MgSeO
4·6H
2O is isostructural with its sulfate analogue and the corresponding cobalt(II) salt. The structure is based on alternating layers of Mg(H
2O)
6 octahedra and SeO
4 tetrahedra parallel to (001), connected
via hydrogen bonds. All atoms are on general positions except Mg1 and Mg2 (site symmetries 2 and

, respectively). The average Mg-O and Se-O bond lengths are 2.066 and 1.639 Å, respectively.
Supporting information
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean
(Se-O) = 0.001 Å
- R factor = 0.019
- wR factor = 0.055
- Data-to-parameter ratio = 18.3
checkCIF results
No syntax errors found
ADDSYM reports no extra symmetry
The title compound was prepared by controlled evaporation at room temperature of
an aqueous solution containing selenic acid and magnesium carbonate.
Colourless crude columnar crystals up to several cm in length formed. A single
large crystal of the sulfite MgSeO3·6H2O (Andersen & Lindqvist, 1984)
accompanied these crystals.
All OW—H distances were restrained to a length of 0.90 (2) Å, and H atoms
were constrained to have a fixed Uiso of 0.06 Å2. (Note: freely
refined O—H distances ranged between 0.68 and 0.85 Å; the largest
isotropic displacement parameters were shown by the H atoms bonded to OW6.)
Data collection: COLLECT (Nonius, 2001); cell refinement: HKL SCALEPACK (Otwinowski & Minor. 1997); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Shape Software, 1999) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
'magnesium selenate(VI) hexahydrate'
top
Crystal data top
MgSeO4·6H2O | F(000) = 1104 |
Mr = 275.37 | Dx = 1.974 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.224 (1) Å | Cell parameters from 2899 reflections |
b = 7.370 (1) Å | θ = 2.0–30.0° |
c = 24.866 (2) Å | µ = 4.15 mm−1 |
β = 98.41 (1)° | T = 293 K |
V = 1853.5 (3) Å3 | Fragment, colourless |
Z = 8 | 0.15 × 0.08 × 0.08 mm |
Data collection top
Nonius KappaCCD diffractometer | 2705 independent reflections |
Radiation source: fine-focus sealed tube | 2510 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.010 |
ψ and ω scans | θmax = 30.0°, θmin = 3.3° |
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor, 1997) | h = −14→14 |
Tmin = 0.575, Tmax = 0.733 | k = −10→10 |
5214 measured reflections | l = −35→34 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.055 | w = 1/[σ2(Fo2) + (0.027P)2 + 1.70P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.004 |
2705 reflections | Δρmax = 0.48 e Å−3 |
148 parameters | Δρmin = −0.39 e Å−3 |
12 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0023 (2) |
Crystal data top
MgSeO4·6H2O | V = 1853.5 (3) Å3 |
Mr = 275.37 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 10.224 (1) Å | µ = 4.15 mm−1 |
b = 7.370 (1) Å | T = 293 K |
c = 24.866 (2) Å | 0.15 × 0.08 × 0.08 mm |
β = 98.41 (1)° | |
Data collection top
Nonius KappaCCD diffractometer | 2705 independent reflections |
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor, 1997) | 2510 reflections with I > 2σ(I) |
Tmin = 0.575, Tmax = 0.733 | Rint = 0.010 |
5214 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.019 | 12 restraints |
wR(F2) = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.48 e Å−3 |
2705 reflections | Δρmin = −0.39 e Å−3 |
148 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Se | 0.133134 (14) | 0.051178 (18) | 0.375932 (6) | 0.02280 (7) | |
Mg1 | 0.0000 | 0.55734 (9) | 0.2500 | 0.02230 (14) | |
Mg2 | 0.0000 | 0.5000 | 0.5000 | 0.02481 (15) | |
O1 | 0.00439 (15) | 0.05561 (16) | 0.32896 (6) | 0.0437 (3) | |
O2 | 0.20993 (12) | 0.24717 (16) | 0.38015 (5) | 0.0346 (3) | |
O3 | 0.23457 (12) | −0.11099 (16) | 0.36311 (5) | 0.0312 (2) | |
O4 | 0.08780 (13) | 0.00989 (18) | 0.43555 (5) | 0.0348 (3) | |
OW5 | 0.13620 (16) | 0.55724 (16) | 0.31969 (6) | 0.0397 (3) | |
OW6 | −0.11414 (13) | 0.75465 (18) | 0.27932 (6) | 0.0361 (3) | |
OW7 | −0.11127 (12) | 0.35396 (16) | 0.28048 (5) | 0.0302 (2) | |
OW8 | 0.08178 (12) | 0.70830 (17) | 0.54804 (5) | 0.0374 (3) | |
OW9 | −0.03766 (15) | 0.6828 (2) | 0.43755 (6) | 0.0491 (4) | |
OW10 | 0.18678 (13) | 0.4564 (2) | 0.47797 (6) | 0.0427 (3) | |
H51 | 0.160 (3) | 0.657 (3) | 0.3357 (10) | 0.060* | |
H52 | 0.149 (3) | 0.465 (3) | 0.3421 (10) | 0.060* | |
H61 | −0.078 (2) | 0.842 (3) | 0.2987 (9) | 0.060* | |
H62 | −0.1954 (17) | 0.771 (4) | 0.2739 (10) | 0.060* | |
H71 | −0.069 (2) | 0.259 (3) | 0.2950 (10) | 0.060* | |
H72 | −0.159 (2) | 0.386 (4) | 0.3051 (9) | 0.060* | |
H81 | 0.140 (2) | 0.694 (4) | 0.5751 (8) | 0.060* | |
H82 | 0.037 (2) | 0.801 (3) | 0.5523 (11) | 0.060* | |
H91 | 0.003 (2) | 0.785 (3) | 0.4375 (11) | 0.060* | |
H92 | −0.1114 (19) | 0.702 (4) | 0.4187 (10) | 0.060* | |
H101 | 0.199 (3) | 0.380 (3) | 0.4542 (9) | 0.060* | |
H102 | 0.261 (2) | 0.476 (4) | 0.4984 (11) | 0.060* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Se | 0.02295 (9) | 0.01662 (9) | 0.02709 (9) | 0.00057 (5) | −0.00220 (6) | −0.00064 (5) |
Mg1 | 0.0251 (3) | 0.0179 (3) | 0.0232 (3) | 0.000 | 0.0014 (3) | 0.000 |
Mg2 | 0.0237 (3) | 0.0226 (3) | 0.0267 (3) | 0.0005 (3) | −0.0013 (3) | −0.0022 (3) |
O1 | 0.0422 (7) | 0.0266 (6) | 0.0528 (8) | 0.0041 (5) | −0.0246 (6) | −0.0035 (5) |
O2 | 0.0346 (6) | 0.0206 (5) | 0.0454 (7) | −0.0065 (4) | −0.0048 (5) | 0.0045 (5) |
O3 | 0.0327 (6) | 0.0262 (5) | 0.0343 (6) | 0.0077 (5) | 0.0034 (4) | −0.0029 (5) |
O4 | 0.0406 (7) | 0.0297 (6) | 0.0359 (6) | 0.0016 (5) | 0.0111 (5) | −0.0005 (5) |
OW5 | 0.0568 (9) | 0.0248 (6) | 0.0314 (6) | −0.0049 (5) | −0.0138 (6) | 0.0015 (4) |
OW6 | 0.0329 (6) | 0.0288 (6) | 0.0463 (7) | 0.0037 (5) | 0.0051 (5) | −0.0110 (5) |
OW7 | 0.0325 (6) | 0.0238 (5) | 0.0348 (6) | 0.0019 (4) | 0.0072 (4) | 0.0053 (4) |
OW8 | 0.0339 (6) | 0.0316 (6) | 0.0421 (7) | 0.0075 (5) | −0.0097 (5) | −0.0135 (5) |
OW9 | 0.0420 (7) | 0.0433 (8) | 0.0542 (8) | −0.0176 (6) | −0.0187 (6) | 0.0214 (6) |
OW10 | 0.0272 (6) | 0.0559 (9) | 0.0441 (7) | 0.0026 (6) | 0.0020 (5) | −0.0197 (6) |
Geometric parameters (Å, º) top
Se—O1 | 1.6274 (13) | Mg2—OW10 | 2.0870 (14) |
Se—O2 | 1.6401 (11) | Mg2—OW10ii | 2.0870 (14) |
Se—O3 | 1.6439 (11) | OW5—H51 | 0.855 (17) |
Se—O4 | 1.6449 (12) | OW5—H52 | 0.876 (17) |
Mg1—OW5i | 2.0582 (13) | OW6—H61 | 0.855 (17) |
Mg1—OW5 | 2.0582 (13) | OW6—H62 | 0.832 (17) |
Mg1—OW6 | 2.0632 (13) | OW7—H71 | 0.872 (17) |
Mg1—OW6i | 2.0632 (13) | OW7—H72 | 0.870 (17) |
Mg1—OW7 | 2.0899 (12) | OW8—H81 | 0.836 (16) |
Mg1—OW7i | 2.0899 (12) | OW8—H82 | 0.835 (17) |
Mg2—OW8ii | 2.0471 (12) | OW9—H91 | 0.862 (17) |
Mg2—OW8 | 2.0471 (12) | OW9—H92 | 0.840 (17) |
Mg2—OW9ii | 2.0493 (13) | OW10—H101 | 0.839 (17) |
Mg2—OW9 | 2.0493 (13) | OW10—H102 | 0.859 (18) |
| | | |
O1—Se—O2 | 110.95 (6) | OW8ii—Mg2—OW10 | 92.45 (5) |
O1—Se—O3 | 110.02 (7) | OW8—Mg2—OW10 | 87.55 (5) |
O2—Se—O3 | 110.06 (6) | OW9ii—Mg2—OW10 | 91.15 (7) |
O1—Se—O4 | 110.22 (8) | OW9—Mg2—OW10 | 88.85 (7) |
O2—Se—O4 | 107.50 (7) | OW8ii—Mg2—OW10ii | 87.55 (5) |
O3—Se—O4 | 108.01 (6) | OW8—Mg2—OW10ii | 92.45 (5) |
OW5i—Mg1—OW5 | 179.96 (8) | OW9ii—Mg2—OW10ii | 88.85 (7) |
OW5i—Mg1—OW6 | 87.12 (6) | OW9—Mg2—OW10ii | 91.15 (7) |
OW5—Mg1—OW6 | 92.91 (6) | OW10—Mg2—OW10ii | 180.0 |
OW5i—Mg1—OW6i | 92.91 (6) | Mg1—OW5—H51 | 120.1 (17) |
OW5—Mg1—OW6i | 87.12 (6) | Mg1—OW5—H52 | 123.6 (19) |
OW6—Mg1—OW6i | 90.37 (8) | H51—OW5—H52 | 112 (3) |
OW5i—Mg1—OW7 | 88.16 (6) | Mg1—OW6—H61 | 120.9 (18) |
OW5—Mg1—OW7 | 91.81 (5) | Mg1—OW6—H62 | 131 (2) |
OW6—Mg1—OW7 | 90.65 (5) | H61—OW6—H62 | 108 (3) |
OW6i—Mg1—OW7 | 178.56 (5) | Mg1—OW7—H71 | 117.5 (18) |
OW5i—Mg1—OW7i | 91.81 (5) | Mg1—OW7—H72 | 117.1 (19) |
OW5—Mg1—OW7i | 88.16 (6) | H71—OW7—H72 | 103 (2) |
OW6—Mg1—OW7i | 178.56 (5) | Mg2—OW8—H81 | 123.6 (19) |
OW6i—Mg1—OW7i | 90.65 (5) | Mg2—OW8—H82 | 120.2 (19) |
OW7—Mg1—OW7i | 88.35 (7) | H81—OW8—H82 | 110 (2) |
OW8ii—Mg2—OW8 | 180.00 (6) | Mg2—OW9—H91 | 122.6 (18) |
OW8ii—Mg2—OW9ii | 87.97 (6) | Mg2—OW9—H92 | 126.0 (19) |
OW8—Mg2—OW9ii | 92.03 (6) | H91—OW9—H92 | 104 (2) |
OW8ii—Mg2—OW9 | 92.03 (6) | Mg2—OW10—H101 | 121.7 (19) |
OW8—Mg2—OW9 | 87.97 (6) | Mg2—OW10—H102 | 125 (2) |
OW9ii—Mg2—OW9 | 180.00 (6) | H101—OW10—H102 | 109 (3) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
OW5—H51···O3iii | 0.86 (2) | 1.95 (2) | 2.7997 (17) | 170 (3) |
OW5—H52···O2 | 0.88 (2) | 1.92 (2) | 2.7783 (17) | 165 (3) |
OW6—H61···O1iii | 0.86 (2) | 1.89 (2) | 2.7339 (18) | 169 (3) |
OW6—H62···OW7iv | 0.83 (2) | 2.31 (2) | 3.0671 (19) | 152 (2) |
OW7—H71···O1 | 0.87 (2) | 1.83 (2) | 2.6962 (17) | 174 (3) |
OW7—H72···O3v | 0.87 (2) | 1.93 (2) | 2.7784 (17) | 165 (3) |
OW8—H81···O3vi | 0.84 (2) | 1.95 (2) | 2.7763 (17) | 169 (3) |
OW8—H82···O4ii | 0.84 (2) | 1.95 (2) | 2.7737 (18) | 171 (3) |
OW9—H91···O4iii | 0.86 (2) | 1.87 (2) | 2.7346 (19) | 178 (3) |
OW9—H92···O2v | 0.84 (2) | 1.96 (2) | 2.8008 (18) | 175 (3) |
OW10—H101···O2 | 0.84 (2) | 2.10 (2) | 2.9190 (19) | 164 (3) |
OW10—H102···O4vi | 0.86 (2) | 2.09 (2) | 2.924 (2) | 164 (3) |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x, y+1, z; (iv) −x−1/2, y+1/2, −z+1/2; (v) x−1/2, y+1/2, z; (vi) −x+1/2, −y+1/2, −z+1. |
Experimental details
Crystal data |
Chemical formula | MgSeO4·6H2O |
Mr | 275.37 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 10.224 (1), 7.370 (1), 24.866 (2) |
β (°) | 98.41 (1) |
V (Å3) | 1853.5 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 4.15 |
Crystal size (mm) | 0.15 × 0.08 × 0.08 |
|
Data collection |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (HKL SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.575, 0.733 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5214, 2705, 2510 |
Rint | 0.010 |
(sin θ/λ)max (Å−1) | 0.704 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.055, 1.06 |
No. of reflections | 2705 |
No. of parameters | 148 |
No. of restraints | 12 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.48, −0.39 |
Selected geometric parameters (Å, º) topSe—O1 | 1.6274 (13) | Mg1—OW6 | 2.0632 (13) |
Se—O2 | 1.6401 (11) | Mg1—OW7 | 2.0899 (12) |
Se—O3 | 1.6439 (11) | Mg2—OW8ii | 2.0471 (12) |
Se—O4 | 1.6449 (12) | Mg2—OW9ii | 2.0493 (13) |
Mg1—OW5i | 2.0582 (13) | Mg2—OW10 | 2.0870 (14) |
| | | |
O1—Se—O2 | 110.95 (6) | OW6—Mg1—OW7 | 90.65 (5) |
O1—Se—O3 | 110.02 (7) | OW6i—Mg1—OW7 | 178.56 (5) |
O2—Se—O3 | 110.06 (6) | OW7—Mg1—OW7i | 88.35 (7) |
O1—Se—O4 | 110.22 (8) | OW8ii—Mg2—OW8 | 180.00 (6) |
O2—Se—O4 | 107.50 (7) | OW8ii—Mg2—OW9ii | 87.97 (6) |
O3—Se—O4 | 108.01 (6) | OW8—Mg2—OW9ii | 92.03 (6) |
OW5i—Mg1—OW5 | 179.96 (8) | OW8ii—Mg2—OW10 | 92.45 (5) |
OW5i—Mg1—OW6 | 87.12 (6) | OW8—Mg2—OW10 | 87.55 (5) |
OW5—Mg1—OW6 | 92.91 (6) | OW9ii—Mg2—OW10 | 91.15 (7) |
OW6—Mg1—OW6i | 90.37 (8) | OW9—Mg2—OW10 | 88.85 (7) |
OW5i—Mg1—OW7 | 88.16 (6) | OW8—Mg2—OW10ii | 92.45 (5) |
OW5—Mg1—OW7 | 91.81 (5) | | |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
OW5—H51···O3iii | 0.855 (17) | 1.953 (18) | 2.7997 (17) | 170 (3) |
OW5—H52···O2 | 0.876 (17) | 1.922 (18) | 2.7783 (17) | 165 (3) |
OW6—H61···O1iii | 0.855 (17) | 1.890 (18) | 2.7339 (18) | 169 (3) |
OW6—H62···OW7iv | 0.832 (17) | 2.307 (19) | 3.0671 (19) | 152 (2) |
OW7—H71···O1 | 0.872 (17) | 1.828 (17) | 2.6962 (17) | 174 (3) |
OW7—H72···O3v | 0.870 (17) | 1.929 (18) | 2.7784 (17) | 165 (3) |
OW8—H81···O3vi | 0.836 (16) | 1.951 (17) | 2.7763 (17) | 169 (3) |
OW8—H82···O4ii | 0.835 (17) | 1.946 (17) | 2.7737 (18) | 171 (3) |
OW9—H91···O4iii | 0.862 (17) | 1.873 (17) | 2.7346 (19) | 178 (3) |
OW9—H92···O2v | 0.840 (17) | 1.963 (17) | 2.8008 (18) | 175 (3) |
OW10—H101···O2 | 0.839 (17) | 2.103 (18) | 2.9190 (19) | 164 (3) |
OW10—H102···O4vi | 0.859 (18) | 2.09 (2) | 2.924 (2) | 164 (3) |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x, y+1, z; (iv) −x−1/2, y+1/2, −z+1/2; (v) x−1/2, y+1/2, z; (vi) −x+1/2, −y+1/2, −z+1. |
Magnesium selenate(VI) hexahydrate, MgSeO4·6H2O, crystallizes in the monoclinic structure type of its sulfate analogue MgSO4·6H2O (C2/c; Zalkin et al., 1964), known in nature as the mineral hexahydrite. It is also isostructural with the selenates CoIISeO4·6H2O (Ojkova et al., 1992) and FeIISeO4·6H2O (ICDD-PDF 51–1819). In contrast, both NiIISeO4·6H2O (Snyman & Pistorius, 1964; Fuess, 1970; Ptasiewicz-Bak et al., 1993) and ZnSeO4·6H2O (Hajek & Cepelak, 1965; Stadnicka et al., 1988; Koleva & Stoilova, 1995) are tetragonal with space group P41212. Interestingly, the substitution of only about 4at% NiII for Mg in MgSeO4·6H2O causes the structure to become tetragonal (Stoilova et al., 1995). No data are available on hypothetical MIISeO4·6H2O compounds where M = V, Cr, Mn, Cu, Ca, Ru or Cd.
The occurrence of both monoclinic and tetragonal modifications has also been reported for the MII–sulfate hexahydrates (e.g. Kutoglu, 1973; Angel & Finger, 1988; Gerkin & Reppart, 1988). In nature, monoclinic and tetragonal NiIISO4·6H2O are known as the minerals nickelhexahydrite and retgersite, respectively (Mandarino, 1999). The monoclinic structure type is apparently also found for the fluoroberyllate hexahydrates MIIBeF4·6H2O where M = Co, Ni, Zn (Crouzet & Aleonard, 1969; Tedenac et al., 1969).
The unit-cell volume of the title compound is about 5.2% larger than that of its sulfate analogue (Zalkin et al., 1964). This percentage compares favourably with the volume difference of 5.1% between the isostructural oxysalt pentahydrates CuSeO4·5H2O and CuSO4·5H2O (Kolitsch, 2001).
The polyhedral arrangement in the structure of MgSeO4·6H2O is characterized by alternating layers of Mg(H2O)6 octahedra and SeO4 tetrahedra oriented parallel to the (001) plane (Figs. 1 and 2). The average Mg—O and Se—O bond lengths of 2.066 and 1.639 Å, respectively, are close to expected values. The connection between adjacent polyhedra is achieved via medium-strong to weak hydrogen bonds accepted by the oxygen ligands of the SeO4 group (Table 2). Atom H62, which is involved in the longest hydrogen bond [OW6···OW7ii = 3.0671 (19) Å], shows the largest displacement parameter (if freely refined) of all hydrogen atoms, and it is also the only H atom which donates a hydrogen bond to a water molecule. A determination of the single-crystal unit-cell parameters at 120 K indicated no structural change in the title compound.
The dehydration of MgSeO4·6H2O has been studied by Stoilova & Koleva (1995a,b) who observed the penta-, tetra-, di- and monohydrate, as well as anhydrous magnesium selenate, and found that all compounds are isostructural with their sulfate analogues.