crystallization of the self-flux of the Rb2O–K2O–P2O5–TiO2–CoO system. The starting components RbH2PO4 (4.0 g), KPO3 (2.4 g), TiO2 (0.532 g) and CoO (0.50 g) were ground in an agate mortar, placed in a platinum crucible and H3PO4 (0.42 g) was added. The mixture was heated up to 1273 K. The melt was kept at this temperature for one hour. After that, the temperature was decreased to 873 K at a rate of 10 K h-1. The crystals of Rb0.743K0.845Co0.293Ti1.707(PO4)3 were separated from the rest flux by washing in hot water. The chemical composition of a single crystal was verified using EDX analysis. Analysis found: K 6.72, Rb 13.85, Co 3.74, Ti 16.86, P 19.96 and O 38.87 at%, while Rb0.743K0.845Co0.293Ti1.707(PO4)3 requires K 6.86, Rb 13.15, Co 3.60, Ti 17.06, P 19.36 and O 39.97 at%.
Crystal data, data collection and structure refinement details are summarized in Table 1. The structure was solved by direct method. The O-atom sites were determined from difference Fourier maps. It was assumed that both types of alkaline metals occupy cavity sites while the transition metals occupy framework sites. The occupancies were refined using linear combinations of free variables taking into account the total charge of the cell.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).
Rb0.743K0.845Co0.293Ti1.707(PO4)3 | Dx = 3.336 Mg m−3 |
Mr = 480.40 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, P213 | Cell parameters from 1414 reflections |
Hall symbol: P 2ac 2ab 3 | θ = 2.9–34.9° |
a = 9.8527 (1) Å | µ = 6.63 mm−1 |
V = 956.46 (2) Å3 | T = 293 K |
Z = 4 | Tetrahedron, dark red |
F(000) = 920 | 0.1 × 0.07 × 0.05 mm |
Oxford Diffraction Xcalibur-3 diffractometer | 1414 independent reflections |
Radiation source: fine focus sealed tube | 1312 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ϕ and ω scans | θmax = 34.9°, θmin = 2.9° |
Absorption correction: multi-scan (Blessing, 1995) | h = −10→10 |
Tmin = 0.559, Tmax = 0.734 | k = 0→11 |
1414 measured reflections | l = 1→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0183P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.026 | (Δ/σ)max = 0.051 |
wR(F2) = 0.051 | Δρmax = 0.37 e Å−3 |
S = 1.05 | Δρmin = −0.36 e Å−3 |
1414 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008) |
67 parameters | Extinction coefficient: 0.0026 (6) |
3 restraints | Absolute structure: Flack (1983), 612 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.024 (10) |
Rb0.743K0.845Co0.293Ti1.707(PO4)3 | Z = 4 |
Mr = 480.40 | Mo Kα radiation |
Cubic, P213 | µ = 6.63 mm−1 |
a = 9.8527 (1) Å | T = 293 K |
V = 956.46 (2) Å3 | 0.1 × 0.07 × 0.05 mm |
Oxford Diffraction Xcalibur-3 diffractometer | 1414 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 1312 reflections with I > 2σ(I) |
Tmin = 0.559, Tmax = 0.734 | Rint = 0.025 |
1414 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 3 restraints |
wR(F2) = 0.051 | Δρmax = 0.37 e Å−3 |
S = 1.05 | Δρmin = −0.36 e Å−3 |
1414 reflections | Absolute structure: Flack (1983), 612 Friedel pairs |
67 parameters | Absolute structure parameter: 0.024 (10) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Rb1 | 0.71155 (4) | 0.71155 (4) | 0.71155 (4) | 0.02169 (18) | 0.540 (9) |
K1 | 0.71155 (4) | 0.71155 (4) | 0.71155 (4) | 0.02169 (18) | 0.330 (18) |
Rb2 | 0.93045 (5) | 0.93045 (5) | 0.93045 (5) | 0.0199 (3) | 0.203 (8) |
K2 | 0.93045 (5) | 0.93045 (5) | 0.93045 (5) | 0.0199 (3) | 0.514 (17) |
Ti1 | 0.14135 (4) | 0.14135 (4) | 0.14135 (4) | 0.00760 (12) | 0.8693 (9) |
Co1 | 0.14135 (4) | 0.14135 (4) | 0.14135 (4) | 0.00760 (12) | 0.1307 (9) |
Ti2 | 0.41386 (3) | 0.41386 (3) | 0.41386 (3) | 0.00709 (12) | 0.838 (3) |
Co2 | 0.41386 (3) | 0.41386 (3) | 0.41386 (3) | 0.00709 (12) | 0.162 (3) |
P1 | 0.45604 (5) | 0.22826 (5) | 0.12582 (5) | 0.00682 (10) | |
O1 | 0.30739 (16) | 0.23395 (16) | 0.08086 (17) | 0.0141 (3) | |
O2 | 0.54329 (18) | 0.29756 (17) | 0.01814 (17) | 0.0179 (3) | |
O3 | 0.50157 (16) | 0.08190 (16) | 0.14744 (18) | 0.0168 (3) | |
O4 | 0.47835 (17) | 0.30686 (19) | 0.25786 (18) | 0.0190 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rb1 | 0.02169 (18) | 0.02169 (18) | 0.02169 (18) | 0.00120 (13) | 0.00120 (13) | 0.00120 (13) |
K1 | 0.02169 (18) | 0.02169 (18) | 0.02169 (18) | 0.00120 (13) | 0.00120 (13) | 0.00120 (13) |
Rb2 | 0.0199 (3) | 0.0199 (3) | 0.0199 (3) | −0.00172 (19) | −0.00172 (19) | −0.00172 (19) |
K2 | 0.0199 (3) | 0.0199 (3) | 0.0199 (3) | −0.00172 (19) | −0.00172 (19) | −0.00172 (19) |
Ti1 | 0.00760 (12) | 0.00760 (12) | 0.00760 (12) | 0.00051 (11) | 0.00051 (11) | 0.00051 (11) |
Co1 | 0.00760 (12) | 0.00760 (12) | 0.00760 (12) | 0.00051 (11) | 0.00051 (11) | 0.00051 (11) |
Ti2 | 0.00709 (12) | 0.00709 (12) | 0.00709 (12) | −0.00033 (11) | −0.00033 (11) | −0.00033 (11) |
Co2 | 0.00709 (12) | 0.00709 (12) | 0.00709 (12) | −0.00033 (11) | −0.00033 (11) | −0.00033 (11) |
P1 | 0.0059 (2) | 0.0076 (2) | 0.0070 (2) | −0.00019 (16) | 0.00100 (16) | −0.00054 (17) |
O1 | 0.0088 (7) | 0.0167 (8) | 0.0169 (8) | 0.0001 (5) | −0.0032 (6) | 0.0021 (6) |
O2 | 0.0183 (9) | 0.0185 (8) | 0.0170 (8) | 0.0001 (7) | 0.0075 (6) | 0.0049 (6) |
O3 | 0.0160 (8) | 0.0130 (8) | 0.0214 (8) | 0.0064 (6) | 0.0022 (6) | 0.0034 (6) |
O4 | 0.0196 (9) | 0.0229 (10) | 0.0146 (8) | −0.0027 (7) | 0.0001 (7) | −0.0099 (6) |
Rb1—O1i | 2.8956 (17) | Rb2—O4ix | 3.219 (2) |
Rb1—O1ii | 2.8956 (17) | Rb2—O4viii | 3.219 (2) |
Rb1—O1iii | 2.8956 (17) | Ti1—O2x | 1.9404 (17) |
Rb1—O2iv | 3.0780 (19) | Ti1—O2xi | 1.9404 (17) |
Rb1—O2v | 3.0780 (19) | Ti1—O2xii | 1.9404 (17) |
Rb1—O2vi | 3.0780 (19) | Ti1—O1xiii | 1.9657 (16) |
Rb1—O4iv | 3.0945 (18) | Ti1—O1 | 1.9657 (16) |
Rb1—O4vi | 3.0945 (18) | Ti1—O1xiv | 1.9657 (16) |
Rb1—O4v | 3.0945 (18) | Ti2—O3ii | 1.9494 (16) |
Rb2—O3iv | 2.8703 (18) | Ti2—O3iii | 1.9494 (16) |
Rb2—O3vi | 2.8703 (18) | Ti2—O3i | 1.9494 (16) |
Rb2—O3v | 2.8703 (18) | Ti2—O4xiii | 1.9691 (17) |
Rb2—O2vii | 2.9452 (19) | Ti2—O4 | 1.9691 (17) |
Rb2—O2viii | 2.9452 (19) | Ti2—O4xiv | 1.9691 (17) |
Rb2—O2ix | 2.9452 (19) | P1—O3 | 1.5252 (17) |
Rb2—O4iv | 3.028 (2) | P1—O2 | 1.5266 (17) |
Rb2—O4vi | 3.028 (2) | P1—O4 | 1.5299 (17) |
Rb2—O4v | 3.028 (2) | P1—O1 | 1.5312 (16) |
Rb2—O4vii | 3.219 (2) | ||
O1i—Rb1—O1ii | 90.95 (5) | O2ix—Rb2—O4v | 94.29 (5) |
O1i—Rb1—O1iii | 90.95 (5) | O4iv—Rb2—O4v | 87.83 (5) |
O1ii—Rb1—O1iii | 90.95 (5) | O4vi—Rb2—O4v | 87.83 (5) |
O1i—Rb1—O2iv | 145.70 (5) | O3iv—Rb2—O4vii | 86.01 (4) |
O1ii—Rb1—O2iv | 82.60 (4) | O3vi—Rb2—O4vii | 55.94 (4) |
O1iii—Rb1—O2iv | 55.72 (4) | O3v—Rb2—O4vii | 157.18 (5) |
O1i—Rb1—O2v | 55.72 (4) | O2vii—Rb2—O4vii | 46.55 (5) |
O1ii—Rb1—O2v | 145.70 (5) | O2viii—Rb2—O4vii | 86.90 (5) |
O1iii—Rb1—O2v | 82.60 (4) | O2ix—Rb2—O4vii | 101.29 (5) |
O2iv—Rb1—O2v | 119.386 (9) | O4iv—Rb2—O4vii | 53.03 (6) |
O1i—Rb1—O2vi | 82.60 (4) | O4vi—Rb2—O4vii | 104.695 (9) |
O1ii—Rb1—O2vi | 55.72 (4) | O4v—Rb2—O4vii | 137.38 (4) |
O1iii—Rb1—O2vi | 145.70 (5) | O3iv—Rb2—O4ix | 55.94 (4) |
O2iv—Rb1—O2vi | 119.386 (9) | O3vi—Rb2—O4ix | 157.18 (5) |
O2v—Rb1—O2vi | 119.386 (9) | O3v—Rb2—O4ix | 86.01 (4) |
O1i—Rb1—O4iv | 165.33 (5) | O2vii—Rb2—O4ix | 86.90 (5) |
O1ii—Rb1—O4iv | 82.87 (5) | O2viii—Rb2—O4ix | 101.29 (5) |
O1iii—Rb1—O4iv | 102.41 (5) | O2ix—Rb2—O4ix | 46.55 (5) |
O2iv—Rb1—O4iv | 46.75 (5) | O4iv—Rb2—O4ix | 104.695 (9) |
O2v—Rb1—O4iv | 131.42 (5) | O4vi—Rb2—O4ix | 137.38 (4) |
O2vi—Rb1—O4iv | 82.92 (5) | O4v—Rb2—O4ix | 53.03 (6) |
O1i—Rb1—O4vi | 82.87 (5) | O4vii—Rb2—O4ix | 115.47 (2) |
O1ii—Rb1—O4vi | 102.41 (5) | O3iv—Rb2—O4viii | 157.18 (5) |
O1iii—Rb1—O4vi | 165.33 (5) | O3vi—Rb2—O4viii | 86.01 (4) |
O2iv—Rb1—O4vi | 131.42 (5) | O3v—Rb2—O4viii | 55.94 (4) |
O2v—Rb1—O4vi | 82.92 (5) | O2vii—Rb2—O4viii | 101.29 (5) |
O2vi—Rb1—O4vi | 46.75 (5) | O2viii—Rb2—O4viii | 46.55 (5) |
O4iv—Rb1—O4vi | 85.47 (6) | O2ix—Rb2—O4viii | 86.90 (5) |
O1i—Rb1—O4v | 102.41 (5) | O4iv—Rb2—O4viii | 137.38 (4) |
O1ii—Rb1—O4v | 165.33 (5) | O4vi—Rb2—O4viii | 53.03 (6) |
O1iii—Rb1—O4v | 82.87 (5) | O4v—Rb2—O4viii | 104.695 (9) |
O2iv—Rb1—O4v | 82.92 (5) | O4vii—Rb2—O4viii | 115.47 (2) |
O2v—Rb1—O4v | 46.75 (5) | O4ix—Rb2—O4viii | 115.47 (2) |
O2vi—Rb1—O4v | 131.42 (5) | O2x—Ti1—O2xi | 90.14 (7) |
O4iv—Rb1—O4v | 85.47 (6) | O2x—Ti1—O2xii | 90.14 (7) |
O4vi—Rb1—O4v | 85.47 (6) | O2xi—Ti1—O2xii | 90.14 (7) |
O3iv—Rb2—O3vi | 101.27 (5) | O2x—Ti1—O1xiii | 91.43 (7) |
O3iv—Rb2—O3v | 101.27 (5) | O2xi—Ti1—O1xiii | 88.09 (7) |
O3vi—Rb2—O3v | 101.27 (5) | O2xii—Ti1—O1xiii | 177.64 (7) |
O3iv—Rb2—O2vii | 99.30 (5) | O2x—Ti1—O1 | 88.09 (7) |
O3vi—Rb2—O2vii | 96.75 (5) | O2xi—Ti1—O1 | 177.64 (7) |
O3v—Rb2—O2vii | 149.30 (5) | O2xii—Ti1—O1 | 91.43 (7) |
O3iv—Rb2—O2viii | 149.30 (5) | O1xiii—Ti1—O1 | 90.39 (7) |
O3vi—Rb2—O2viii | 99.30 (5) | O2x—Ti1—O1xiv | 177.64 (7) |
O3v—Rb2—O2viii | 96.75 (5) | O2xi—Ti1—O1xiv | 91.43 (7) |
O2vii—Rb2—O2viii | 55.61 (6) | O2xii—Ti1—O1xiv | 88.09 (7) |
O3iv—Rb2—O2ix | 96.75 (5) | O1xiii—Ti1—O1xiv | 90.39 (7) |
O3vi—Rb2—O2ix | 149.30 (5) | O1—Ti1—O1xiv | 90.39 (7) |
O3v—Rb2—O2ix | 99.30 (5) | O3ii—Ti2—O3iii | 91.87 (7) |
O2vii—Rb2—O2ix | 55.61 (6) | O3ii—Ti2—O3i | 91.87 (7) |
O2viii—Rb2—O2ix | 55.61 (6) | O3iii—Ti2—O3i | 91.87 (7) |
O3iv—Rb2—O4iv | 49.64 (5) | O3ii—Ti2—O4xiii | 94.30 (7) |
O3vi—Rb2—O4iv | 52.65 (5) | O3iii—Ti2—O4xiii | 172.63 (8) |
O3v—Rb2—O4iv | 116.41 (6) | O3i—Ti2—O4xiii | 83.90 (7) |
O2vii—Rb2—O4iv | 94.29 (5) | O3ii—Ti2—O4 | 83.90 (7) |
O2viii—Rb2—O4iv | 138.73 (5) | O3iii—Ti2—O4 | 94.30 (7) |
O2ix—Rb2—O4iv | 133.42 (5) | O3i—Ti2—O4 | 172.63 (8) |
O3iv—Rb2—O4vi | 116.41 (6) | O4xiii—Ti2—O4 | 90.39 (7) |
O3vi—Rb2—O4vi | 49.64 (5) | O3ii—Ti2—O4xiv | 172.63 (8) |
O3v—Rb2—O4vi | 52.65 (5) | O3iii—Ti2—O4xiv | 83.90 (7) |
O2vii—Rb2—O4vi | 133.42 (5) | O3i—Ti2—O4xiv | 94.30 (7) |
O2viii—Rb2—O4vi | 94.29 (5) | O4xiii—Ti2—O4xiv | 90.39 (7) |
O2ix—Rb2—O4vi | 138.73 (5) | O4—Ti2—O4xiv | 90.39 (7) |
O4iv—Rb2—O4vi | 87.83 (5) | O3—P1—O2 | 110.75 (9) |
O3iv—Rb2—O4v | 52.65 (5) | O3—P1—O4 | 108.52 (11) |
O3vi—Rb2—O4v | 116.41 (6) | O2—P1—O4 | 106.48 (10) |
O3v—Rb2—O4v | 49.64 (5) | O3—P1—O1 | 110.87 (9) |
O2vii—Rb2—O4v | 138.73 (5) | O2—P1—O1 | 108.74 (10) |
O2viii—Rb2—O4v | 133.42 (5) | O4—P1—O1 | 111.40 (10) |
Symmetry codes: (i) −z+1/2, −x+1, y+1/2; (ii) y+1/2, −z+1/2, −x+1; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+3/2, −y+1, z+1/2; (v) z+1/2, −x+3/2, −y+1; (vi) −y+1, z+1/2, −x+3/2; (vii) −y+3/2, −z+1, x+1/2; (viii) −z+1, x+1/2, −y+3/2; (ix) x+1/2, −y+3/2, −z+1; (x) −y+1/2, −z, x−1/2; (xi) −z, x−1/2, −y+1/2; (xii) x−1/2, −y+1/2, −z; (xiii) y, z, x; (xiv) z, x, y. |
Experimental details
Crystal data | |
Chemical formula | Rb0.743K0.845Co0.293Ti1.707(PO4)3 |
Mr | 480.40 |
Crystal system, space group | Cubic, P213 |
Temperature (K) | 293 |
a (Å) | 9.8527 (1) |
V (Å3) | 956.46 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.63 |
Crystal size (mm) | 0.1 × 0.07 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur-3 diffractometer |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.559, 0.734 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1414, 1414, 1312 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.804 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.051, 1.05 |
No. of reflections | 1414 |
No. of parameters | 67 |
No. of restraints | 3 |
Δρmax, Δρmin (e Å−3) | 0.37, −0.36 |
Absolute structure | Flack (1983), 612 Friedel pairs |
Absolute structure parameter | 0.024 (10) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).